Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 995
Filtrer
1.
Plant Commun ; : 101128, 2024 Sep 07.
Article de Anglais | MEDLINE | ID: mdl-39245936

RÉSUMÉ

To combat pathogen attacks, plants have developed a highly advanced immune system, which requires tight regulation to initiate robust defense responses while preventing autoimmunity simultaneously. The ubiquitin-proteasome system (UPS), responsible for degrading excess or misfolded proteins, exerts vital roles in ensuring strong and effective immune responses. E3 ligases, as key UPS components, have been extensively documented in rice immunity through modulating the ubiquitination and degradation of downstream substrates involved in various immune signaling pathways. Here, we summarize the crucial roles of rice E3 ligases in both pathogen/microbe/damage-associated molecular pattern-triggered immunity and effector-triggered immunity, highlight the molecular mechanisms of E3 ligases in rice immune signaling, and emphasize the functions of E3 ligases as targets of pathogen effectors for pathogenesis. We also discuss potential strategies for application of the immunity-associated E3 ligases in breeding disease-resistant rice varieties without growth penalty. This review thus provides comprehensive and updated understanding on the sophisticated and interconnected regulatory functions of E3 ligases in rice immunity and its balancing with growth and development.

2.
J Cancer ; 15(16): 5376-5395, 2024.
Article de Anglais | MEDLINE | ID: mdl-39247594

RÉSUMÉ

Purpose: Colorectal cancer is the third most common cause of cancer death worldwide. We probed the correlations between E3 ubiquitin ligase (E3)-related genes (ERGs) and colon cancer prognosis and immune responses. Methods: Gene expression profiles and clinical data of patients with colon cancer were acquired from the TCGA, GTEx, GSE17537 and GSE29621 databases. ERGs were identified by coexpression analysis. WGCNA and differential expression analysis were subsequently conducted. Consensus clustering identified two molecular clusters. Differential analysis of the two clusters and Cox regression were then conducted. A prognostic model was constructed based on 10 machine learning algorithms and 92 algorithm combinations. The CIBERSORT, ssGSEA and TIMER algorithms were used to estimate immune infiltration. The OncoPredict algorithm and The Cancer Immunome Atlas (TCIA) predicted susceptibility to chemotherapeutic and targeted drugs and immunotherapy sensitivity. CCK-8, scratch-wound and RT‒PCR assays were subsequently conducted. Results: Two ERG-associated clusters were identified. The prognosis and immune function of patients in cluster A were superior to those of patients in cluster B. We constructed a prognostic model with perfect predictive capability and validated it in internal and external colon cancer datasets. We discovered significant discrepancies in immune infiltration and immune checkpoints between different risk groups. The group with high-risk had a reduced half-maximal inhibitory concentration (IC50) for some routine antitumor drugs and reduced susceptibility to immunotherapy. In vitro experiments demonstrated that the ectopic expression of PRELP inhibited the migration and proliferation of CRC cells. Conclusions: In summary, we identified novel molecular subtypes and developed a prognostic model, which will help a lot in the advancement of better forecasting and therapeutic approaches.

3.
mBio ; : e0098124, 2024 Sep 05.
Article de Anglais | MEDLINE | ID: mdl-39235249

RÉSUMÉ

Cellular responses to external stress allow microorganisms to adapt to a vast array of environmental conditions, including infection sites. The molecular mechanisms behind these responses are studied to gain insight into microbial pathogenesis, which could lead to new antimicrobial therapies. Here, we explore a role for arrestin protein-mediated ubiquitination in stress response and pathogenesis in the pathogenic fungus Cryptococcus neoformans. In a previous study, we identified four arrestin-like proteins in C. neoformans and found that one of these is required for efficient membrane synthesis, likely by directing interaction between fatty acid synthases and the Rsp5 E3 ubiquitin ligase. Here, we further explore Cn Rsp5 function and determine that this single Ub ligase is absolutely required for pathogenesis and survival in the presence of cellular stress. Additionally, we show that a second arrestin-like protein, Ali2, similarly facilitates interaction between Rsp5 and some of its protein targets. Of the four postulated C. neoformans arrestin-like proteins, Ali2 appears to contribute the most to C. neoformans pathogenesis, likely by directing Rsp5 to pathogenesis-related ubiquitination targets. A proteomics-based differential ubiquitination screen revealed that several known cell surface proteins are ubiquitinated by Rsp5 and a subset also requires Ali2 for their ubiquitination. Rsp5-mediated ubiquitination alters the stability and the localization of these proteins. A loss of Rsp5-mediated ubiquitination results in cell wall defects that increase susceptibility to external stresses. These findings support a model in which arrestin-like proteins guide Rsp5 to ubiquitinate specific target proteins, some of which are required for survival during stress. IMPORTANCE: Microbial proteins involved in human infectious diseases often need to be modified by specific chemical additions to be fully functional. Here, we explore the role of a particular protein modification, ubiquitination, in infections due to the human fungal pathogen Cryptococcus neoformans. We identified a complex of proteins responsible for adding ubiquitin groups to fungal proteins, and this complex is required for virulence. These proteins are fungal specific and might be targets for novel anti-infection therapy.

4.
Plants (Basel) ; 13(15)2024 Jul 25.
Article de Anglais | MEDLINE | ID: mdl-39124165

RÉSUMÉ

Cotton is one of the world's most important economic crops. Verticillium wilt is a devastating cotton disease caused by Verticillium dahliae, significantly impacting cotton yield and quality. E3 ubiquitin ligases are essential components of the ubiquitin-mediated 26S proteasome system, responsible for recognizing ubiquitinated target proteins and promoting their degradation, which play a crucial regulatory role in plant immune responses. In this study, on the basis of the confirmation of differential expression of GhDIRP1, a RING-type E3 ubiquitin ligase encoding gene, in two cotton varieties resistant (Zhongzhimian 2) or susceptible (Jimian 11) to V. dahliae, we demonstrated that GhDIRP1 is a negative regulator of V. dahliae resistance because silencing GhDIRP1 in cotton and heterogeneously overexpressing the gene in Arabidopsis enhanced and compromised resistance to V. dahliae, respectively. The GhDIRP1-mediated immune response seemed to be realized through multiple physiological pathways, including hormone signaling, reactive oxygen species, and lignin biosynthesis. Based on the sequences of GhDIRP1 isolated from Zhongzhimian 2 and Jimian 11, we found that GhDIRP1 had identical coding but different promoter sequences in the two varieties, with the promoter of Zhongzhimian 2 being more active than that of Jimian 11 because the former drove a stronger expression of GUS and LUC reporter genes. The results link the ubiquitination pathway to multiple physiological pathways acting in the cotton immune response and provide a candidate gene for breeding cotton varieties resistant to V. dahliae.

5.
Cell Rep ; 43(8): 114596, 2024 Aug 27.
Article de Anglais | MEDLINE | ID: mdl-39110591

RÉSUMÉ

The Ralstonia solanacearum species complex causes bacterial wilt in a variety of crops. Tomato cultivar Hawaii 7996 is a widely used resistance resource; however, the resistance is evaded by virulent strains, with the underlying mechanisms still unknown. Here, we report that the phylotype Ⅱ strain ES5-1 can overcome Hawaii 7996 resistance. RipV2, a type Ⅲ effector specific to phylotype Ⅱ strains, is vital in overcoming tomato resistance. RipV2, which encodes an E3 ubiquitin ligase, suppresses immune responses and Toll/interleukin-1 receptor/resistance nucleotide-binding/leucine-rich repeat (NLR) (TNL)-mediated cell death. Tomato helper NLR N requirement gene 1 (NRG1), enhanced disease susceptibility 1 (EDS1), and senescence-associated gene 101b (SAG101b) are identified as RipV2 target proteins. RipV2 is essential for ES5-1 virulence in Hawaii 7996 but not in SlNRG1-silenced tomato, demonstrating SlNRG1 to be an RipV2 virulence target. Our results dissect the mechanisms of RipV2 in disrupting immunity and highlight the importance of converged immune components in conferring bacterial wilt resistance.


Sujet(s)
Résistance à la maladie , Maladies des plantes , Ralstonia solanacearum , Solanum lycopersicum , Ubiquitination , Ralstonia solanacearum/pathogénicité , Ralstonia solanacearum/métabolisme , Solanum lycopersicum/microbiologie , Solanum lycopersicum/immunologie , Solanum lycopersicum/métabolisme , Maladies des plantes/microbiologie , Maladies des plantes/immunologie , Protéines végétales/métabolisme , Protéines végétales/génétique , Protéines NLR/métabolisme , Protéines bactériennes/métabolisme , Protéines bactériennes/génétique , Protéolyse , Virulence
6.
Genes Dev ; 38(13-14): 675-691, 2024 Aug 20.
Article de Anglais | MEDLINE | ID: mdl-39137945

RÉSUMÉ

Tumor suppressor genes play critical roles in normal tissue homeostasis, and their dysregulation underlies human diseases including cancer. Besides human genetics, model organisms such as Drosophila have been instrumental in discovering tumor suppressor pathways that were subsequently shown to be highly relevant in human cancer. Here we show that hyperplastic disc (Hyd), one of the first tumor suppressors isolated genetically in Drosophila and encoding an E3 ubiquitin ligase with hitherto unknown substrates, and Lines (Lin), best known for its role in embryonic segmentation, define an obligatory tumor suppressor protein complex (Hyd-Lin) that targets the zinc finger-containing oncoprotein Bowl for ubiquitin-mediated degradation, with Lin functioning as a substrate adaptor to recruit Bowl to Hyd for ubiquitination. Interestingly, the activity of the Hyd-Lin complex is directly inhibited by a micropeptide encoded by another zinc finger gene, drumstick (drm), which functions as a pseudosubstrate by displacing Bowl from the Hyd-Lin complex, thus stabilizing Bowl. We further identify the epigenetic regulator Polycomb repressive complex1 (PRC1) as a critical upstream regulator of the Hyd-Lin-Bowl pathway by directly repressing the transcription of the micropeptide drm Consistent with these molecular studies, we show that genetic inactivation of Hyd, Lin, or PRC1 resulted in Bowl-dependent hyperplastic tissue overgrowth in vivo. We also provide evidence that the mammalian homologs of Hyd (UBR5, known to be recurrently dysregulated in various human cancers), Lin (LINS1), and Bowl (OSR1/2) constitute an analogous protein degradation pathway in human cells, and that OSR2 promotes prostate cancer tumorigenesis. Altogether, these findings define a previously unrecognized tumor suppressor pathway that links epigenetic program to regulated protein degradation in tissue growth control and tumorigenesis.


Sujet(s)
Carcinogenèse , Protéines de Drosophila , Protéolyse , Ubiquitin-protein ligases , Animaux , Ubiquitin-protein ligases/métabolisme , Ubiquitin-protein ligases/génétique , Protéines de Drosophila/métabolisme , Protéines de Drosophila/génétique , Carcinogenèse/génétique , Humains , Protéines suppresseurs de tumeurs/métabolisme , Protéines suppresseurs de tumeurs/génétique , Drosophila melanogaster/génétique , Drosophila melanogaster/métabolisme , Drosophila melanogaster/embryologie , Gènes suppresseurs de tumeur , Ubiquitination , Protéines du groupe Polycomb/métabolisme , Protéines du groupe Polycomb/génétique , Complexe répresseur Polycomb-1/métabolisme , Complexe répresseur Polycomb-1/génétique
7.
Front Pharmacol ; 15: 1432545, 2024.
Article de Anglais | MEDLINE | ID: mdl-39130630

RÉSUMÉ

The CBL (Casitas B-lineage lymphoma) family, as a class of ubiquitin ligases, can regulate signal transduction and activate receptor tyrosine kinases through various tyrosine kinase-dependent pathways. There are three members of the family: c-CBL, CBL-b, and CBL-c. Numerous studies have demonstrated the important role of CBL in various cellular pathways, particularly those involved in the occurrence and progression of cancer, hematopoietic development, and regulation of T cell receptors. Therefore, the purpose of this review is to comprehensively summarize the function and regulatory role of CBL family proteins in different human tumors, as well as the progress of drug research targeting CBL family, so as to provide a broader clinical measurement strategy for the treatment of tumors.

8.
Mol Cell Biol ; : 1-14, 2024 Aug 13.
Article de Anglais | MEDLINE | ID: mdl-39135477

RÉSUMÉ

Restricting the localization of evolutionarily conserved histone H3 variant CENP-A to the centromere is essential to prevent chromosomal instability (CIN), an important hallmark of cancers. Overexpressed CENP-A mislocalizes to non-centromeric regions and contributes to CIN in yeast, flies, and human cells. Centromeric localization of CENP-A is facilitated by the interaction of Mis18ß with CENP-A specific chaperone HJURP. Cellular levels of Mis18ß are regulated by ß-transducin repeat containing protein (ß-TrCP), an F-box protein of SCF (Skp1, Cullin, F-box) E3-ubiquitin ligase complex. Here, we show that defects in ß-TrCP-mediated proteolysis of Mis18ß contributes to the mislocalization of endogenous CENP-A and CIN in a triple-negative breast cancer (TNBC) cell line, MDA-MB-231. CENP-A mislocalization in ß-TrCP depleted cells is dependent on high levels of Mis18ß as depletion of Mis18ß suppresses mislocalization of CENP-A in these cells. Consistent with these results, endogenous CENP-A is mislocalized in cells overexpressing Mis18ß alone. In summary, our results show that ß-TrCP-mediated degradation of Mis18ß prevents mislocalization of CENP-A and CIN. We propose that deregulated expression of Mis18ß may be one of the key mechanisms that contributes to chromosome segregation defects in cancers.

9.
J Biol Chem ; 300(9): 107616, 2024 Jul 31.
Article de Anglais | MEDLINE | ID: mdl-39089586

RÉSUMÉ

Targeted protein degradation is an emergent and rapidly evolving therapeutic strategy. In particular, biologics-based targeted degradation modalities (bioPROTACs) are relatively under explored compared to small molecules. Here, we investigate how target affinity, cellular localization, and valency of bioPROTACs impact efficacy of targeted degradation of the oncogenic phosphatase src-homology 2 containing protein tyrosine phosphatase-2 (SHP2). We identify bivalent recruitment of SHP2 by bioPROTACs as a broadly applicable strategy to improve potency. Moreover, we demonstrate that SHP2-targeted bioPROTACs can effectively counteract gain-of-function SHP2 mutants present in cancer, which are otherwise challenging to selectively target with small molecule constructs. Overall, this study demonstrates the utility of bioPROTACs for challenging targets, and further explicates design principles for therapeutic bioPROTACs.

10.
Cell Biosci ; 14(1): 99, 2024 Jul 30.
Article de Anglais | MEDLINE | ID: mdl-39080804

RÉSUMÉ

The PDZ-LIM domain-containing protein PDLIM2 is a common tumor suppressor and a key immune modulator. One main function of PDLIM2 is to promote the ubiquitination and proteasomal degradation of nuclear activated NF-κB RelA, a physiologically indispensable transcription factor whose persistent activation has been linked to almost all cancer types and inflammation-associated diseases. However, it remains unknown how PDLIM2 exerts this physiologically and pathogenically important function. Here, we show that PDLIM2 acts as a ubiquitin ligase enhancer, termed E5. It stabilizes ROC1, an essential component of SKP1/Cullin/F-box protein (SCF) ubiquitin ligases, and chaperones the ROC1-SCFß-TrCP ubiquitin ligase to ubiquitinate nuclear RelA for proteasomal degradation in the nucleus. Consistently, silencing of ROC1, Cullin 1 or the F-box protein ß-TrCP blocks RelA ubiquitination and degradation by PDLIM2. These data provide new mechanistic insights into how PDLIM2 promotes nuclear RelA ubiquitination and degradation, thereby serving as a critical tumor suppressor and a vital immune regulator. They also improve our understanding of the complex cascade of the ubiquitination and NF-κB pathways, particularly given the well-known role of the ROC1-SCFß-TrCP ubiquitin ligase in initiating NF-κB activation by directly binding to and ubiquitinating NF-κB inhibitors for the proteasomal degradation in the cytoplasm.

11.
Int J Biol Macromol ; 275(Pt 1): 133680, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-38971291

RÉSUMÉ

Proteolysis targeting chimeras (PROTACs) can use the intrinsic protein degradation system in cells to degrade pathogenic target proteins, and are currently a revolutionary frontier of development strategy for tumor treatment with small molecules. However, the poor water solubility, low cellular permeability, and off-target side effects of most PROTACs have prevented them from passing the preclinical research stage of drug development. This requires the use of appropriate delivery systems to overcome these challenging hurdles and ensure precise delivery of PROTACs towards the tumor site. Therefore, the combination of PROTACs and multifunctional delivery systems will open up new research directions for targeted degradation of tumor proteins. In this review, we systematically reviewed the design principles and the most recent advances of various PROTACs delivery systems. Moreover, the constructive strategies for developing multifunctional PROTACs delivery systems were proposed comprehensively. This review aims to deepen the understanding of PROTACs drugs and promote the further development of PROTACs delivery system.


Sujet(s)
Antinéoplasiques , Systèmes de délivrance de médicaments , Tumeurs , Chimère ciblant la protéolyse , Protéolyse , Animaux , Humains , Antinéoplasiques/pharmacologie , Antinéoplasiques/composition chimique , Systèmes de délivrance de médicaments/méthodes , Tumeurs/traitement médicamenteux , Protéolyse/effets des médicaments et des substances chimiques , Chimère ciblant la protéolyse/composition chimique , Chimère ciblant la protéolyse/pharmacologie
12.
J Biol Chem ; 300(9): 107601, 2024 Jul 24.
Article de Anglais | MEDLINE | ID: mdl-39059493

RÉSUMÉ

Ubiquitination plays a crucial role in cellular homeostasis by regulating the degradation, localization, and activity of proteins, ensuring proper cell function and balance. Among E3 ubiquitin ligases, WW domain-containing protein 1 (WWP1) is implicated in cell proliferation, survival, and apoptosis. Notably WWP1 is frequently amplified in breast cancer and associated with poor prognosis. Here, we identify the protein cysteine and tyrosine-rich protein 1 (CYYR1) that had previously no assigned function, as a regulator of WWP1 activity and stability. We show that CYYR1 binds to the WW domains of the E3 ubiquitin ligase WWP1 through its PPxY motifs. This interaction triggers K63-linked autoubiquitination and subsequent degradation of WWP1. We furthermore demonstrate that CYYR1 localizes to late endosomal vesicles and directs polyubiquitinated WWP1 toward lysosomal degradation through binding to ANKyrin repeat domain-containing protein 13 A (ANKRD13A). Moreover, we found that CYYR1 expression attenuates breast cancer cell growth in anchorage-dependent and independent colony formation assays in a PPxY-dependent manner. Finally, we highlight that CYYR1 expression is significantly decreased in breast cancer and is associated with beneficial clinical outcome. Taken together our study suggests tumor suppressor properties for CYYR1 through regulation of WWP1 autoubiquitination and lysosomal degradation.

13.
Int J Mol Sci ; 25(13)2024 Jun 28.
Article de Anglais | MEDLINE | ID: mdl-39000226

RÉSUMÉ

E3 ubiquitin ligases (UBLs), as enzymes capable of specifically recognizing target proteins in the process of protein ubiquitination, play crucial roles in regulating responses to abiotic stresses such as drought, salt, and temperature. Abscisic acid (ABA), a plant endogenous hormone, is essential to regulating plant growth, development, disease resistance, and defense against abiotic stresses, and acts through a complex ABA signaling pathway. Hormone signaling transduction relies on protein regulation, and E3 ubiquitin ligases play important parts in regulating the ABA pathway. Therefore, this paper reviews the ubiquitin-proteasome-mediated protein degradation pathway, ABA-related signaling pathways, and the regulation of ABA-signaling-pathway-related genes by E3 ubiquitin ligases, aiming to provide references for further exploration of the relevant research on how plant E3 ubiquitin ligases regulate the ABA pathway.


Sujet(s)
Acide abscissique , Transduction du signal , Ubiquitin-protein ligases , Ubiquitin-protein ligases/métabolisme , Acide abscissique/métabolisme , Plantes/métabolisme , Régulation de l'expression des gènes végétaux , Stress physiologique , Ubiquitination , Protéines végétales/métabolisme , Protéines végétales/génétique , Facteur de croissance végétal/métabolisme
14.
Cancer Med ; 13(14): e7472, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-39016065

RÉSUMÉ

Breast cancer (BC) is the most common malignant tumor worldwide. Despite enormous progress made in the past decades, the underlying mechanisms of BC remain further illustrated. Recently, TRIM family proteins proved to be engaged in BC progression through regulating various aspects. Here we reviewed the structures and basic functions of TRIM family members and first classified them into three groups according to canonical polyubiquitination forms that they could mediate: K48- only, K63- only, and both K48- and K63-linked ubiquitination. Afterwards, we focused on the specific biological functions and mechanisms of TRIMs in BCs, including tumorigenesis and invasiveness, drug sensitivity, tumor immune microenvironment (TIME), cell cycle, and metabolic reprogramming. We also explored the potential of TRIMs as novel biomarkers for predicting prognosis and future therapeutic targets in BC.


Sujet(s)
Tumeurs du sein , Protéines à motif tripartite , Ubiquitination , Humains , Tumeurs du sein/métabolisme , Tumeurs du sein/anatomopathologie , Tumeurs du sein/génétique , Femelle , Protéines à motif tripartite/métabolisme , Protéines à motif tripartite/génétique , Microenvironnement tumoral , Marqueurs biologiques tumoraux/métabolisme , Pronostic , Régulation de l'expression des gènes tumoraux , Animaux
15.
Dev Cell ; 2024 Jul 10.
Article de Anglais | MEDLINE | ID: mdl-39025063

RÉSUMÉ

The ubiquitin-proteasome system (UPS) plays crucial roles in cellular processes including plant growth, development, and stress responses. In this study, we report that a pair of E3 ubiquitin ligases, AvrPiz-t-interaction protein 6 (APIP6) and IPA1-interaction protein 1 (IPI1), intricately target early flowering3 (ELF3) paralogous proteins to control rice immunity and flowering. APIP6 forms homo-oligomers or hetero-oligomers with IPI1. Both proteins interact with OsELF3-2, promoting its degradation to positively control resistance against the rice blast fungus (Magnaporthe oryzae). Intriguingly, overexpression of IPI1 in Nipponbare caused significantly late-flowering phenotypes similar to the oself3-1 mutant. Except for late flowering, oself3-1 enhances resistance against M. oryzae. IPI1 also interacts with and promotes the degradation of OsELF3-1, a paralog of OsELF3-2. Notably, IPI1 and APIP6 synergistically modulate OsELF3s degradation, finely tuning blast disease resistance by targeting OsELF3-2, while IPI1 controls both disease resistance and flowering by targeting OsELF3-1. This study unravels multiple functions for a pair of E3 ligases in rice.

16.
ACS Infect Dis ; 2024 Jun 28.
Article de Anglais | MEDLINE | ID: mdl-38938101

RÉSUMÉ

A newly discovered E3 ubiquitin ligase, UBR7, plays a crucial role in histone H2BK120 monoubiquitination. Here, we report a novel function of UBR7 in promoting hepatitis B virus (HBV) pathogenesis, which further leads to HBV-induced hepatocellular carcinoma (HCC). Transcriptomics analysis from HCC patients revealed the deregulation of UBR7 in cancer. Remarkably, targeting UBR7, particularly its catalytic function, led to a significant decrease in viral copy numbers. We also identified the speckled family protein Sp110 as an important substrate of UBR7. Notably, Sp110 has been previously shown to be a resident of promyelocytic leukemia nuclear bodies (PML-NBs), where it remains SUMOylated, and during HBV infection, it undergoes deSUMOylation and exits the PML body. We observed that UBR7 ubiquitinates Sp110 at critical residues within its SAND domain. Sp110 ubiquitination downregulates genes in the type I interferon response pathway. Comparative analysis of RNA-Seq from the UBR7/Sp110 knockdown data set confirmed that the IFN-ß signaling pathway gets deregulated in HCC cells in the presence of HBV. Single-cell RNA-Seq analysis of patient samples further confirmed the inverse correlation between the expression of Sp110/UBR7 and the inflammation score. Notably, silencing of UBR7 induces IRF7 phosphorylation, thereby augmenting interferon (IFN)-ß and the downstream interferon-stimulated genes (ISGs). Further, wild-type but not the ubiquitination-defective mutant of Sp110 could be recruited to the type I interferon response pathway genes. Our study establishes a new function of UBR7 in non-histone protein ubiquitination, promoting viral persistence, and has important implications for the development of therapeutic strategies targeting HBV-induced HCC.

17.
Curr Med Chem ; 2024 Jun 27.
Article de Anglais | MEDLINE | ID: mdl-38939997

RÉSUMÉ

Tripartite-motif protein family member 65 (TRIM65) belongs to the tripartite motif (TRIM) protein family. Its typical structure consists of the RING, B-Box motif, and coiled-coil domains, which are highly conserved at the N-terminus and the variable SPRY domain at the C-terminus. TRIM65 is an E3 ubiquitin ligase that participates in physiological and pathological processes through the ubiquitination pathway, including intracellular signal transduction, protein degradation, cell proliferation, apoptosis, carcinogenesis, autophagy, and phenotypic transformation. Evidence shows that TRIM65 plays a remarkable and obscure role in diseases, including multisystem tumours, neurodegenerative diseases, immune system diseases, and inflammatory diseases. This review is devoted to elaborating on the relationship between TRIM65 and diseases and its pathogenic mechanism, providing a theoretical basis for TRIM65 as a possible pathogenic target of diseases and exploring the possible future research direction of TRIM65 and the challenges it may face.

18.
Clin Proteomics ; 21(1): 44, 2024 Jun 26.
Article de Anglais | MEDLINE | ID: mdl-38918720

RÉSUMÉ

BACKGROUND: Tumorigenesis and progression of prostate cancer (PCa) are indispensably dependent on androgen receptor (AR). Antiandrogen treatment is the principal preference for patients with advanced PCa. However, the molecular characteristics of PCa with antiandrogen intervention have not yet been fully uncovered. METHODS: We first performed proteome analysis with 32 PCa tumor samples and 10 adjacent tissues using data-independent acquisition (DIA)- parallel accumulation serial fragmentation (PASEF) proteomics. Then label-free quantification (LFQ) mass spectrometry was employed to analyze protein profiles in LNCaP and PC3 cells. RESULTS: M-type creatine kinase CKM and cartilage oligomeric matrix protein COMP were demonstrated to have the potential to be diagnostic biomarkers for PCa at both mRNA and protein levels. Several E3 ubiquitin ligases and deubiquitinating enzymes (DUBs) were significantly altered in PCa and PCa cells under enzalutamide treatment, and these proteins might reprogram proteostasis at protein levels in PCa. Finally, we discovered 127 significantly varied proteins in PCa samples with antiandrogen therapy and further uncovered 4 proteins in LNCaP cells upon enzalutamide treatment. CONCLUSIONS: Our research reveals new potential diagnostic biomarkers for prostate cancer and might help resensitize resistance to antiandrogen therapy.

19.
Trends Biochem Sci ; 2024 Jun 29.
Article de Anglais | MEDLINE | ID: mdl-38945729

RÉSUMÉ

The degradation of damaged proteins is critical for tissue integrity and organismal health because damaged proteins have a high propensity to form aggregates. E3 ubiquitin ligases are key regulators of protein quality control (PQC) and mediate the selective degradation of damaged proteins, a process termed 'PQC degradation' (PQCD). The degradation signals (degrons) that trigger PQCD are based on hydrophobic sites that are normally buried within the native protein structure. However, an open question is how PQCD-specialized E3 ligases distinguish between transiently misfolded proteins, which can be efficiently refolded, and permanently damaged proteins, which must be degraded. While significant progress has been made in characterizing degradation determinants, understanding the key regulatory signals of cellular and organismal PQCD pathways remains a challenge.

20.
Mol Cell ; 84(13): 2423-2435.e5, 2024 Jul 11.
Article de Anglais | MEDLINE | ID: mdl-38917796

RÉSUMÉ

The innate immune cGAS-STING pathway is activated by cytosolic double-stranded DNA (dsDNA), a ubiquitous danger signal, to produce interferon, a potent anti-viral and anti-cancer cytokine. However, STING activation must be tightly controlled because aberrant interferon production leads to debilitating interferonopathies. Here, we discover PELI2 as a crucial negative regulator of STING. Mechanistically, PELI2 inhibits the transcription factor IRF3 by binding to phosphorylated Thr354 and Thr356 on the C-terminal tail of STING, leading to ubiquitination and inhibition of the kinase TBK1. PELI2 sets a threshold for STING activation that tolerates low levels of cytosolic dsDNA, such as that caused by silenced TREX1, RNASEH2B, BRCA1, or SETX. When this threshold is reached, such as during viral infection, STING-induced interferon production temporarily downregulates PELI2, creating a positive feedback loop allowing a robust immune response. Lupus patients have insufficient PELI2 levels and high basal interferon production, suggesting that PELI2 dysregulation may drive the onset of lupus and other interferonopathies.


Sujet(s)
Facteur-3 de régulation d'interféron , Protéines membranaires , Protein-Serine-Threonine Kinases , Transduction du signal , Ubiquitination , Humains , Protein-Serine-Threonine Kinases/métabolisme , Protein-Serine-Threonine Kinases/génétique , Protéines membranaires/métabolisme , Protéines membranaires/génétique , Phosphorylation , Facteur-3 de régulation d'interféron/métabolisme , Facteur-3 de régulation d'interféron/génétique , Animaux , Cellules HEK293 , Lupus érythémateux disséminé/génétique , Lupus érythémateux disséminé/immunologie , Lupus érythémateux disséminé/métabolisme , Lupus érythémateux disséminé/virologie , Immunité innée , Interactions hôte-pathogène , Ubiquitin-protein ligases/métabolisme , Ubiquitin-protein ligases/génétique , Souris , Interférons/métabolisme , Interférons/immunologie , Interférons/génétique , Rétrocontrôle physiologique , Souris de lignée C57BL , Exodeoxyribonucleases , Phosphoprotéines
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE