Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 382
Filtrer
1.
Pak J Med Sci ; 40(6): 1122-1128, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38952491

RÉSUMÉ

Objective: Identification of MBL, AmpC and ESBLs in colistin intrinsic and acquired resistant uropathogenic gram negative bacteria. Method: Urine samples were collected from Hayatabad Medical Complex, Peshawar during 17 January to 30 June 2019. Collected urine samples were aseptically transported microbiology lab of Health Research Institution (HRI), National Institute of Health (NIH), Khyber Medical College, Peshawar and streaked on different media. Positive growth was identified by API-10s. Antibiotic sensitivity profile was done by Modified Kirby Bauer disc diffusion method. Detection of metallo ßlactamases (MBL) production by Imipenem EDTA synergy test, Double Disc Synergy Test (DDST) for detection of ESBLs and D-test for the detection of inducible AmpC beta lactamases test was used. Colistin resistance was identified via broth micro dilution according to CLSI manual. Colistin resistant bacteria was divided in two categories; acquired and intrinsic resistant bacteria according to CLSI manual. Results: Out of 2000 urine samples, 281(14%) gram-negative bacteria were isolated. Among positive samples, acquired colistin resistant bacteria were 241 and intrinsic resistant bacteria were 40 isolates. MBL was produce by twenty one (11.7%) E.coli and seventeen (40.5%) Pseudomonas aeruginosa. E. coli, Pseudomonas aeruginosa, Klebsiella Pneumoniae, Serratia Oderifora and Proteus Marblis were ESBLs producing bacteria. AmpC production was prevalent in fourteen (7.8%) E. coli and twelve (28.6%) Pseudomonas aeruginosa. Fifty-five samples showed resistance to colistin out of 241 samples. In colistin resistant bacteria, two E.coli were MBL, ESBLs, while one E.coli was ESBLs, AmpC co-producing bacteria. The most prevalent extended drug resistant bacteria were Pseudomonas aeruginosa (28.6%) and Escherichia coli (6.1%), While 155(86.6%) Escherichia coli, 25 (59.5%) Pseudomonas aeruginosa and 22 (95.7%) Serratia Oderifora was multi drug resistant bacteria. Conclusion: Current study concluded that ESBL, MBL AmpC enzymes and their co-expression was observed with colistin resistance in E.coli and Pseudomonas aeruginosa.

2.
Infect Drug Resist ; 17: 2249-2260, 2024.
Article de Anglais | MEDLINE | ID: mdl-38854781

RÉSUMÉ

Objective: Owing to the rising incidence of multidrug-resistant organisms (MDRO) and the high mortality rates associated with such bacterial infections post-hematopoietic stem cell transplantation (HSCT), we investigated the MDRO colonization rate prior to transplantation using an active surveillance approach and determined its impact on subsequent infection during the pre-engraftment period. Methods: A single-center observational study was conducted, and surveillance cultures from multiple body sites, including the rectum, nasal cavity, and groin, were performed at admission to determine MDRO colonization. Serological tests were used to detect certain viruses and toxoplasmosis before HSCT. Results: In the pre-transplant setting, 59 MDRO were recovered from the 40 HSCT recipients. Of the 59 isolates recovered from one or more body sites, 29 were positive for methicillin-resistant Staphylococcus aureus (MRSA), 7 for carbapenem-resistant Enterobacterales (CRE), and 23 were positive for extended-spectrum ß-lactamase (ESBLs). Serological assessment before HSCT revealed active or reactivation of latent infection with cytomegalovirus (7.5%), Epstein-Barr virus (EBV; 5%), and Toxoplasma gondii (2.5%) among HSCT patients. In terms of factors associated with pre-engraftment infections, the type of transplant (p=0.04) was statistically significant, whereas other factors, such as age, sex, and underlying conditions, were not. In post-transplant settings, bloodstream infections (BSIs) were documented in 2 allogeneic HSCT patients (5%), and the isolated microorganisms were ESBL-producing E. coli and non-MDR Acinetobacter baumannii. Conclusion: Active screening cultures are a helpful tool for identifying patients colonized by MDRO or relevant viruses before HSCT, and for predicting those at risk of developing subsequent pre-engraftment infections. Additionally, active screening may aid in predicting those who are likely to develop subsequent pre-engraftment infections Our findings highlight the importance of pre-transplant screening for high-priority multidrug-resistant pathogens and the application of infection control interventions after HSCT.

3.
Antibiotics (Basel) ; 13(6)2024 Jun 12.
Article de Anglais | MEDLINE | ID: mdl-38927213

RÉSUMÉ

BACKGROUND: The escalating prevalence of ESBL-producing Enterobacteriaceae in Qatar's pediatric population, especially in community-onset febrile urinary tract infections (FUTIs), necessitates a comprehensive investigation into this concerning trend. RESULTS: Over the course of one year, a total of 459 infants were diagnosed and subsequently treated for UTIs. Cases primarily occurred in infants aged over 60 days, predominantly non-Qatari females born from term pregnancies. Notably, E. coli and K. pneumoniae were the most frequently identified organisms, accounting for 79.7% and 9.8% in the ESBL group and 57.2% and 18.7% in the non-ESBL group, respectively. Interestingly, hydronephrosis emerged as the most prevalent urological anomaly detected in both ESBL (n = 10) and other organism (n = 19) groups. METHODS: In this retrospective cohort study conducted in Qatar, we meticulously evaluated the prevalence of pediatric FUTIs. Our study focused on febrile infants aged less than 1 year, excluding those with urine samples not obtained through a catheter. CONCLUSIONS: E. coli and K. pneumoniae prevailed as the predominant causative agents in febrile children in Qatar, with hydronephrosis being identified as the most common urological anomaly. Moreover, our findings suggested that gentamicin served as a viable non-carbapenem option for hospitalized ESBL cases, while oral nitrofurantoin showed considerable promise for uncomplicated ESBL UTIs.

4.
Microb Drug Resist ; 2024 May 09.
Article de Anglais | MEDLINE | ID: mdl-38722095

RÉSUMÉ

The study determined the prevalence, antimicrobial resistant (AMR) determinants, and genetic characteristics of Escherichia coli and Klebsiella pneumoniae isolates from patients with diabetic foot infection (DFI) in a Tunisian hospital. A total of 26 Escherichia spp. and Klebsiella spp. isolates were recovered and identified by MALDI-TOF-MS. Antimicrobial susceptibility testing, the detection of AMR determinants and Shiga-like toxin genes, phylogenetic grouping, and molecular typing were performed. Twelve E. coli, 10 K. pneumoniae, 3 K. oxytoca, and 1 E. hermanii were isolated. A multidrug-resistant phenotype was detected in 65.4% of the isolates. About 30.8% of isolates were extended-spectrum ß-lactamase (ESBL) producers and mainly carried blaCTX-M-15 and blaCTX-M-14 genes. One blaNDM-1-producing K. pneumoniae-ST1 strain was identified. Class 1 integrons were detected in 11 isolates and 5 gene cassette arrangements were noted: dfrA1+aadA1 (n = 1), dfrA12+aadA2 (n = 3), and dfrA17+aadA5 (n = 1). Other non-ß-lactam resistance genes detected were as follows (number of isolates): aac(3')-II (3), aac(6')-Ib-cr(8), qnrB (2), qnrS (4), cmlA (2), floR (4), sul1 (11), sul2 (11), and sul3 (2). The phylogroup B1 was the most frequent (41.7%) among E. coli, and two ESBL-producing isolates corresponded to the ST131-B2 lineage. The ESBL- and carbapenemase-producing Enterobacteriaceae in DFIs are described for the first time in Tunisia.

5.
Ann Clin Microbiol Antimicrob ; 23(1): 46, 2024 May 24.
Article de Anglais | MEDLINE | ID: mdl-38790053

RÉSUMÉ

BACKGROUND: Proteus mirabilis is an opportunistic pathogen that has been held responsible for numerous nosocomial and community-acquired infections which are difficult to be controlled because of its diverse antimicrobial resistance mechanisms. METHODS: Antimicrobial susceptibility patterns of P. mirabilis isolates collected from different clinical sources in Mansoura University Hospitals, Egypt was determined. Moreover, the underlying resistance mechanisms and genetic relatedness between isolates were investigated. RESULTS: Antimicrobial susceptibility testing indicated elevated levels of resistance to different classes of antimicrobials among the tested P. mirabilis clinical isolates (n = 66). ERIC-PCR showed great diversity among the tested isolates. Six isolates (9.1%) were XDR while all the remaining isolates were MDR. ESBLs and AmpCs were detected in 57.6% and 21.2% of the isolates, respectively, where blaTEM, blaSHV, blaCTX-M, blaCIT-M and blaAmpC were detected. Carbapenemases and MBLs were detected in 10.6 and 9.1% of the isolates, respectively, where blaOXA-48 and blaNDM-1 genes were detected. Quinolone resistant isolates (75.8%) harbored acc(6')-Ib-cr, qnrD, qnrA, and qnrS genes. Resistance to aminoglycosides, trimethoprim-sulfamethoxazole and chloramphenicol exceeded 80%. Fosfomycin was the most active drug against the tested isolates as only 22.7% were resistant. Class I or II integrons were detected in 86.4% of the isolates. Among class I integron positive isolates, four different gene cassette arrays (dfrA17- aadA5, aadB-aadA2, aadA2-lnuF, and dfrA14-arr-3-blaOXA-10-aadA15) and two gene cassettes (dfrA7 and aadA1) were detected. While class II integron positive isolates carried four different gene cassette arrays (dfrA1-sat1-aadA1, estXVr-sat2-aadA1, lnuF- dfrA1-aadA1, and dfrA1-sat2). CONCLUSION: P. Mirabilis ability to acquire resistance determinants via integrons may be held responsible for the elevated rates of antimicrobial resistance and emergence of XDR or even PDR strains limiting the available therapeutic options for management of infections caused by those strains.


Sujet(s)
Antibactériens , Multirésistance bactérienne aux médicaments , Tests de sensibilité microbienne , Infections à Proteus , Proteus mirabilis , Égypte/épidémiologie , Humains , Proteus mirabilis/génétique , Proteus mirabilis/effets des médicaments et des substances chimiques , Proteus mirabilis/isolement et purification , Multirésistance bactérienne aux médicaments/génétique , Infections à Proteus/microbiologie , Infections à Proteus/épidémiologie , Antibactériens/pharmacologie , Prévalence , bêta-Lactamases/génétique , Intégrons/génétique , Protéines bactériennes/génétique , Infection croisée/microbiologie , Infection croisée/épidémiologie , Mâle
6.
Saudi J Biol Sci ; 31(7): 104022, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38817398

RÉSUMÉ

The recent approach towards combating the antimicrobial resistance has led to the use of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and associated sequence to overcome the challenges of antimicrobial resistance. Thus, this study aimed to detect the underlying resistance mechanisms such as ESBLs and carbapenemases and whether there is a correlation between multidrug, extensive drug and pan drug resistance and the occurrence of CRISPR loci. A total of one hundred study isolates were subjected to antimicrobial susceptibility testing using the AST card of the Vitek technique to detect resistance patterns involving ESBLs and carbapenemase (CRE). An investigation of the genes encoding CRISPR/Cas systems using PCR was achieved. Out of 81 (81.0%) resistant Klebsiella pneumoniae isolates, 71 (71%) and 21 (21.0%) produced ESBLs and carbapenemases, respectively. Also, 53 (53.0%), 19 (19.0%) and 9 (9.0%) were MDR, XDR, and PDR respectively. It was noted that Cas1, Cas3, CRISPR1, CRISPR2 and CRISPR3 were positive in 38 (38.0%) of the isolates, while CRISPR1 for incomplete CRISPR1-Cas systems alone was detected in 78 (78.0%). Further, the number of intact CRISPR1, intact CRISPR2 and intact CRISPR3 types were 7 (27.0%), 34 (34%) and 18 (18.0%) respectively. It is concluded that antibiotic resistance levels were inversely correlated with the existence of CRISPR/Cas systems. The absence of the CRISPR/Cas system increases the prevalence of MDR, XDR and PDR in ESBL and carbapenem-producing Klebsiella pneumoniae. With the increase in the degree of antibiotic resistance (MDR, XDR to PDR), the occurrence ratio of the (CRISPR)/CRISPR-associated sequence decreased.

7.
Mol Biol Rep ; 51(1): 566, 2024 Apr 24.
Article de Anglais | MEDLINE | ID: mdl-38656625

RÉSUMÉ

BACKGROUND: Escherichia coli is the most common etiological agent of urinary tract infections (UTIs). Meanwhile, plasmid-mediated quinolone resistance (PMQR) is reported in E. coli isolates producing extended-spectrum ß-lactamases (ESBLs). Furthermore, the reservoirs and mechanisms of acquisition of uropathogenic Escherichia coli (UPEC) strains are poorly understood. On the other hand, UTIs are common in pregnant women and the treatment challenge is alarming. METHODS AND RESULTS: In the present study, 54 pregnant women with acute cystitis were included. A total of 108 E. coli isolates, 54 isolates from UTI and 54 isolates from faeces of pregnant women (same host) were collected. In the antimicrobial susceptibility test, the highest rate of antibiotic resistance was to nalidixic acid (77%, 83/108) and the lowest rate was to imipenem (9%, 10/108). Among the isolates, 44% (48/108) were ESBLs producers. A high frequency of PMQR genes was observed in the isolates. The frequency of PMQR genes qnrS, qnrB, aac(6')-Ib-cr, and qnrA was 58% (63/108), 21% (23/108), 9% (10/108), and 4% (4/108), respectively. Meanwhile, PMQR genes were not detected in 24% (20/85) of isolates resistant to nalidixic acid and/or fluoroquinolone, indicating that other mechanisms, i.e. chromosomal mutations, are involved in resistance to quinolones, which were not detected in the present study. In ESBL-producing isolates, the frequency of PMQR genes was higher than that of non-ESBL-producing isolates (81% vs. 53%). Meanwhile, UTI and faeces isolates mainly belonged to phylogenetic group B2 (36/54, 67% and 25/54, 46%, respectively) compared to other phylogenetic groups. In addition, virulence factors and multidrug-resistant (MDR) were mainly associated with phylogenetic group B2. However, predominant clones in faeces were not found in UTIs. Rep-PCR revealed the presence of 85 clones in patients. Among the clones, 40 clones were detected only in faeces (faeces-only), 35 clones only in UTI (UTI-only) and 10 clones in both faeces and UTI (faeces-UTI). We found that out of 10 faeces-UTI clones, 5 clones were present in the host's faeces flora. CONCLUSION: This study revealed a high rate of resistance to the quinolone nalidixic acid and a widespread distribution of PMQR genes in MDR E. coli strains producing ESBLs. The strains represented virulence factors and phylogenetic group B2 are closely associated with abundance in UTI and faeces. However, the predominant clones in faeces were not found in UTIs and it is possible that rep-PCR is not sufficiently discriminating clones.


Sujet(s)
Antibactériens , Cystite , Infections à Escherichia coli , Escherichia coli , Fèces , Tests de sensibilité microbienne , Plasmides , Quinolinone , bêta-Lactamases , Humains , Femelle , bêta-Lactamases/génétique , Plasmides/génétique , Fèces/microbiologie , Quinolinone/pharmacologie , Grossesse , Infections à Escherichia coli/microbiologie , Infections à Escherichia coli/traitement médicamenteux , Escherichia coli/génétique , Escherichia coli/isolement et purification , Escherichia coli/effets des médicaments et des substances chimiques , Adulte , Antibactériens/pharmacologie , Cystite/microbiologie , Résistance bactérienne aux médicaments/génétique , Prévalence , Infections urinaires/microbiologie , Acide nalidixique/pharmacologie
8.
Cureus ; 16(3): e55556, 2024 Mar.
Article de Anglais | MEDLINE | ID: mdl-38576671

RÉSUMÉ

Introduction An enormous increase in antimicrobial resistance (AMR) among bacteria isolated from human clinical specimens contributed to treatment failures. Increased surveillance through next-generation sequencing (NGS) or whole genome sequencing (WGS) could facilitate the study of the epidemiology of drug-resistant bacterial strains, resistance genes, and other virulence determinants they are potentially carrying. Methods This study included 30 Escherichia coli (E. coli) isolates obtained from patients suffering from urinary tract infections (UTIs) attending Prathima Institute of Medical Sciences, Karimnagar, India. All bacterial isolates were identified, and antimicrobial susceptibility patterns were determined through conventional microbiological techniques and confirmed by automated systems. All the isolates were investigated using NGS to identify genes coding for resistance, such as extended-spectrum beta-lactamases (ESBLs), metallo-beta-lactamases, and virulence genes. Multilocus sequence typing (MLST) was used to understand the prevalent strain types, and serotyping was carried out to evaluate the type of O (cell wall antigen) and H (flagellar antigen) serotypes carried by the isolates. Results The conventional antimicrobial susceptibility testing revealed that 15 (50%) isolates were resistant to imipenem (IPM), 10 (33.33%) were resistant to amikacin (AK), 13 (43.33%) were resistant to piperacillin-tazobactam (PTZ), 17 (56.66%) were resistant to cephalosporins, and 14 (46.66%) were resistant to nitrofurantoin (NIT). Among the isolates, 26 (86.66%) had revealed the presence of multiple antibiotic-resistant genes with evidence of at least one gene coding for beta-lactamase resistance. There was a high prevalence of blaCTX-M (19/30, 63.33%) genes, followed by blaTEM and blaOXA-1. The blaNDM-5 gene was found in three isolates (3/30, 10%). The virulence genes identified in the present study were iutA, sat, iss, and papC, among others. The E. coli serotype found predominantly belonged to O25:H4 (5, 16.66%), followed by O102:H6 (4, 13.33%). A total of 16 MLST variants were identified among the examined samples. Of the MLST-based sequence types (STs) identified, ST-131 (7, 23.33%) was the predominant one, followed by ST-167 (3, 10%) and ST-12 (3, 10%). Conclusions The study results demonstrated that the E. coli strains isolated from patients suffering from UTIs potentially carried antimicrobial resistance and virulence genes and belonged to different strain types based on MLST. Careful evaluation of bacterial strains using molecular analyses such as NGS could facilitate an improved understanding of bacterial antibiotic resistance and its virulence potential. This could enable physicians to choose appropriate antimicrobial agents and contribute to better patient management, thereby preventing the emergence and spread of drug-resistant bacteria.

9.
Anim Biotechnol ; 35(1): 2322541, 2024 Nov.
Article de Anglais | MEDLINE | ID: mdl-38478400

RÉSUMÉ

Different antibiotics are used to treat mastitis in dairy cows that is caused by Escherichia coli (E. coli). Antimicrobial resistance in food-producing animals in China has been monitored since 2000. Surveillance data have shown that the prevalence of multiresistant E. coli in animals has increased significantly. This study aimed to investigate the occurrence and molecular characteristics of resistance determinants in E. coli strains (n = 105) obtained from lactating cows with clinical bovine mastitis (CBM) in China. A total of 220 cows with clinical mastitis, which has swollen mammary udder with reduced and red or gangrenous milk, were selected from 5000 cows. The results showed 94.3% of the isolates were recognized as multidrug resistant. The isolates (30.5%) were positive for the class I integrase gene along with seven gene cassettes that were accountable for resistance to trimethoprim resistance (dfrA17, dfr2d and dfrA1), aminoglycosides resistance (aadA1 and aadA5) and chloramphenicol resistance (catB3 and catB2), respectively. The blaTEM gene was present in all the isolates, and these carried the blaCTX gene. A double mutation in gyrA (i.e., Ser83Leu and Asp87Asn) was observed in all fluoroquinolone-resistant isolates. In total, nine fluoroquinolone-resistant E. coli isolates were identified with five different types of mutations in parC. In four (44.4%) isolates, Ser458Ala was present in parE, and in all nine (9/9) fluoroquinolone-resistant isolates, Pro385Ala was present in gyrB. Meanwhile, fluoroquinolone was observed as highly resistant, especially in isolates with gyrA and parC mutations. In summary, the findings of this research recognize the fluoroquinolone resistance mechanism and disclose integron prevalence and ESBLs in E. coli isolates from lactating cattle with CBM.


Sujet(s)
Maladies des bovins , Infections à Escherichia coli , Mammite bovine , Femelle , Animaux , Bovins , Escherichia coli/génétique , Mammite bovine/épidémiologie , Infections à Escherichia coli/traitement médicamenteux , Infections à Escherichia coli/épidémiologie , Infections à Escherichia coli/médecine vétérinaire , Lactation , Prévalence , Antibactériens/pharmacologie , Chine/épidémiologie , Fluoroquinolones/usage thérapeutique
10.
Microorganisms ; 12(3)2024 Feb 29.
Article de Anglais | MEDLINE | ID: mdl-38543545

RÉSUMÉ

Antibiotic resistance remains one of the most pressing public health issues facing the world today. At the forefront of this battle lies the ever-increasing identification of extended-spectrum beta-lactamases and carbapenemases within human pathogens, conferring resistance towards broad-spectrum and last-resort antimicrobials. This study was prompted due to the identification of a pathogenic Aeromonas hydrophila isolate (strain MAH-4) collected from abdominal fluid, which presented a robust resistance pattern against second-, third-, and fourth-generation cephalosporins, ertapenem, ciprofloxacin, gentamicin, levofloxacin and moxifloxacin, and beta lactam/beta-lactamase inhibitor combinations. Whole genome sequencing was performed and identified a 328 kb plasmid (pMAH4) encoding 10 antibiotic resistance genes, including blaSFO-1, blaTEM-1, and blaOXA-1 of A. hydrophia MAH-4. This is the first report of beta-lactamase SFO-1 within a clinical strain of Aeromonas. Due to the remarkable sequence identity of pMAH4 to plasmids associated with Enterobacterales genera like Klebsiella and the extensive capabilities of Aeromonas for horizontal gene transfer, our identification of a clinical isolate encoding SFO-1 on a plasmid suggests antibiotic resistance gene mobility between Enterobacterales and non-Enterobacterales species.

11.
Heliyon ; 10(6): e27339, 2024 Mar 30.
Article de Anglais | MEDLINE | ID: mdl-38510019

RÉSUMÉ

This study was conducted to identify the distribution of virulence determinants in uropathogenic Escherichia coli (UPEC) isolates obtained from kidney transplant (KTP) and non-transplant patients (non-KTP) with urinary tract infections (UTI). Additionally, the (GTG)5 fingerprinting technique was used to investigate the genetic diversity of Extended-Spectrum B-Lactamase (ESBL)-positive isolates. In this case-control study, 111 urine isolates were obtained from non-KTPs and KTPs, respectively. The presence of genetic markers encoding adhesion proteins, toxins and major E. coli phylogroups was assessed through PCR amplification. Molecular typing of ESBL-positive UPEC strains was performed using (GTG)5 fingerprinting and Multilocus sequence typing (MLST) techniques. Overall, 65 and 46 UPEC isolates were obtained from non-KTPs and KTPs, respectively. Among the studied isolates, traT (85.6%) gene was the most frequently observed virulence gene, followed by kpsMT (49.5%). Using the 80% cut-off point, all the 35 UPEC isolates were classified into four major clusters, namely A, B, C, and D. The majority of the Sequence Type (ST) 131 isolates belonged to cluster A. Additionally, three ST1193 isolates belonged to cluster A and phylogroup B2. Moreover, ST38, ST131 and ST10 were in different cluster. In general, we observed significant differences in the papA, ompT, sat, and vat genes between KTPs and non-KTPs. Furthermore, since all the isolates carried one or more virulence factors (VFs), these findings are concerning in the context of managing UTIs caused by the UPEC strain. Additionally, the distribution of ST and Clonal Complex (CC) among isolates in the main clusters revealed significant differences between MLST and (GTG)5 fingerprinting analysis.

12.
Int J Food Microbiol ; 414: 110629, 2024 Apr 02.
Article de Anglais | MEDLINE | ID: mdl-38368793

RÉSUMÉ

The rise of antibiotic resistance in Escherichia coli has become a major global public health concern. While there is extensive research on antibiotic-resistant E. coli from human and animal sources, studies on vegetables and their environments are limited. This study investigated the prevalence and characteristics of ciprofloxacin-resistant (CIPR) E. coli in 13 types of edible raw vegetables, along with their irrigation water and soil in Shaanxi, China. Of 349 samples collected (157 vegetables, 59 water, and 133 soil), a total of 48 positive samples were detected, with one CIPRE. coli strain isolated from each sample being selected for further analyses. A striking observation was its high prevalence in irrigation water at 44.1 %, markedly exceeding that in vegetables (12.0 %) and soil (4.5 %). The susceptibility of Forty-eight CIPRE. coli isolates was evaluated using the disc diffusion method for 18 different antibiotics, all these isolates were not only resistant to the tested fluoroquinolones antibiotics (levofloxacin, nalidixic acid), but also displayed a multi-drug resistance (MDR) pattern. Twenty-eight (58.3 %) of 48 CIPRE. coli isolates exhibited extended spectrum ß-lactamases (ESBLs) (CIPR-ESBLs) producing phenotype. Subsequently, whole-genome sequencing was performed on these 28 isolates. We identified 12 serotypes and STs each, with O101: H9 (35.7 %, 10/28) and ST10 (21.4 %, 6/28) being the most common. Further classification placed these isolates into five phylogenetic groups: A (57.1 %, 16/28), B1 (32.1 %, 9/28), D (3.6 %, 1/28), B2 (3.6 %,1/28), and F (3.6 %,1/28). Notelly, Identical ST types, serotypes and phylogroups were found in certain CIPR-ESBLs-producing E. coli from both vegetables and adjacent irrigation water. Genomic analysis of the 28 CIPR-ESBLs-producing E. coli isolates unveiled 73 resistance genes, associated with 13 amino acid mutations in resistance-determining regions (QRDRs) and resistance to 12 types of antibiotics. Each isolate was confirmed to carry both ESBLs and fluoroquinolone resistance genes, with the Ser83Ala mutation in GyrA (96.4 %, 27/28) being the most prevalent. A detailed analysis of Mobile Genetic Elements (MGEs) revealed that IncFIB and IncFII plasmid subtypes were most prevalent in 60.7 % and 67.9 % of isolates, respectively, with 75 % containing over 10 insertion sequences (IS) each. Furthermore, we observed that certain ESBL and PMQR genes were located on plasmids or in proximity to insertion sequences. In conclusion, our research highlights the widespread presence of CIPRE. coli in irrigation water and thoroughly examines the genetic characteristics of CIPR-ESBLs-producing E. coli strains, underlining the need for ongoing monitoring and management to reduce multidrug-resistant bacteria in vegetables and their environment.


Sujet(s)
Ciprofloxacine , Infections à Escherichia coli , Animaux , Humains , Ciprofloxacine/pharmacologie , Escherichia coli , Légumes/microbiologie , Éléments transposables d'ADN , Phylogenèse , bêta-Lactamases/génétique , bêta-Lactamases/métabolisme , Antibactériens/pharmacologie , Antibactériens/métabolisme , Infections à Escherichia coli/microbiologie , Fluoroquinolones , Génomique , Eau/métabolisme
13.
Ann Clin Microbiol Antimicrob ; 23(1): 5, 2024 Jan 13.
Article de Anglais | MEDLINE | ID: mdl-38218982

RÉSUMÉ

BACKGROUND: Hospital-acquired infections caused by multidrug-resistant Pseudomonas aeruginosa incline hospital stay and costs of treatment that resulted in an increased mortality rate. The frequency of P. aeruginosa high-risk clones producing carbapenemases was investigated in our clinical samples. METHODS: In this cross-sectional study, 155 non-repetitive P. aeruginosa isolates were included from different medical centers of Iran. Antibiotic susceptibility testing was determined, and the presence of ß-lactamases were sought by phenotypic and genotypic methods. The clonal relationship of all isolates was investigated, and multi-locus sequence typing (MLST) was used for finding the sequence types of carbapenemase-producers. RESULTS: The agent with highest percent susceptibility rate was recorded for colistin (94.9%). MOX and FOX were found both as low as 1.95% (3/155). The most frequent narrow spectrum ß-lactamase was SHV with 7.7% (12/155) followed by PER, OXA-1, and TEM with the frequency of 7.1% (11/155), 3.2% (5/155), and 1.3% (2/155), respectively. Carbapenemases were detected in 28 isolates (18%). The most frequent carbapenemase was IMP with 9% (14/155) followed by NDM, 8.4% (13/155). OXA-48 and VIM were also detected both per one isolate (0.65%). MLST of carbapenem resistant P. aeruginosa isolates revealed that ST244, ST664, ST235, and ST357 were spread in subjected clinical settings. REP-PCR uncovered high genomic diversity in our clinical setting. CONCLUSION: Clonal proliferation of ST235 strain plays a key role in the propagation of MDR pattern in P. aeruginosa. Our data showed that high-risk clones has distributed in Iran, and programs are required to limit spreading of these clones.


Sujet(s)
Infections à Pseudomonas , Pseudomonas aeruginosa , Humains , Pseudomonas aeruginosa/génétique , Typage par séquençage multilocus , Iran , Études transversales , Antibactériens/pharmacologie , Antibactériens/usage thérapeutique , bêta-Lactamases/génétique , Protéines bactériennes/génétique , Infections à Pseudomonas/traitement médicamenteux , Tests de sensibilité microbienne , Génomique
14.
Ann Clin Microbiol Antimicrob ; 23(1): 9, 2024 Jan 28.
Article de Anglais | MEDLINE | ID: mdl-38281970

RÉSUMÉ

OBJECTIVES: Pseudomonas aeruginosa (P. aeruginosa) is one of the most serious pathogens implicated in antimicrobial resistance, and it has been identified as an ESKAPE along with other extremely significant multidrug resistance pathogens. The present study was carried out to explore prevalence, antibiotic susceptibility phenotypes, virulence-associated genes, integron (int1), colistin (mcr-1), and ß-lactamase resistance' genes (ESBls), as well as biofilm profiling of P. aeruginosa isolated from broiler chicks and dead in-shell chicks. DESIGN: A total of 300 samples from broiler chicks (n = 200) and dead in-shell chicks (n = 100) collected from different farms and hatcheries located at Mansoura, Dakahlia Governorate, Egypt were included in this study. Bacteriological examination was performed by cultivation of the samples on the surface of both Cetrimide and MacConkey's agar. Presumptive colonies were then subjected to biochemical tests and Polymerase Chain Reaction (PCR) targeting 16S rRNA. The recovered isolates were tested for the presence of three selected virulence-associated genes (lasB, toxA, and exoS). Furthermore, the retrieved isolates were subjected to phenotypic antimicrobial susceptibility testing by Kirby-Bauer disc diffusion method as well as phenotypic detection of ESBLs by both Double Disc Synergy Test (DDST) and the Phenotypic Confirmatory Disc Diffusion Test (PCDDT). P. aeruginosa isolates were then tested for the presence of antibiotic resistance genes (ARGs): int1, mcr-1, and ESBL genes (OXA-10, OXA-2, VEB-1, SHV, TEM, and CTX-M). Additionally, biofilm production was examined by the Tube Adherent method (TA) and Microtiter Plate assay (MTP). RESULTS: Fifty -five isolates were confirmed to be P. aeruginosa, including 35 isolates from broiler chicks and 20 isolates from dead in-shell chicks. The three tested virulence genes (lasB, toxA, and exoS) were detected in all isolates. Antibiogram results showed complete resistance against penicillin, amoxicillin, ceftriaxone, ceftazidime, streptomycin, erythromycin, spectinomycin, and doxycycline, while a higher sensitivity was observed against meropenem, imipenem, colistin sulfate, ciprofloxacin, and gentamicin. ESBL production was confirmed in 12 (21.8%) and 15 (27.3%) isolates by DDST and PCDDT, respectively. Antibiotic resistance genes (ARGs): int1, mcr-1, and ESBL genes (OXA-10, SHV, TEM, and CTX-M), were detected in 87.3%, 18.2%, 16.4%, 69.1%, 72.7%, and 54.5% of the examined isolates respectively, whereas no isolate harbored the OXA-2 or VEB-1 genes. Based on the results of both methods used for detection of biofilm formation, Kappa statistics [kappa 0.324] revealed a poor agreement between both methods. CONCLUSIONS: the emergence of mcr-1 and its coexistence with other resistance genes such as ß-lactamase genes, particularly blaOXA-10, for the first time in P. aeruginosa from young broiler chicks and dead in-shell chicks in Egypt pose a risk not only to the poultry industry but also to public health.


Sujet(s)
Infections à Pseudomonas , Pseudomonas aeruginosa , Animaux , Pseudomonas aeruginosa/génétique , Poulets , ARN ribosomique 16S , Antibactériens/pharmacologie , bêta-Lactamases , Infections à Pseudomonas/médecine vétérinaire , Tests de sensibilité microbienne
15.
Jpn J Infect Dis ; 77(1): 47-50, 2024 Jan 24.
Article de Anglais | MEDLINE | ID: mdl-37648488

RÉSUMÉ

Salmonella enterica subsp. enterica serovar Typhimurium has recently emerged worldwide as a producer of extended-spectrum ß-lactamase (ESBL). However, drug-resistant clinical isolates are rare in Japan. The common types of ESBLs found are the CTX-M-type ß-lactamases, including novel ß-lactamases such as CTX-M-64. CTX-M-64 has a chimeric structure comprising a combination of the CTX-M-1 and CTX-M-9 groups. In 2017, S. Typhimurium was isolated from stool, blood, and urine cultures of an 82-year-old man. Herein, we describe the discovery of a clinical isolate of S. Typhimurium in Japan. Antimicrobial susceptibility testing revealed that the isolate was resistant to third- and fourth-generation cephalosporins, including ceftazidime and monobactam. The minimum inhibitory concentrations of ceftazidime and ceftriaxone were restored by administration of clavulanic acid. Whole-genome sequencing analysis revealed that the isolate harbored the blaCTX-M-64 gene on an IncHI2/IncHI2A-type plasmid, with an assembly length of 174,477 bp. The genetic structure of the region surrounding the blaCTX-M-64 gene, ISKpn26-ΔISEcp1-blaCTX-M-64-orf477, was shared only with the chromosome sequence of S. Typhimurium detected in food-producing chickens in Guangdong, China. Although rare, S. Typhimurium can induce bloodstream infections and produce ESBL. To our knowledge, this is the first report of a CTX-M-64-producing Enterobacterales clinical isolate of domestic origin in Japan.


Sujet(s)
Antibactériens , Salmonella typhimurium , Mâle , Animaux , Humains , Sujet âgé de 80 ans ou plus , Salmonella typhimurium/génétique , Antibactériens/pharmacologie , Ceftazidime/pharmacologie , Japon , Poulets , bêta-Lactamases/génétique , Tests de sensibilité microbienne
16.
J Glob Antimicrob Resist ; 36: 181-187, 2024 Mar.
Article de Anglais | MEDLINE | ID: mdl-38072240

RÉSUMÉ

OBJECTIVES: Recently, blaCTX-Ms have become the dominant ESBLs for E. coli strains worldwide. We aim to provide a systematic study on the relationships between sequence types (STs), clinical origins, and the blaCTX-Ms genotypes of E. coli strains. METHODS: Totally, 1005 complete sequences of clinical E. coli were collected from NCBI. Multilocus sequence typing (MLST) and antibiotic resistance genes screening were performed. RESULTS: Faeces (26.27%), urine (16.02%), and blood (8.26%) were shown to be the main sources of clinical E. coli isolates. The isolates belong to 153 STs and 26 clonal complexes (CCs). The most prevalent STs were ST2 (11.3%), ST43 (8.6%), and ST8 (5.7%). The positive rate for blaCTX-Ms was 34.7%. Different samples showed significantly different blaCTX-Ms positive rates (P<0.05). The main genotypes were blaCTX-M-55-like (47.6%), blaCTX-M-1-like (31.8%), and blaCTX-M-2-like (22.1%). The majority of ST2 strains had blaCTX-M-55-like genes. In ST8 strains, there was a homogeneous distribution of blaCTX-M-9, blaCTX-M-65, blaCTX-M-55, blaCTX-M-2, and blaCTX-M-1. Only ST43 strains exhibited the presence of blaCTX-M-79. The blaCTX-Ms showed a pattern of cross-continental transmission with intra-regional spread. Among the 349 blaCTX-Ms-producing E. coli strains, 148 strains also carried carbapenem resistance genes, including blaNDM (119, 34.1%), blaKPC (16, 4.6%), blaOXA-48 (9, 2.6%) and blaIMP (4, 1.1%). Also, 81 strains carried the mcr gene (23.2%). CONCLUSIONS: E. coli has become increasingly rich in blaCTX-Ms genotypes. Our findings about the connection between E. coli STs and blaCTX-Ms can be utilized to identify E. coli strains with high potential to spread drug resistance in the future.


Sujet(s)
Infections à Escherichia coli , Protéines Escherichia coli , Humains , Escherichia coli , Protéines Escherichia coli/génétique , Infections à Escherichia coli/épidémiologie , Typage par séquençage multilocus , Protéine-1 analogue au récepteur de l'interleukin-1/génétique
17.
Microorganisms ; 11(12)2023 Nov 22.
Article de Anglais | MEDLINE | ID: mdl-38137980

RÉSUMÉ

A rising incidence of clinical infections has been caused by Kluyvera, a significant opportunistic pathogen. Meanwhile, Kluyvera acts as an important reservoir of blaCTX-Ms, which are the dominant genes of class A extended-spectrum ß-lactamases (ESBLs). In this work, 60 strains of Kluyvera were subjected to phylogenetic relationship reconstruction, antimicrobial susceptibility testing, and antibiotic resistance genes prediction. All mature blaCTX-Ms were gathered to perform subgroup reclassification. The findings demonstrate that Kluyvera has a large gene pool with significant genetic flexibility. Notably, 25% of strains showed simultaneous detection of ESBLs and carbapenem resistance genes. The genotypes of fourteen novel blaCTX-Ms were identified. A new subgroup classification approach for blaCTX-Ms was defined by using 20 amino acid site variants, which could split blaCTX-Ms into 10 subgroups. The results of the subgroup division were consistent with the phylogenetic clustering. More significantly, we proposed a novel blaCTX-M subgroup, KLUS, that is chromosomally encoded in K. sichuanensis and the new species put forward in this study, showing amino acid differences from the currently known sequences. Cloning and transformation tests demonstrated that the recipient bacteria had a robust phenotype of cefotaxime resistance. Closely related Kluyvera species had blaCTX-Ms in the same subgroup. Our research lays the groundwork for a deeper comprehension of Kluyvera and emphasizes how important a blaCTX-M reservoir it is. We provide an update on blaCTX-M subgroups reclassification from the aspects of phylogenetic relationship, amino acid differences, and the new subgroup KLUS, which needs to be strengthen monitored due to its strong resistance phenotype to cefotaxime.

18.
Clin Infect Dis ; 2023 Nov 16.
Article de Anglais | MEDLINE | ID: mdl-37972276

RÉSUMÉ

BACKGROUND: Investigations into antibiotics for extended-spectrum ß-lactamase-producing Enterobacterales (ESBL-E) bloodstream infections (BSIs) have focused on blaCTX-M genes. Outcomes of patients with non-CTX-M-producing ESBL-E BSIs and optimal treatment are unknown. METHODS: A multicenter observational study investigating 500 consecutive patients with ceftriaxone-resistant Enterobacterales BSIs during 2018-2022 was conducted. Broth microdilution and whole genome sequencing confirmed antibiotic susceptibilities and ESBL gene presence, respectively. Inverse probability weighting (IPW) using propensity scores was employed to ensure patients infected with non-CTX-M and CTX-M ESBL-E BSIs were similar prior to evaluation of outcomes. RESULTS: 396 patients (79.2%) were confirmed to have an ESBL-E BSI. ESBL gene family prevalence was as follows: blaCTX-M (n=370), blaSHV (n=16), blaOXY (n=12), and blaVEB (n=5). ESBL gene identification was not limited to Escherichia coli and Klebsiella species. In the IPW cohort, there was no difference in 30-day mortality or ESBL-E infection recurrence between the non-CTX-M and CTX-M groups (OR=.99, 95% CI 0.87-1.11; p=0.83) and (OR=1.10, 95% CI 0.85--1.42; p=0.47), respectively. In an exploratory analysis limited to the non-CTX-M group, 86% of the 21 patients receiving meropenem were alive on day 30; none of the 5 patients receiving piperacillin-tazobactam were alive on day 30. CONCLUSIONS: Our findings suggest that non-CTX-M and CTX-M ESBL-producing Enterobacterales BSIs are equally concerning and associated with similar clinical outcomes. Meropenem may be associated with improved survival in patients with non-CTX-M ESBL-E BSIs, underscoring the potential benefit of comprehensive molecular diagnostics to enable early antibiotic optimization for patients with ESBL-E BSI, beyond just blaCTX-M genes.

19.
Front Cell Infect Microbiol ; 13: 1259472, 2023.
Article de Anglais | MEDLINE | ID: mdl-37937207

RÉSUMÉ

Introduction: An extended-spectrum beta-lactamase (ESBL)-hypervirulent Klebsiella pneumoniae (HvKP) strain HKE9 was isolated from the blood in an outpatient. Methods: The effect of the global regulatory factor RpoS on antimicrobial resistance, pathogenicity, and environmental adaptability was elucidated. Results: HKE9 is a novel ST3355 (K20/O2a) hypervirulent strain with a positive string test and resistant to cephems except cefotetan. It has a genome size of 5.6M, including two plasmids. CTX-M-15 was found in plasmid 2, and only ompk37 was found in the chromosome. HKE9 could produce bacterial siderophores, and genes of enterobactin, yersiniabactin, aerobactin, and salmochelin have been retrieved in the genome. As a global regulatory factor, knockout of rpoS did not change antimicrobial resistance or hemolytic phenotype while increasing the virulence to Galleria mellonella larvae and showing higher viscosity. Moreover, rpoS knockout can increase bacterial competitiveness and cell adhesion ability. Interestingly, HKE9-M-rpoS decreased resistance to acidic pH, high osmotic pressure, heat shock, and ultraviolet and became sensitive to disinfectants (H2O2, alcohol, and sodium hypochlorite). Although there were 13 Type 6 secretion system (T6SS) core genes divided into two segments with tle1 between segments in the chromosome, transcriptomic analysis showed that rpoS negatively regulated T4SS located on plasmid 2, type 1, and type 3 fimbriae and positively regulate genes responsible for acidic response, hyperosmotic pressure, heat shock, oxidative stress, alcohol and hypochlorous acid metabolism, and quorum sensing. Discussion: Here, this novel ST3355 ESBL-HvKP strain HKE9 may spread via various clonal types. The important regulation effect of rpoS is the enhanced tolerance and resistance to environmental stress and disinfectants, which may be at the cost of reducing virulence and regulated by T4SS.


Sujet(s)
Anti-infectieux , Désinfectants , Animaux , Virulence/génétique , Klebsiella pneumoniae , Facteurs de virulence/génétique , Facteurs de virulence/pharmacologie , Transcriptome , Peroxyde d'hydrogène/pharmacologie , bêta-Lactamases/génétique , bêta-Lactamases/métabolisme , Phénotype , Désinfectants/pharmacologie , Anti-infectieux/pharmacologie
20.
J Genet Eng Biotechnol ; 21(1): 139, 2023 Nov 24.
Article de Anglais | MEDLINE | ID: mdl-37999796

RÉSUMÉ

BACKGROUND: The presence of drug-resistant Gram-negative pathogenic bacteria and Extended Spectrum ß-Lactamase Producers (ESBLs) in hospital associated fomites like door handles can serve as vehicles in transmission and may be the key factor in epidemiology of ESBL producing bacterial infection not only in a hospital setting but also in the community. The aim of this study was to determine the prevalence of ESBLs and antibiotic resistance of Gram-Negative pathogenic Bacteria isolated from door-handles in two selected hospitals in Pokhara Metropolitan City, Nepal. The study was conducted in selected hospitals in Pokhara Metropolitan City, Western Nepal. A cross-sectional study design was used. The hospitals were selected randomly. A total of 100 swab samples were taken from door-handles. Isolation and identification of bacteria were done using standard microbiological procedures. An antibiotic susceptibility test, screening and confirmation of ESBLs were performed using the Clinical Laboratory Standard Institute's guidelines. RESULTS: Out of the 100 swab samples cultured, 96 (96%) showed bacterial growth. A total of one hundred and forty isolates were isolated in this study which were further identified based on cultural, morphological and biochemical characteristics. The study also found that door handles/knobs had higher level of contamination in Outpatient Departments (OPDs), Emergency, Laboratory, General wards and Toilets, in that order as compared to Radiology Room, Staff rooms, Intensive Care Unit and Operation Theatre which were lower. The level of contamination varies depending on the traffic exposure and the environment. The most prevalent Gram-negative bacteria identified was Escherichia coli 28.85%, followed by Klebsiella spp 21.15%, Pseudomonas aeruginosa 15.38%, Proteus spp 11.54%, Enterobacter spp 9.62%, Acenetobacter spp 7.69%, Citrobacter spp 5.77%. The most effective drug of choice was Amikacin, Nitrofurantoin, Norfloxacin, Ciprofloxacin, Tetracycline and Imipenem for many Gram-negative isolates. The overall prevalence of ESBLs in this study was 27.14%. Out of total 15 Escherichia coli isolated, 11(73.3%), Klebsiella spp 9/11 (81.8%); Pseudomonas spp 7/8 (87.5%), Proteus spp 4/6 (66.6%); Enterobacter spp 3/5 (60%), Acenetobacter spp 3/4 (75%) and Citrobacter spp 1/3 (33.3%) were found to be Extended ß-Lactamase Producers (ESBLs). CONCLUSION: The isolation of of pathogenic Gram-negative bacteria and ESBLs in hospital environments and subsequent detection of high drug resistance patterns indicates a potentially serious public health challenge that strengthens the need for the effective and routine cleaning of door-handles in hospitals.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE