Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 20
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Transfus Apher Sci ; 62(6): 103827, 2023 Dec.
Article de Anglais | MEDLINE | ID: mdl-37793959

RÉSUMÉ

Donor sex can alter the RBC 'storage lesion' progression, contributing to dissimilarities in blood product quality, and thus adverse post-transfusion reactions. The mechanisms underlying the reduced sensitivity of female RBCs to storage-induced stress are partially ascribed to the differential effects of testosterone, progesterone, and estrogen on hemolytic propensity. Contributing to this is the increased proportion of more robust, biologically 'young' subpopulations of RBCs in females. Herein, we discuss the impact of sex hormones on RBCs and the relevance of these biological subpopulations to provide further insight into sex-dependent blood product variability.


Sujet(s)
Conservation de sang , Érythrocytes , Humains , Femelle , Hémolyse , Donneurs de sang
2.
Tissue Eng Regen Med ; 20(2): 271-284, 2023 04.
Article de Anglais | MEDLINE | ID: mdl-36462090

RÉSUMÉ

BACKGROUND: To achieve optimal bone marrow engraftment during bone marrow transplantation, migration of donor bone marrow cells (BMCs) toward the recipient's bone marrow is critical. Despite the enhanced engraftment of BMCs by co-administration of mesenchymal stem cells (MSCs), the efficiency can be variable depending on MSC donor. The purpose of this study is to examine the functional heterogeneity of tonsil-derived MSCs (TMSCs) and to identify a marker to evaluate efficacy for the enhancement of BMC migration. METHODS: To examine the donor-to-donor variation of TMSCs in potentiating BMC migration, we isolated TMSCs from 25 independent donors. Transcriptome of TMSCs and proteome of conditioned medium derived from TMSC were analyzed. RESULTS: Enhanced BMC migration by conditioned medium derived from TMSCs was variable depending on TMSC donor. The TMSCs derived from 25 donors showed distinct expression profiles compared with other cells, including fibroblasts, adipose-derived MSCs and bone marrow-derived MSCs. TMSCs were distributed in two categories: high- and low-efficacy groups for potentiating BMC migration. Transcriptome analysis of TMSCs and proteome profiles of conditioned medium derived from TMSCs revealed higher expression and secretion of matrix metalloproteinase (MMP) 1 in the high-efficacy group. MMP1 knockdown in TMSCs abrogated the supportive efficacy of conditioned medium derived from TMSC cultures in BMC migration. CONCLUSION: These data suggest that secreted MMP1 can be used as a marker to evaluate the efficacy of TMSCs in enhancing BMC migration. Furthermore, the strategy of analyzing transcriptomes and proteomes of the MSCs may be useful to set the standard for donor variation.


Sujet(s)
Cellules souches mésenchymateuses , Tonsille palatine , Cellules de la moelle osseuse , Milieux de culture conditionnés/pharmacologie , Matrix metalloproteinase 1/génétique , Matrix metalloproteinase 1/métabolisme , Cellules souches mésenchymateuses/métabolisme , Protéome/métabolisme , Humains
3.
Toxicol In Vitro ; 82: 105391, 2022 Aug.
Article de Anglais | MEDLINE | ID: mdl-35595035

RÉSUMÉ

Three-dimensional (3D) cultured primary cells are used to predict the toxicity of substances towards humans because these 3D cultures closely mimic the physiological architecture of tissues. Nonetheless, it is important to consider primary-cell-specific variability for endpoint selection and appropriate evaluation of toxicity because donor-dependent characteristics may be retained even in in vitro cell cultures. In this report, 3D differentiated bronchial epithelial cells from three donors were used to investigate donor-to-donor variability, with an aqueous extract of cigarette smoke (CS) used as the test substance. Ciliary function, cytokine secretion, and histopathology, which are affected by CS, were examined, and transcriptomic analysis was also performed. The results revealed that interleukin-8 secretion and oxidative stress-related gene expression were consistently altered for all donors; however, their amplitudes varied. Moreover, one of the donors showed unique responses to CS, suggesting that this donor was an outlier. This donor showed intrinsic differences in histology, cytokine secretion, and gene expression profile. Such donors may help evaluate potential toxicological concerns and aid our understanding of disease pathogenesis. Conversely, these donors may confound toxicological assessment and endpoint selection. Fit-for-purpose handling of inter-donor variability is warranted.


Sujet(s)
Fumer des cigarettes , Bronches/métabolisme , Cytokines/génétique , Cytokines/métabolisme , Cellules épithéliales/métabolisme , Humains , Nicotiana/toxicité , Transcriptome
4.
Cells ; 11(6)2022 03 10.
Article de Anglais | MEDLINE | ID: mdl-35326396

RÉSUMÉ

Donor variation is a prominent critical issue limiting the applicability of cell-based therapies. We hypothesized that batch effects during propagation of bone marrow stromal cells (BMSCs) in human platelet lysate (hPL), replacing fetal bovine serum (FBS), can affect phenotypic and functional variability. We therefore investigated the impact of donor variation, hPL- vs. FBS-driven propagation and exhaustive proliferation, on BMSC epigenome, transcriptome, phenotype, coagulation risk and osteochondral regenerative function. Notably, propagation in hPL significantly increased BMSC proliferation, created significantly different gene expression trajectories and distinct surface marker signatures, already after just one passage. We confirmed significantly declining proliferative potential in FBS-expanded BMSC after proliferative challenge. Flow cytometry verified the canonical fibroblastic phenotype in culture-expanded BMSCs. We observed limited effects on DNA methylation, preferentially in FBS-driven cultures, irrespective of culture duration. The clotting risk increased over culture time. Moreover, expansion in xenogenic serum resulted in significant loss of function during 3D cartilage disk formation and significantly increased clotting risk. Superior chondrogenic function under hPL-conditions was maintained over culture. The platelet blood group and isoagglutinins had minor impact on BMSC function. These data demonstrate pronounced batch effects on BMSC transcriptome, phenotype and function due to serum factors, partly outcompeting donor variation after just one culture passage.


Sujet(s)
Techniques de culture cellulaire , Cellules souches mésenchymateuses , Techniques de culture cellulaire/méthodes , Prolifération cellulaire , Cellules cultivées , Génotype , Humains , Phénotype
5.
Biomedicines ; 10(3)2022 Feb 23.
Article de Anglais | MEDLINE | ID: mdl-35327331

RÉSUMÉ

The clarification of donor variation effects upon red blood cell (RBC) storage lesion and transfusion efficacy may open new ways for donor-recipient matching optimization. We hereby propose a "triangular" strategy for studying the links comprising the transfusion chain-donor, blood product, recipient-as exemplified in two cohorts of control and beta-thalassemia minor (ßThal+) donors (n = 18 each). It was unraveled that RBC osmotic fragility and caspase-like proteasomal activity can link both donor cohorts to post-storage states. In the case of heterozygotes, the geometry, size and intrinsic low RBC fragility might be lying behind their higher post-storage resistance to lysis and recovery in mice. Moreover, energy-related molecules (e.g., phosphocreatine) and purine metabolism factors (IMP, hypoxanthine) were specifically linked to lower post-storage hemolysis and phosphatidylserine exposure. The latter was also ameliorated by antioxidants, such as urate. Finally, higher proteasomal conservation across the transfusion chain was observed in heterozygotes compared to control donors. The proposed "triangularity model" can be (a) expanded to additional donor/recipient backgrounds, (b) enriched by big data, especially in the post-transfusion state and (c) fuel targeted experiments in order to discover new quality biomarkers and design more personalized transfusion medicine schemes.

6.
Biology (Basel) ; 11(2)2022 Feb 07.
Article de Anglais | MEDLINE | ID: mdl-35205121

RÉSUMÉ

Reactive oxygen species (ROS) generated by neutrophils provide a frontline defence against invading pathogens. We investigated the supportive effect of tonsil-derived mesenchymal stem cells (TMSCs) on ROS generation from neutrophils using promyelocytic HL-60 cells. Methods: Differentiated HL-60 (dHL-60) cells were cocultured with TMSCs isolated from 25 independent donors, and ROS generation in dHL-60 cells was measured using luminescence. RNA sequencing and real-time PCR were performed to identify the candidate genes of TMSCs involved in augmenting the oxidative burst of dHL-60 cells. Transcriptome analysis of TMSCs derived from 25 independent donors revealed high levels of procollagen C-endopeptidase enhancer 2 (PCOLCE2) in TMSCs, which were highly effective in potentiating ROS generation in dHL-60 cells. In addition, PCOLCE2 knockdown in TMSCs abrogated TMSC-induced enhancement of ROS production in dHL-60 cells, indicating that TMSCs increased the oxidative burst in dHL-60 cells via PCOLCE2. Furthermore, the direct addition of recombinant PCOLCE2 protein increased ROS production in dHL-60 cells. These results suggest that PCOLCE2 secreted by TMSCs may be used as a therapeutic candidate to enhance host defences by increasing neutrophil oxidative bursts. PCOLCE2 levels in TMSCs could be used as a marker to select TMSCs exhibiting high efficacy for enhancing neutrophil oxidative bursts.

7.
Transfusion ; 62(3): 663-674, 2022 03.
Article de Anglais | MEDLINE | ID: mdl-35137967

RÉSUMÉ

BACKGROUND: Glycosylated hemoglobin (HbA1c), not routinely screened in blood donors, is associated with morphological, biochemical, and functional abnormalities of red blood cells (RBCs) and with enhanced oxidative stress. We aimed to explore HbA1c levels in blood donors and their effect on RBC storage. STUDY DESIGN AND METHODS: An analytical cross-sectional study was conducted on 875 eligible blood donors aged 18-60 years from May 1, 2021, to August 30, 2021. Two selected groups of donors (HbA1c <6.5%, n = 10; HbA1c ≥ 6.5%, n = 10) exhibiting as similar as possible baseline values (such as age, sex, and living habits, etc.) were recruited for blood donation in leukoreduced CPDA-1 units. RBC morphological, biochemical, structural, and oxidative stress states were measured during 5-35 days of storage. RESULTS: Elevated HbA1c prevalence was 37%, including 31.7% (277/875) in the prediabetes range (HbA1c 5.7%-6.4%) and 5.4% (47/875) in the diabetes range (HbA1c ≥ 6.5%). Age, body mass index (BMI), smoking, and alcohol consumption were the main factors influencing the HbA1c levels. During storage, high-HbA1c group had abnormal RBC morphology, impaired membrane function, and ion imbalance (higher mean corpuscular volume, distribution width, hemolysis rate, potassium ion efflux, and phosphatidylserine exposure) as compared with low HbA1c group. Additionally, RBC oxidative stress was significantly increased in donors with high HbA1c levels during 21-35 days. DISCUSSION: Blood donors proportion with abnormal HbA1c levels was relatively high, and donor HbA1c levels may be associated with stored RBCs capacity. Our study provides new insights into the different effects of donor HbA1c levels on RBC storage lesions.


Sujet(s)
Donneurs de sang , Conservation de sang , Études transversales , Érythrocytes/métabolisme , Hémoglobine glyquée/métabolisme , Hémolyse , Humains
8.
Biochimie ; 196: 161-170, 2022 May.
Article de Anglais | MEDLINE | ID: mdl-35114349

RÉSUMÉ

Satellite cells are generally quiescent in vivo. Once activated, progression through the cell cycle begins. Immortalised myoblasts from a single cell line are fairly homogenous in culture, but primary human myoblasts (PHMs) demonstrate heterogeneity. This phenomenon is poorly understood however may impact on PHM expansion. This study aimed to evaluate cell cycle transition from growth to synthesis phases of the cell cycle (G1 to S phase) and total mRNA relevant to this transition in PHM clones derived from 2 donor biopsies. Proportions of cells transitioning from G1 to S phase were evaluated at 2-hourly intervals for 24 h (n = 3 for each) and total mRNA quantified. Both PHM clones revealed an exponential transition from G1 to S phase over time, with a significantly slower rate for PHMs from S9.1 compared to S6.3, which had a higher proportion of PHMs in S phase for most time-points (p < 0.05). After 24 h the proportion of PHMs in S phase was ∼13% (S6.3) compared to ∼22% (S9.1). Gene transcription increased as cells progressed from G1 to S phase. Although total RNA increased with similar linearity in both clones, S6.3 PHMs had consistently (10 out of 12 time points) significantly higher concentrations. Validating the 2-hourly assessment over 24 h, a 4-hourly assessment from 8 to 32 h revealed similar differences but included the beginning of a plateau. This study demonstrates that PHMs from different donors differ in both cell cycle progression and overall transcriptome revealing new aspects in the heterogeneity of isolated satellite cells in vitro.


Sujet(s)
Myoblastes , Cycle cellulaire/génétique , Clones cellulaires , Humains , ARN messager/génétique , Phase S
9.
Int J Mol Sci ; 22(22)2021 Nov 13.
Article de Anglais | MEDLINE | ID: mdl-34830162

RÉSUMÉ

Blood donors with beta-thalassemia traits (ßThal+) have proven to be good "storers", since their stored RBCs are resistant to lysis and resilient against oxidative/proteotoxic stress. To examine the performance of these RBCs post-storage, stored ßThal+ and control RBCs were reconstituted in plasma donated from transfusion-dependent beta-thalassemic patients and healthy controls, and incubated for 24 h at body temperature. Several physiological parameters, including hemolysis, were evaluated. Moreover, labeled fresh/stored RBCs from the two groups were transfused in mice to assess 24 h recovery. All hemolysis metrics were better in the group of heterozygotes and distinguished them against controls in the plasma environment. The reconstituted ßThal+ samples also presented higher proteasome activity and fewer procoagulant extracellular vesicles. Transfusion to mice demonstrated that ßThal+ RBCs present a marginal trend for higher recovery, regardless of the recipient's immune background and the RBC storage age. According to correlation analysis, several of these advantageous post-storage characteristics are related to storage phenotypes, like the cytoskeleton composition, low cellular fragility, and enhanced membrane proteostasis that characterize stored ßThal+ RBCs. Overall, it seems that the intrinsic physiology of ßThal+ RBCs benefits them in conditions mimicking a recipient environment, and in the circulation of animal models; findings that warrant validation in clinical trials.


Sujet(s)
Donneurs de sang , Conservation de sang , Transfusion d'érythrocytes , Érythrocytes/métabolisme , Hémolyse , bêta-Thalassémie/sang , Animaux , Femelle , Humains , Mâle , Souris , Souris de lignée NOD , Souris SCID
10.
J Photochem Photobiol B ; 221: 112243, 2021 Aug.
Article de Anglais | MEDLINE | ID: mdl-34217028

RÉSUMÉ

Due to their capacity to differentiate into the chondrogenic lineage, adipose-derived stromal/stem cells (ASC) are a promising source of therapeutically relevant cells for cartilage tissue regeneration. Their differentiation potential, however, varies between patients. In our study, we aim to stimulate ASC towards a more reliable chondrogenic phenotype using photobiomodulation (PBM). LED devices of either blue (475 nm), green (516 nm) or red (635 nm) light were used to treat human ASC from donors of varying chondrogenic potential. The treatment was applied either once during the 2D expansion phase or repeatedly during the 3D differentiation phase. Chondrogenic differentiation was assessed via pellet size, GAG/DNA content, histology and gene expression analysis. Reactions to PBM were found to be wavelength-dependent and more pronounced when the treatment was applied during expansion. Donors were assigned to responder categories according to their response to the treatment during expansion, whereby good responders were mainly donors with low intrinsic chondrogenic potential. Exposed to light, they revealed a particularly high relative increase in pellet size (more than twice the size of untreated controls after red light PBM), intense collagen type II immunostaining (low/absent in untreated controls) and activation of otherwise absent COL2A1 expression. Conversely, on a donor with high intrinsic chondrogenic potential, light had adverse effects. When applied with shorter wavelengths (blue, green), it led to reduced pellet size, GAG/DNA content and collagen type II immunostaining. However, when PBM was applied in 3D, the same donor was the only one to react with increased differentiation to all three wavelengths. We were able to demonstrate that PBM can be used to enhance or hamper chondrogenesis of ASC, and that success depends on treatment parameters and intrinsic cellular potential. The improvement of chondrogenesis in donors with low intrinsic potential highlights PBM as potent tool for cell-based cartilage regeneration. Its cost-effectiveness and ease of use make for an attractive treatment option to enhance the performance of ASC in cartilage tissue engineering.


Sujet(s)
Différenciation cellulaire/effets des radiations , Chondrogenèse/effets des radiations , Lumière , Tissu adipeux/cytologie , Techniques de culture cellulaire , Cellules cultivées , Collagène de type II/génétique , Collagène de type II/métabolisme , Régulation négative/effets des radiations , Humains , Interleukine-1 bêta/génétique , Interleukine-1 bêta/métabolisme , Cellules souches mésenchymateuses/cytologie , Cellules souches mésenchymateuses/métabolisme , Régulation positive/effets des radiations
11.
Int J Mol Sci ; 22(7)2021 Mar 25.
Article de Anglais | MEDLINE | ID: mdl-33806028

RÉSUMÉ

Genetic characteristics of blood donors may impact the storability of blood products. Despite higher basal stress, red blood cells (RBCs) from eligible donors that are heterozygous for beta-thalassemia traits (ßThal+) possess a differential nitrogen-related metabolism, and cope better with storage stress compared to the control. Nevertheless, not much is known about how storage impacts the proteome of membrane and extracellular vesicles (EVs) in ßThal+. For this purpose, RBC units from twelve ßThal+ donors were studied through proteomics, immunoblotting, electron microscopy, and functional ELISA assays, versus units from sex- and aged-matched controls. ßThal+ RBCs exhibited less irreversible shape modifications. Their membrane proteome was characterized by different levels of structural, lipid raft, transport, chaperoning, redox, and enzyme components. The most prominent findings include the upregulation of myosin proteoforms, arginase-1, heat shock proteins, and protein kinases, but the downregulation of nitrogen-related transporters. The unique membrane proteome was also mirrored, in part, to that of ßThal+ EVs. Network analysis revealed interesting connections of membrane vesiculation with storage and stress hemolysis, along with proteome control modulators of the RBC membrane. Our findings, which are in line with the mild but consistent oxidative stress these cells experience in vivo, provide insight into the physiology and aging of stored ßThal+ RBCs.


Sujet(s)
Conservation de sang/méthodes , Membrane érythrocytaire/métabolisme , Protéome , bêta-Thalassémie/sang , bêta-Thalassémie/génétique , Donneurs de sang , Test ELISA , Vésicules extracellulaires/métabolisme , Hémolyse , Hétérozygote , Humains , Méthode des moindres carrés , Microdomaines membranaires/métabolisme , Oxydoréduction , Stress oxydatif , Protéomique , Manipulation d'échantillons/méthodes
12.
Front Physiol ; 11: 616457, 2020.
Article de Anglais | MEDLINE | ID: mdl-33424640

RÉSUMÉ

Objective: Unexpectedly wide distribution (<10 to >90%) of hemoglobin oxygen saturation (sO2) within red cell concentrates (RCCs) has recently been observed. Causes of such variability are not yet completely explained whereas the roles of oxygen and oxidative lesions during the storage of RCCs are known. The objectives of the present study are to characterize sO2 distribution in RCCs produced in a Swiss blood center and to investigate the influence of processing and donors' characteristics. Methods: The level of sO2 was measured in 1701 leukocyte-depleted RCCs derived from whole blood donations in both top-bottom (TB; component filtered, SAGM) and top-top (TT; whole blood filtration, PAGGSM) RCCs. The sO2 value was measured non-invasively through the PVC bag prior to storage by resonance Raman spectroscopy. Gender, age, blood type, hemoglobin level, and living altitude of donors, as well as process method and time-to-process were recorded. Results: Overall, the sO2 exhibited a wide non-Gaussian distribution with a mean of 51.2 ± 18.5%. Use of top-top kits resulted in a 16% higher sO2 (P < 0.0001) than with top-bottom ones. Waiting time before processing only had a modest impact, but the blood processing itself reduced the sO2 by almost 12% (P < 0.0001). sO2 was also significantly affected by some donors' characteristics. RCCs from men exhibited 25% higher sO2 (P < 0.0001) than those donated by women. Multivariate analysis revealed that the apparent correlation observed with hemoglobin level and age was actually due to multicollinearity with the sex variable. Finally, we noticed no significant differences across blood type but found that altitude of residence was associated with the sO2 (i.e., higher in higher living place). Conclusion: These data confirm wide sO2 distribution in RCCs reported recently. The sO2 was impacted by the processing and also by donors' characteristics such as the gender and the living altitude, but not by the hemoglobin level, blood group and donor age. This study provides new hints on the factors influencing red blood cells storage lesions, since they are known to be related to O2 content within the bags, giving clues to better process and to better store RCCs and therefore potentially improve the efficacy of transfusion.

13.
J Tissue Eng Regen Med ; 13(3): 433-445, 2019 03.
Article de Anglais | MEDLINE | ID: mdl-30650247

RÉSUMÉ

To introduce a functional vascular network into tissue-engineered bone equivalents, human endothelial colony forming cells (ECFCs) and multipotent mesenchymal stromal cells (MSCs) can be cocultured. Here, we studied the impact of donor variation of human bone marrow-derived MSCs and cord blood-derived ECFCs on vasculogenesis and osteogenesis using a 3D in vitro coculture model. Further, to make the step towards cocultures consisting of cells derived from a single donor, we tested how induced pluripotent stem cell (iPSC)-derived human endothelial cells (iECs) performed in coculture models. Cocultures with varying combinations of human donors of MSCs, ECFCs, or iECs were prepared in Matrigel. The constructs were cultured in an osteogenic differentiation medium. Following a 10-day culture period, the length of the prevascular structures and osteogenic differentiation were evaluated for up to 21 days of culture. The particular combination of MSC and ECFC donors influenced the vasculogenic properties significantly and induced variation in osteogenic potential. In addition, the use of iECs in the cocultures resulted in prevascular structure formation in osteogenically differentiated constructs. Together, these results showed that close attention to the source of primary cells, such as ECFCs and MSCs, is critical to address variability in vasculogenic and osteogenic potential. The 3D coculture model appeared to successfully generate prevascularized constructs and were sufficient in exceeding the ~200 µm diffusion limit. In addition, iPSC-derived cell lineages may decrease variability by providing a larger and potentially more uniform source of cells for future preclinical and clinical applications.


Sujet(s)
Techniques de coculture/méthodes , Hydrogels/pharmacologie , Néovascularisation physiologique , Ostéogenèse , Donneurs de tissus , Adulte , Sujet âgé , Calcification physiologique/effets des médicaments et des substances chimiques , Différenciation cellulaire/effets des médicaments et des substances chimiques , Collagène/pharmacologie , Test clonogénique , Association médicamenteuse , Cellules endothéliales/cytologie , Femelle , Humains , Cellules souches pluripotentes induites/cytologie , Cellules souches pluripotentes induites/effets des médicaments et des substances chimiques , Laminine/pharmacologie , Mâle , Cellules souches mésenchymateuses/cytologie , Adulte d'âge moyen , Néovascularisation physiologique/effets des médicaments et des substances chimiques , Ostéogenèse/effets des médicaments et des substances chimiques , Ostéonectine/métabolisme , Protéoglycanes/pharmacologie , Jeune adulte
14.
Tissue Eng Part A ; 24(21-22): 1693-1703, 2018 11.
Article de Anglais | MEDLINE | ID: mdl-29792383

RÉSUMÉ

Mesenchymal stem cells (MSCs) are an attractive cell type for cartilage repair that can undergo chondrogenesis in a variety of three-dimensional (3D) scaffolds. Hyaluronic acid (HA) hydrogels provide a biologically relevant interface for cell encapsulation. While previous studies have shown that MSC-laden HA constructs can mature in vitro to match native mechanical properties using cells from animal sources, clinical application will depend on the successful translation of these findings to human cells. Though numerous studies have investigated chondrogenesis of human MSC (hMSC)-laden constructs, their functional outcomes were quite inferior to those using animal sources, and donor-specific responses to 3D HA hydrogels have not been fully investigated. To that end, hMSCs were derived from seven donors, and their ability to undergo chondrogenesis in pellet culture and HA hydrogels was evaluated. Given the initial observation of overt cell aggregation and/or gel contraction for some donors, the impact of variation in cell and HA macromer concentration on functional outcomes during chondrogenesis was evaluated using one young/healthy donor. The findings show marked differences in functional chondrogenesis of hMSCs in 3D HA hydrogels based on donor. Increasing cell density resulted in increased mechanical properties, but also promoted construct contraction. Increasing the macromer density generally stabilized construct dimensions and increased extracellular matrix production, but limited the distribution of formed matrix at the center of the construct and reduced mechanical properties. Collectively, these findings suggest that the use of hMSCs may require tuning of cell density and gel mechanics on a donor-by-donor basis to provide for the most robust tissue formation for clinical application.


Sujet(s)
Chondrogenèse , Acide hyaluronique , Hydrogels , Cellules souches mésenchymateuses/métabolisme , Donneurs de tissus , Adolescent , Adulte , Cellules cultivées , Matrice extracellulaire/métabolisme , Femelle , Humains , Acide hyaluronique/composition chimique , Acide hyaluronique/pharmacologie , Hydrogels/composition chimique , Hydrogels/pharmacologie , Mâle , Cellules souches mésenchymateuses/cytologie , Adulte d'âge moyen
15.
Front Med (Lausanne) ; 5: 16, 2018.
Article de Anglais | MEDLINE | ID: mdl-29459896

RÉSUMÉ

OBJECTIVE: Transfusion of fresh frozen plasma (FFP) helps in maintaining the coagulation parameters in patients with acquired multiple coagulation factor deficiencies and severe bleeding. However, along with coagulation factors and procoagulant extracellular vesicles (EVs), numerous bioactive and probably donor-related factors (metabolites, oxidized components, etc.) are also carried to the recipient. The X-linked glucose 6-phosphate dehydrogenase deficiency (G6PD-), the most common human enzyme genetic defect, mainly affects males. By undermining the redox metabolism, the G6PD- cells are susceptible to the deleterious effects of oxidants. Considering the preferential transfusion of FFP from male donors, this study aimed at the assessment of FFP units derived from G6PD- males compared with control, to show whether they are comparable at physiological, metabolic and redox homeostasis levels. METHODS: The quality of n = 12 G6PD- and control FFP units was tested after 12 months of storage, by using hemolysis, redox, and procoagulant activity-targeted biochemical assays, flow cytometry for EV enumeration and phenotyping, untargeted metabolomics, in addition to statistical and bioinformatics tools. RESULTS: Higher procoagulant activity, phosphatidylserine positive EVs, RBC-vesiculation, and antioxidant capacity but lower oxidative modifications in lipids and proteins were detected in G6PD- FFP compared with controls. The FFP EVs varied in number, cell origin, and lipid/protein composition. Pathway analysis highlighted the riboflavin, purine, and glycerolipid/glycerophospholipid metabolisms as the most altered pathways with high impact in G6PD-. Multivariate and univariate analysis of FFP metabolomes showed excess of diacylglycerols, glycerophosphoinositol, aconitate, and ornithine but a deficiency in riboflavin, flavin mononucleotide, adenine, and arginine, among others, levels in G6PD- FFPs compared with control. CONCLUSION: Our results point toward a different redox, lipid metabolism, and EV profile in the G6PD- FFP units. Certain FFP-needed patients may be at greatest benefit of receiving FFP intrinsically endowed by both procoagulant and antioxidant activities. However, the clinical outcome of G6PD- FFP transfusion would likely be affected by various other factors, including the signaling potential of the differentially expressed metabolites and EVs, the degree of G6PD-, the redox status in the recipient, the amount of FFP units transfused, and probably, the storage interval of the FFP, which deserve further investigation by future studies.

16.
Arch Toxicol ; 91(1): 439-452, 2017 Jan.
Article de Anglais | MEDLINE | ID: mdl-27039104

RÉSUMÉ

The application of primary human hepatocytes following isolation from human tissue is well accepted to be compromised by the process of dedifferentiation. This phenomenon reduces many unique hepatocyte functions, limiting their use in drug disposition and toxicity assessment. The aetiology of dedifferentiation has not been well defined, and further understanding of the process would allow the development of novel strategies for sustaining the hepatocyte phenotype in culture or for improving protocols for maturation of hepatocytes generated from stem cells. We have therefore carried out the first proteomic comparison of primary human hepatocyte differentiation. Cells were cultured for 0, 24, 72 and 168 h as a monolayer in order to permit unrestricted hepatocyte dedifferentiation, so as to reveal the causative signalling pathways and factors in this process, by pathway analysis. A total of 3430 proteins were identified with a false detection rate of <1 %, of which 1117 were quantified at every time point. Increasing numbers of significantly differentially expressed proteins compared with the freshly isolated cells were observed at 24 h (40 proteins), 72 h (118 proteins) and 168 h (272 proteins) (p < 0.05). In particular, cytochromes P450 and mitochondrial proteins underwent major changes, confirmed by functional studies and investigated by pathway analysis. We report the key factors and pathways which underlie the loss of hepatic phenotype in vitro, particularly those driving the large-scale and selective remodelling of the mitochondrial and metabolic proteomes. In summary, these findings expand the current understanding of dedifferentiation should facilitate further development of simple and complex hepatic culture systems.


Sujet(s)
Régulation de l'expression des gènes au cours du développement , Hépatocytes/métabolisme , Pharmacologie/méthodes , Protéome/métabolisme , Toxicologie/méthodes , Dédifférenciation cellulaire/effets des médicaments et des substances chimiques , Cellules cultivées , Complexe I de la chaîne respiratoire/antagonistes et inhibiteurs , Complexe I de la chaîne respiratoire/métabolisme , Analyse de profil d'expression de gènes , Régulation de l'expression des gènes au cours du développement/effets des médicaments et des substances chimiques , Hépatocytes/cytologie , Hépatocytes/effets des médicaments et des substances chimiques , Humains , Cinétique , Mitochondries du foie/effets des médicaments et des substances chimiques , Mitochondries du foie/enzymologie , Mitochondries du foie/métabolisme , Stabilité protéique/effets des médicaments et des substances chimiques , Protéome/génétique , Reproductibilité des résultats , Roténone/pharmacologie , Agents découplants/pharmacologie
17.
Front Med (Lausanne) ; 4: 248, 2017.
Article de Anglais | MEDLINE | ID: mdl-29376053

RÉSUMÉ

OBJECTIVE: In glucose 6-phosphate dehydrogenase (G6PD) deficiency, decreased NADPH regeneration in the pentose phosphate pathway and subnormal levels of reduced glutathione result in insufficient antioxidant defense, increased susceptibility of red blood cells (RBCs) to oxidative stress, and acute hemolysis following exposure to pro-oxidant drugs and infections. Despite the fact that redox disequilibrium is a prominent feature of RBC storage lesion, it has been reported that the G6PD-deficient RBCs store well, at least in respect to energy metabolism, but their overall metabolic phenotypes and molecular linkages to the storability profile are scarcely investigated. METHODS: We performed UHPLC-MS metabolomics analyses of weekly sampled RBC concentrates from G6PD sufficient and deficient donors, stored in citrate phosphate dextrose/saline adenine glucose mannitol from day 0 to storage day 42, followed by statistical and bioinformatics integration of the data. RESULTS: Other than previously reported alterations in glycolysis, metabolomics analyses revealed bioactive lipids, free fatty acids, bile acids, amino acids, and purines as top variables discriminating RBC concentrates for G6PD-deficient donors. Two-way ANOVA showed significant changes in the storage-dependent variation in fumarate, one-carbon, and sulfur metabolism, glutathione homeostasis, and antioxidant defense (including urate) components in G6PD-deficient vs. sufficient donors. The levels of free fatty acids and their oxidized derivatives, as well as those of membrane-associated plasticizers were significantly lower in G6PD-deficient units in comparison to controls. By using the strongest correlations between in vivo and ex vivo metabolic and physiological parameters, consecutively present throughout the storage period, several interactomes were produced that revealed an interesting interplay between redox, energy, and hemolysis variables, which may be further associated with donor-specific differences in the post-transfusion performance of G6PD-deficient RBCs. CONCLUSION: The metabolic phenotypes of G6PD-deficient donors recapitulate the basic storage lesion profile that leads to loss of metabolic linkage and rewiring. Donor-related issues affect the storability of RBCs even in the narrow context of this donor subgroup in a way likely relevant to transfusion medicine.

18.
Transfus Apher Sci ; 55(3): 292-301, 2016 Dec.
Article de Anglais | MEDLINE | ID: mdl-27839967

RÉSUMÉ

Red blood cell storage lesion (RSL) is a multifaceted biological phenomenon. It refers to deterioration in RBC quality that is characterized by lethal and sub-lethal, reversible and irreversible defects. RSL is influenced by prestorage variables and it might be associated with variable clinical outcomes. Optimal biopreservation conditions are expected to offer maximum levels of RBC survival and acceptable functionality and bioreactivity in-bag and in vivo; consequently, full appraisal of RSL requires understanding of how RSL changes interact with each other and with the recipient. Recent technological innovation in MS-based omics, imaging, cytometry, small particle and systems biology has offered better understanding of RSL contributing factors and effects. A number of elegant in vivo and in vitro studies have paved the way for the identification of quality control biomarkers useful to predict RSL profile and posttransfusion performance. Moreover, screening tools for the early detection of good or poor "storers" and donors have been developed. In the light of new perspectives, storage time is not the touchstone to rule on the quality of a packed RBC unit. At least by a biochemical standpoint, the metabolic aging pattern during storage may not correspond to the currently fresh/old distinction of stored RBCs. Finally, although each unit of RBCs is probably unique, a metabolic signature of RSL across storage variables might exist. Moving forward from traditional hematologic measures to integrated information on structure, composition, biochemistry and interactions collected in bag and in vivo will allow identification of points for intervention in a transfusion meaningful context.


Sujet(s)
Conservation de sang/méthodes , Érythrocytes/cytologie , Matériaux biocompatibles/analyse , Humains
19.
Transfus Apher Sci ; 55(1): 92-104, 2016 Aug.
Article de Anglais | MEDLINE | ID: mdl-27452642

RÉSUMÉ

Release of vesicles from cells is a universal biological system, an adaptive cellular response to endogenous or external physiological or stressful stimuli and a genius means for intercellular, inter-organ and even inter-organism communication. These secreted vesicles that are collectively designated extracellular vesicles (EVs) have increasingly attracted the interest of cell biologists due to their imaginable interactions with every piece of the known biological systems in both health and disease states. Although EVs isolation and characterization are challenges, owing to their particular physicochemical features and complex biology, recent technological innovation has offered better understanding and inevitably, driven the revision of previously established theories on them. However, a crucial question remains unsolved: the physiological relevance of EVs in vivo. Since membrane vesiculation is an integral part of red blood cell (RBC) aging and homeostatic machinery and a prominent feature of RBC storage lesion, the characterization of storage EVs and their probable clinical relevance with the therapeutic or adverse effects of transfusions are extremely important targets in the research fields of transfusion biology and medicine. The scientists involved should transfer nascent knowledge and state-of-the-art technological tools in the packed RBC unit in order to: (i) update the inventory of biochemical and biophysical features of storage EVs; (ii) gain insight into the molecular pathways/signals underlying their generation; and (iii) clarify their dependence on blood donor, storage strategies and analytical variations, in order to step forward on understanding their interactions with stored or recipient target cells.


Sujet(s)
Donneurs de sang , Conservation de sang , Microparticules membranaires/métabolisme , Membrane érythrocytaire/métabolisme , Animaux , Humains
20.
Proteomics Clin Appl ; 10(8): 791-804, 2016 08.
Article de Anglais | MEDLINE | ID: mdl-27095294

RÉSUMÉ

Although the molecular pathways leading to the progressive deterioration of stored red blood cells (RBC storage lesion) and the clinical relevance of storage-induced changes remain uncertain, substantial donor-specific variability in RBC performance during storage, and posttransfusion has been established ("donor-variation effect"). In-bag hemolysis and numerous properties of the RBC units that may affect transfusion efficacy have proved to be strongly donor-specific. Donor-variation effect may lead to the production of highly unequal blood labile products even when similar storage strategy and duration are applied. Genetic, undiagnosed/subclinical medical conditions and lifestyle factors that affect RBC characteristics at baseline, including RBC lifespan, energy metabolism, and sensitivity to oxidative stress, are all likely to influence the storage capacity of individual donors' cells, although not evident by the donor's health or hematological status at blood donation. Consequently, baseline characteristics of the donors, such as membrane peroxiredoxin-2 and serum uric acid concentration, have been proposed as candidate biomarkers of storage quality. This review article focuses on specific factors that might contribute to the donor-variation effect and emphasizes the emerging need for using omics-based technologies in association with in vitro and in vivo transfusion models and clinical trials to discover biomarkers of storage quality and posttransfusion recovery in donor blood.


Sujet(s)
Donneurs de sang , Conservation de sang/méthodes , Érythrocytes , Animaux , Transfusion sanguine , Érythrocytes/métabolisme , Humains
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE