Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 75
Filtrer
1.
J Neuroimmunol ; 389: 578324, 2024 04 15.
Article de Anglais | MEDLINE | ID: mdl-38422691

RÉSUMÉ

Sickness behavior reflects a state of altered physiology and central nervous system function that occurs during systemic infection or inflammation, serving as an adaptive response to illness. This study aims to elucidate the role of hydrogen sulfide (H2S) in regulating sickness behavior and neuroinflammatory responses in a rat model of systemic inflammation. Adult male Wistar rats were treated with lipopolysaccharide (LPS) to induce sickness behavior. Intracerebroventricular (i.c.v.) pretreatments included aminooxyacetic acid (AOAA), an inhibitor of H2S synthesis, and sodium sulfide (NaHS), an H2S donor. Behavioral assays were conducted, along with the assessment of astrocyte activation, as indicated by GFAP expression in the hypothalamus. Pretreatment with NaHS mitigated LPS-induced behavioral changes, including hypophagia, social and exploratory deficits, without affecting peripheral cytokine levels, indicating a central modulatory effect. AOAA, conversely, accentuated certain behavioral responses, suggesting a complex role of endogenous H2S in sickness behavior. These findings were reinforced by a lack of effect on plasma interleukin levels but significant reduction in GFAP expression. Our findings support the central role of H2S in modulating neuroinflammation and sickness behavior, highlighting the therapeutic potential of targeting H2S signaling in neuroinflammatory conditions.


Sujet(s)
Sulfure d'hydrogène , Sulfures , Rats , Mâle , Animaux , Sulfure d'hydrogène/pharmacologie , Sulfure d'hydrogène/usage thérapeutique , Lipopolysaccharides/toxicité , Comportement de maladie , Rat Wistar , Inflammation/induit chimiquement , Inflammation/traitement médicamenteux , Inflammation/métabolisme , Acide aminooxy-acétique/pharmacologie , Agents neuromédiateurs
2.
J Therm Biol ; 119: 103756, 2024 Jan.
Article de Anglais | MEDLINE | ID: mdl-38056359

RÉSUMÉ

Oxytocin has shown cardioprotective effects during inflammation and may modify the core body temperature changes in LPS-induced endotoxemia. Notably, the time series analysis of core body temperature fluctuations may indicate thermoregulation alterations. This study aims to assess the effects of oxytocin on changes in the core body temperature by analyzing the fluctuations of the temperature time series of endotoxemic rats. Twelve hours of continuous core body temperature fluctuations time series were obtained from adult male Dark Agouti rats implanted with a telemetric transmitter under the following treatment: lipopolysaccharide (LPS); oxytocin (O); lipopolysaccharide + oxytocin (LPS + O), and vehicle or control (C). The temperature fluctuations time series were analyzed using the Extended Poincaré Plot Analysis (EPPA), a novel approach for measuring nonlinear features, to compute the autocorrelation by Pearson's correlation coefficient r, the standard deviation perpendicular to the line of identity (SD1), and the standard deviation parallel to the line of identity (SD2). The autocorrelation of the temperature fluctuations assessed by Pearson's coefficient was significantly higher in the LPS group compared to control rats (C). Likewise, the co-administration of oxytocin during endotoxemia (LPS + O) significantly reduced the autocorrelation and increased the short-term variability (SD1) of temperature fluctuations compared to those recorded with a single dose of LPS. Thus, we concluded that oxytocin may introduce thermoregulatory changes under LPS-induced endotoxemia. The EPPA is a simple and powerful approach to assess physiological variability that can provide valuable insights into changes in thermoregulation.


Sujet(s)
Endotoxémie , Lipopolysaccharides , Syndactylie , Mâle , Rats , Animaux , Lipopolysaccharides/toxicité , Endotoxémie/induit chimiquement , Ocytocine/effets indésirables , Température du corps , Rythme cardiaque
3.
J Biochem Mol Toxicol ; 38(1): e23560, 2024 Jan.
Article de Anglais | MEDLINE | ID: mdl-37860953

RÉSUMÉ

This study investigated the effect of N-acetylcysteine (NAC) and silymarin (SIL) in the liver of mice exposed to ethanol and lipopolysaccharides (LPS). Mice were divided into four groups (n = 6): naive, vehicle, NAC (200 mg/kg), and SIL (200 mg/kg). Treatments were given orally (po) once daily for 10 days. Liver injury was induced by administration of ethanol (30%, po) for 10 days, once daily, followed by a single administration of LPS (2 mg/kg, ip) 24 h before euthanasia. After the treatment period, animals were euthanized, and liver and blood samples were collected. NAC, but not SIL, prevented the increase in oxalacetic glutamic transaminase (OGT) and pyruvic glutamic transaminase (PGT) serum levels. NAC and SIL did not restore levels of reduced glutathione or hepatic malonaldehyde. The treatments with NAC or SIL showed no difference in the activity of glutathione S-transferase, superoxide dismutase, and catalase compared to vehicle group. Myeloperoxidase and N-acetylglucosaminidase activities are increased, as well as the IL-6 and IL-10 levels in the liver. The treatment with NAC, but not SIL, reduced the N-acetylglucosamines activity and the IL-6 and IL-10 amount in the liver. Histological findings revealed microsteatosis in the vehicle group, which was not prevented by SIL but was partially reduced in animals receiving NAC. Unlike other liver injury models, NAC (200 mg/kg) or SIL (200 mg/kg) did not positively affect antioxidant patterns in liver tissue of animals exposed to ethanol plus LPS, but NAC treatment displays anti-inflammatory properties in this model.


Sujet(s)
Lésions hépatiques chroniques d'origine chimique ou médicamenteuse , Silymarine , Souris , Animaux , Acétylcystéine/pharmacologie , Silymarine/pharmacologie , Lipopolysaccharides/toxicité , Interleukine-10 , Éthanol/toxicité , Lésions hépatiques chroniques d'origine chimique ou médicamenteuse/anatomopathologie , Interleukine-6/pharmacologie , Foie/anatomopathologie , Antioxydants/pharmacologie , Glutathion , Transaminases/pharmacologie
4.
Repert. med. cir ; 33(2): 178-185, 2024. tab, graf
Article de Espagnol | LILACS, COLNAL | ID: biblio-1561074

RÉSUMÉ

Introducción: el reto de líquidos es una prueba que consiste en administrarlos y medir la respuesta hemodinámica mediante el cambio del gasto cardíaco (GC), aunque solo medir el GC resulta insuficiente. El acople ventrículo-arterial (AVA) (elastancia arterial efectiva/ elastancia telesistólica: Eae/Ets) aparece como una variable que evalúa el estado cardiocirculatorio en forma integral. Objetivo: evaluar el AVA en un biomodelo de choque endotóxico y durante retos de líquidos. Materiales y métodos: biomodelo de choque endotóxico (9 porcinos). Se midieron variables hemodinámicas cada hora desde un tiempo 0 (T0) hasta T6. Se realizaron 5 retos de líquidos entre T0 y T4. El tiempo de hipotensión se denominó TH0. Se calcularon diferencias de medianas de variables entre T0-T4. Se clasificaron los retos en dos grupos según el delta del AVA (AVA posreto-AVA prerreto), en ΔAVA≤0 o >0, se midieron variables antes y después de cada reto. Se determinó la relación lactato/piruvato (L/P) en T0, T3 y T6, se establecieron correlaciones entre la diferencia LP T6-T0 y de variables hemodinámicas. Resultados: el AVA aumentó (1.58 a 2,02, p=0.042) por incremento en la Eae (1.74 a 2,55; p=0.017). El grupo ΔAVA≤0 elevó el GC (4.32 a 5,46, p=0.032) y el poder cardíaco (PC) (0.61 a 0,77, p=0,028). El Δ L/P se correlacionó con el Δ del índice de choque sistólico y diastólico (r=0.73), pero no con el del AVA. Conclusión: durante el choque endotóxico el AVA aumentó de manera significativa. Durante el reto de líquidos el grupo Δ AVA≤0, elevó el GC y PC. El Δ L/P no se correlacionó con variables del AVA.


Introduction: fluid challenges (FCs) consist of measuring hemodynamic response through changes in cardiac output (CO) after fluid administration, although only measuring CO proves insufficient. Ventriculo-arterial coupling (V-A) (effective arterial elastance / tele-systolic elastance: E(a)/Ets) are variables used for a comprehensive cardiac and circulatory status appraisal. Objective: to evaluate V-A in an endotoxic shock bio-model by FCs. Materials and methods: an endotoxic shock bio-model (9 pigs). Hemodynamic variables were measured every hour from time 0 (T0) to T6. Five FCs were performed between T0 and T4. Hypotension time was referred to as HT. The median differences in variables between T0-T4 were calculated. Challenges were classified into two groups according to V-A delta (post-challenge V-A - pre-challenge V-A). In ΔV-A≤0 o>0, variables were measured before and after each FC. The lactate to pyruvate (L/P) ratio was determined at T0, T3 and T6. Correlations between the LP T6-T0 difference and hemodynamic variables, were established. Results: V-A increased (1.58 to 2,02, p=0.042) as Eae increased (1.74 to 2.55; p=0.017). CO (4.32 to 5.46, p=0.032) and cardiac power (CP) (0.61 to 0.77, p=0,028) increased, in the ΔV-AC≤0 group. The ΔLP correlated with the systolic and diastolic shock index (r=0.73), but not with V-A. Conclusion: V-A increased significantly during endotoxic shock. The ΔAVA≤0 group, showed elevated CO and CP during FC. ΔLP did not correlate with any of the V-A variables.


Sujet(s)
Humains , Sepsie , Endotoxémie
5.
Nutrients ; 15(14)2023 Jul 24.
Article de Anglais | MEDLINE | ID: mdl-37513699

RÉSUMÉ

Colorectal cancer has a high worldwide incidence. The aim of this study was to determine the effect of yacon flour (YF) on oxidative stress, inflammation, and endotoxemia in rats with induced colorectal cancer (CRC). The Wistar male rats were divided and kept for 8 weeks in four groups: S (basal diet, n = 10), Y (YF flour + basal diet, n = 10), C (CRC-induced control + basal diet, n = 12), CY (CRC-induced animals + YF, n = 12). CRC was induced by intraperitoneal injections of 1,2-dimethylhydrazine (25 mg/kg body weight). Groups Y and CY received 7.5% of the prebiotic FOS from YF. The treatment with YF increased fecal secretory immunoglobulin A levels and decreased lipopolysaccharides, tumor necrosis factor alpha and interleukin-12. However, no effect was observed on the oxidative stress by the total antioxidant capacity of plasma, anion superoxide, and nitric oxide analysis of the animals (p < 0.05). The short-chain fatty acids acetate, propionate, and butyrate showed interactions with NF-κB, TLR4, iNOS, and NADPH oxidase by in silico analysis and had a correlation (by the Person analysis) with CRC markers. The yacon flour treatment reduced the inflammation in rats with induced CRC, and could be a promising food to reduce the damages caused by colorectal cancer.


Sujet(s)
Asteraceae , Tumeurs colorectales , Endotoxémie , Rats , Mâle , Animaux , Rat Wistar , Farine , Stress oxydatif , Carcinogenèse , Tumeurs colorectales/traitement médicamenteux
6.
Nutrients ; 15(4)2023 Feb 20.
Article de Anglais | MEDLINE | ID: mdl-36839417

RÉSUMÉ

Endotoxemia is a condition caused by increasing levels of lipopolysaccharide (LPS) characterized by an impaired systemic response that causes multiple organ dysfunction. Lacticaseibacillus rhamnosus ATCC 9595 is a strain with probiotic potential which shows immunomodulatory properties. The incorporation of this bacterium in food rich in bioactive compounds, such as cupuaçu juice (Theobroma grandiflorum), could result in a product with interesting health properties. This work evaluated the effects of the oral administration of cupuaçu juice fermented with L. rhamnosus on the outcome of LPS-induced endotoxemia in mice. C57BL/6 mice (12/group) received oral doses (100 µL) of saline solution and unfermented or fermented cupuaçu juice (108 CFU/mL). After 5 days, the endotoxemia was induced by an intraperitoneal injection of LPS (10 mg/kg). The endotoxemia severity was evaluated daily using a score based on grooming behavior, mobility, presence of piloerection, and weeping eyes. After 6 h and 120 h, the mice (6/group) were euthanized for analysis of cell counts (in peritoneal lavage and serum) and organ weight. L. rhamnosus grew in cupuaçu juice and produced organic acids without the need for supplementation. The bacteria counts were stable in the juice during storage at 4 °C for 28 days. The fermentation with L. rhamnosus ATCC 9595 changed the metabolites profile of cupuaçu juice due to the biotransformation and enhancement of some compounds. In general, the administration of L. rhamnosus-fermented juice allowed a significant improvement in several characteristics of endotoxemic status (weight loss, hypothermia, severity index, cell migration). In addition, treatment with fermented juice significantly reduced the weight of the spleen, liver, intestine, and kidneys compared to the saline-treated endotoxemic group. Taken together, our data show that short-term intake therapy of cupuaçu juice fermented with L. rhamnosus ATCC 9595 can reduce systemic inflammation in an experimental model of LPS-induced endotoxemia in mice.


Sujet(s)
Cacaoyer , Endotoxémie , Lacticaseibacillus rhamnosus , Probiotiques , Animaux , Souris , Lipopolysaccharides/métabolisme , Lacticaseibacillus , Souris de lignée C57BL , Probiotiques/pharmacologie , Fermentation
7.
Mol Cell Endocrinol ; 562: 111839, 2023 02 15.
Article de Anglais | MEDLINE | ID: mdl-36581062

RÉSUMÉ

AIM: To evaluate the effects of single PPARα or PPARγ activation, and their synergism (combined PPARα/γ activation) upon the gut-adipose tissue axis, focusing on the endotoxemia and upstream interscapular brown adipose tissue (iBAT) function in high-saturated fat-fed mice. METHODS: Male C57BL/6 mice received a control diet (C, 10% lipids) or a high-fat diet (HF, 50% lipids) for 12 weeks. Then, the HF group was divided to receive the treatments for four weeks: HFγ (pioglitazone, 10 mg/kg), HFα (WY-14643, 3.5 mg/kg), and HFα/γ (tesaglitazar, 4 mg/kg). RESULTS: The HF group exhibited overweight, oral glucose intolerance, gut dysbiosis, altered gut permeability, and endotoxemia, culminating in iBAT whitening. The downregulation of LPS-Tlr4 signaling underpinned reduced inflammation and improved lipid metabolism in iBAT in the HFα/γ group, the unique to show normalized body mass and increased energy expenditure. CONCLUSION: PPARα/γ synergism treated obesity by ameliorating the gut-adipose tissue axis, where restored gut microbiota and permeability controlled endotoxemia and rescued iBAT whitening through favored thermogenesis.


Sujet(s)
Endotoxémie , Récepteur PPAR alpha , Animaux , Mâle , Souris , Tissu adipeux brun/métabolisme , Alimentation riche en graisse , Lipides , Souris de lignée C57BL , Obésité/métabolisme , Récepteur PPAR alpha/métabolisme , Récepteur PPAR gamma/métabolisme
8.
Inflammation ; 45(5): 1985-1999, 2022 Oct.
Article de Anglais | MEDLINE | ID: mdl-35411498

RÉSUMÉ

Cardiomyopathy is a well-known complication of sepsis that may deteriorate when accompanied by obesity. To test this hypothesis we fed C57black/6 male mice for 6 week with a high fat diet (60% energy) and submitted them to endotoxemic shock using E. coli LPS (10 mg/kg). Inflammatory markers (cytokines and adhesion molecules) were determined in plasma and heart tissue, as well as heart mitochondrial biogenesis and function. Obesity markedly shortened the survival rate of mouse after LPS injection and induced a persistent systemic inflammation since TNFα, IL-1ß, IL-6 and resistin plasma levels were higher 24 h after LPS injection. Heart tissue inflammation was significantly higher in obese mice, as detected by elevated mRNA expression of pro-inflammatory cytokines (IL-1ß, IL-6 and TNFα). Obese animals presented reduced maximum respiratory rate after LPS injection, however fatty acid oxidation increased in both groups. LPS decreased mitochondrial DNA content and mitochondria biogenesis factors, such as PGC1α and PGC1ß, in both groups, while NRF1 expression was significantly stimulated in obese mice hearts. Mitochondrial fusion/fission balance was only altered by obesity, with no influence of endotoxemia. Obesity accelerated endotoxemia death rate due to higher systemic inflammation and decreased heart mitochondrial respiratory capacity.


Sujet(s)
Endotoxémie , Animaux , Cytokines/métabolisme , ADN mitochondrial , Endotoxémie/métabolisme , Escherichia coli/métabolisme , Acides gras , Inflammation , Interleukine-6/métabolisme , Lipopolysaccharides/pharmacologie , Mâle , Souris , Souris obèse , Modèles théoriques , Obésité/complications , Obésité/métabolisme , Biogenèse des organelles , Coactivateur 1-alpha du récepteur gamma activé par les proliférateurs de peroxysomes , ARN messager , Résistine/métabolisme , Facteur de nécrose tumorale alpha/métabolisme
9.
Int J Food Sci Nutr ; 73(6): 829-840, 2022 Sep.
Article de Anglais | MEDLINE | ID: mdl-35311432

RÉSUMÉ

The effect of brown and golden flaxseeds on lipid profile, oxidative stress, intestinal permeability, endotoxemia, and fasting glycaemia of perimenopausal overweight women was investigated in this clinical trial. Thirty participants were divided into control (CG), brown flaxseed (BF), and golden flaxseed (GF) groups. BF and GF received 40 g of brown and golden flaxseed for 12 weeks. Venous blood samples were collected at the beginning and at the end. Intestinal permeability analysis was performed by urinary excretion of lactulose and mannitol. There was significant reduction in intestinal permeability in flaxseed groups, with delta of lactulose/mannitol ratio smaller (p ≤ 0.05). LPS levels were reduced in the flaxseed groups, whereas low-density lipoproteins (LDL) was decreased in the GF group (p ≤ 0.05). Flaxseed consumption did not change oxidative stress markers and glycaemia. Flaxseed consumption, especially golden flaxseed, reduced intestinal permeability and improved the lipid profile, showing positive effects on metabolic changes caused by menopausal transition.HIGHLIGHTSBrown and golden flaxseeds show a high content of insoluble fibre and alpha-linolenic acid, and brown flaxseed presented higher antioxidant activity.Golden flaxseed improved the lipid profile.Brown and golden flaxseeds reduced intestinal permeability and endotoxemia.Brown and golden flaxseed can be a promising alternative for the prevention of metabolic changes caused by menopausal transition, and for the improvement of the intestinal health.


Sujet(s)
Endotoxémie , Lin , Endotoxémie/prévention et contrôle , Femelle , Humains , Lactulose , Lipoprotéines LDL , Mannitol , Surpoids , Périménopause , Perméabilité
10.
Zygote ; 30(4): 584-587, 2022 Aug.
Article de Anglais | MEDLINE | ID: mdl-35016736

RÉSUMÉ

Lipopolysaccharide (LPS) endotoxemia has been negatively associated with fertility. This study aimed to investigate the effect of LPS-induced inflammation on gene expression associated with bovine fertility in the uterus and oviduct. Sixteen healthy heifers were divided into two groups. The LPS group (n = 8) received two intravenous (i.v.) injections of 0.5 µg/kg of body weight of LPS with a 24-h interval, and the control group (n = 8) received two i.v. injections of saline solution with the same interval of time. All the animals had the follicular wave synchronized. Three days after the second injection of LPS, all animals were slaughtered and uterine and oviduct samples were collected. Gene expression associated with inflammatory response, thermal and oxidative stresses, oviduct environment quality, and uterine environment quality was evaluated. Body temperature and leucogram demonstrated that LPS induced an acute systemic inflammatory response. In the uterus, the expression of PTGS2 and NANOG genes was downregulated by the LPS challenge. However, no change in expression was observed in the other evaluated genes in the uterus, nor those evaluated in the oviduct. In conclusion, the inflammatory process triggered by LPS did not persist in the uterus and oviduct 3 days after challenge with LPS. Nonetheless, reduction in PTGS2 and NANOG expression in the uterus suggested that, indirectly, LPS may have a prolonged effect, which may affect corpus luteum and endometrial functions.


Sujet(s)
Bovins , Fécondité , Oviductes , Utérus , Animaux , Bovins/génétique , Cyclooxygenase 2/génétique , Cyclooxygenase 2/métabolisme , Femelle , Fécondité/génétique , Lipopolysaccharides/pharmacologie , Oviductes/métabolisme , Utérus/métabolisme
11.
Immunol Invest ; 51(6): 1725-1755, 2022 Aug.
Article de Anglais | MEDLINE | ID: mdl-34986758

RÉSUMÉ

First discovered on macrophages by Goldstein and Brown in 1979, Scavenger Receptors have since been shown to participate in a diverse number of cell functions; equally diverse are their structures and the ligands they bind. Macrophage activation is crucial in the outcome of an immune response. SR-A1 is highly abundant on macrophages and recognizes both host- and microorganism-derived molecules that impact processes that are initiated, perpetuated, or modified. This review summarizes the involvement of SR-A1 in both inflammatory and anti-inflammatory responses, the multiple-ligand internalization mechanisms and the diversity of signaling pathways that impact macrophage function and activation. Engagement of SR-A1 results in the stimulation of differential signaling pathways and patterns of cytokine expression, kinetics, magnitude of response and activation status. SR-A1 plays essential roles in phagocytosis and efferocytosis, interacting with other receptors and promoting tolerance in response to apoptotic cell uptake. In cell adhesion, tissue remodeling, and cell migration, SR-A1 signals through different pathways engaging different cytoplasmic motifs. We describe the role of SR-A1 during innate and adaptive immune responses, such as participation in macrophage polarization and interaction with other innate receptors, as well as in antigen uptake, processing, and presentation, regulating T and B cell activation. The dichotomous contribution of SR-A1 on macrophage functions is discussed. A better understanding of the role SR-A1 plays through molecular mechanisms and crosstalk with other receptors may provide insights into developing novel therapeutic strategies to modulate immune responses and immunopathologies.


Sujet(s)
Macrophages , Récepteurs éboueurs de classe A , Immunité acquise , Récepteurs éboueurs/métabolisme , Récepteurs éboueurs de classe A/métabolisme , Transduction du signal
12.
Molecules ; 28(1)2022 Dec 23.
Article de Anglais | MEDLINE | ID: mdl-36615318

RÉSUMÉ

In self-revolving gram-negative Escherichia coli infection, Resolvin D5 (RvD5) was found to enhance bacteria phagocytosis and reduce the production of inflammatory mediators, contributing to the resolution of infection. LPS (lipopolysaccharide) is a gram-negative bacterial structure product which activates the immune system and, at high doses, leads to endotoxemia. To our knowledge, the effect of RvD5 against LPS endotoxemia has not been investigated to date. Female Swiss mice received an i.p. treatment with RvD5 (0.1, 1 or 10 ng/animal). After 1 h, they were stimulated with LPS (10 mg/kg, i.v.), and samples were collected after additional 6 h. The resulting data demonstrated that RvD5 protected the kidneys (urea and creatinine serum levels) from tissue injury. These effects were related to an improvement in histopathological parameters and a reduction of enzymatic markers of leukocyte infiltration, pro-inflammatory cytokine (IL-1ß, TNF-α, and IL-6) production, and oxidative stress. Antioxidant markers were also increased by RvD5, but IL-10 (an anti-inflammatory cytokine) levels were unaltered. We also observed that RvD5 reduced the infiltration of CD45+ hematopoietic cells into the kidneys, reduced the activation of NFκB and promoted the Nrf2 pathway by reducing Keap-1 levels. Our data indicate that RvD5 may be a therapeutic possibility to reduce kidney lesions in LPS endotoxemia.


Sujet(s)
Endotoxémie , Lipopolysaccharides , Femelle , Souris , Animaux , Lipopolysaccharides/toxicité , Endotoxémie/induit chimiquement , Endotoxémie/traitement médicamenteux , Rein , Acide docosahexaénoïque/métabolisme
13.
Cells ; 10(8)2021 07 21.
Article de Anglais | MEDLINE | ID: mdl-34440613

RÉSUMÉ

Sepsis and septic shock are associated with acute and sustained impairment in the function of the cardiovascular system, kidneys, lungs, liver, and brain, among others. Despite the significant advances in prevention and treatment, sepsis and septic shock sepsis remain global health problems with elevated mortality rates. Rho proteins can interact with a considerable number of targets, directly affecting cellular contractility, actin filament assembly and growing, cell motility and migration, cytoskeleton rearrangement, and actin polymerization, physiological functions that are intensively impaired during inflammatory conditions, such as the one that occurs in sepsis. In the last few decades, Rho proteins and their downstream pathways have been investigated in sepsis-associated experimental models. The most frequently used experimental design included the exposure to bacterial lipopolysaccharide (LPS), in both in vitro and in vivo approaches, but experiments using the cecal ligation and puncture (CLP) model of sepsis have also been performed. The findings described in this review indicate that Rho proteins, mainly RhoA and Rac1, are associated with the development of crucial sepsis-associated dysfunction in different systems and cells, including the endothelium, vessels, and heart. Notably, the data found in the literature suggest that either the inhibition or activation of Rho proteins and associated pathways might be desirable in sepsis and septic shock, accordingly with the cellular system evaluated. This review included the main findings, relevance, and limitations of the current knowledge connecting Rho proteins and sepsis-associated experimental models.


Sujet(s)
Sepsie/enzymologie , Choc septique/enzymologie , Protéines G rho/métabolisme , Animaux , Modèles animaux de maladie humaine , Humains , Thérapie moléculaire ciblée , Sepsie/traitement médicamenteux , Sepsie/anatomopathologie , Choc septique/traitement médicamenteux , Choc septique/anatomopathologie , Transduction du signal , Protéine G rac1/métabolisme , Protéines G rho/agonistes , Protéines G rho/antagonistes et inhibiteurs , Protéine G RhoA/métabolisme
14.
Protein Pept Lett ; 28(10): 1127-1137, 2021.
Article de Anglais | MEDLINE | ID: mdl-34397321

RÉSUMÉ

BACKGROUND: Obesity is a serious health problem that dysregulate Renin-Angiotensin System (RAS) and intestinal microbiota. OBJECTIVE: The present study aimed to evaluate the Angiotensin-(1-7) [ANG-(1-7)] oral formulation effects on obese mice intestinal microbiota. METHODS: Mice were divided into four groups: obese and non-obese treated with ANG-(1-7) and obese and non-obese without ANG-(1-7) during four weeks. RESULTS: We observed a significant decrease in the fasting plasma glucose, total cholesterol, triglycerides, and Low-density lipoprotein levels and increased High-density lipoprotein in animals treated with ANG-(1-7). The histological analysis showed intestinal villi height reduction in mice treated with ANG-(1-7). Additionally, increased Bacteroidetes and decreased Firmicutes (increased Bacteroidetes/ Firmicutes ratio) and Enterobacter cloacae populations were observed in the High-Fat Diet + ANG-(1-7) group. Receptor toll-like 4 (TLR4) intestinal mRNA expression was reduced in the HFD+ANG-(1-7) group. Finally, the intestinal expression of the neutral amino acid transporter (B0AT1) was increased in animals treated with ANG-(1-7), indicating a possible mechanism associated with tryptophan uptake. CONCLUSION: The results of the present study suggest for the first time an interaction between oral ANG-(1-7) and intestinal microbiota modulation.


Sujet(s)
Angiotensine-I/pharmacologie , Microbiome gastro-intestinal/effets des médicaments et des substances chimiques , Métabolome/effets des médicaments et des substances chimiques , Obésité/traitement médicamenteux , Fragments peptidiques/pharmacologie , Angiotensin-converting enzyme 2/métabolisme , Animaux , Glycémie/métabolisme , Cholestérol/métabolisme , Biologie informatique , Alimentation riche en graisse , Humains , Intestins/effets des médicaments et des substances chimiques , Lipoprotéines LDL/métabolisme , Mâle , Souris , Souris obèse , Récepteur de type Toll-4/métabolisme , Triglycéride/métabolisme
15.
Cells ; 10(1)2021 01 08.
Article de Anglais | MEDLINE | ID: mdl-33430014

RÉSUMÉ

Angiotensin-(1-7) [Ang-(1-7)]/Mas receptor is a counter-regulatory axis that counteracts detrimental renin-angiotensin system (RAS) effects, especially regarding systemic inflammation, vasopressin (AVP) release, and hypothalamic-pituitary-adrenal (HPA) activation. However, it is not completely understood whether this system may control centrally or systemically the late phase of systemic inflammation. Thus, the aim of this study was to determine whether intracerebroventricular (i.c.v.) administration of Ang-(1-7) can modulate systemic inflammation through the activation of humoral pathways in late phase of endotoxemia. Endotoxemia was induced by systemic injection of lipopolysaccharide (LPS) (1.5 mg/kg, i.v.) in Wistar rats. Ang-(1-7) (0.3 nmol in 2 µL) promoted the release of AVP and attenuated interleukin-6 (IL-6) and nitric oxide (NO) levels but increased interleukin-10 (IL-10) in the serum of the endotoxemic rats. The central administration of Mas receptor antagonist A779 (3 nmol in 2 µL, i.c.v.) abolished these anti-inflammatory effects in endotoxemic rats. Furthermore, Ang-(1-7) applied centrally restored mean arterial blood pressure (MABP) without affecting heart rate (HR) and prevented vascular hyporesponsiveness to norepinephrine (NE) and AVP in animals that received LPS. Together, our results indicate that Ang-(1-7) applied centrally promotes a systemic anti-inflammatory effect through the central Mas receptor and activation of the humoral pathway mediated by AVP.


Sujet(s)
Angiotensine-I/administration et posologie , Angiotensine-I/usage thérapeutique , Endotoxémie/traitement médicamenteux , Hypotension artérielle/traitement médicamenteux , Fragments peptidiques/administration et posologie , Fragments peptidiques/usage thérapeutique , Vasopressines/métabolisme , Animaux , Endotoxémie/sang , Endotoxémie/complications , Endotoxémie/génétique , Régulation de l'expression des gènes , Hypotension artérielle/sang , Hypotension artérielle/complications , Hypotension artérielle/génétique , Inflammation/sang , Inflammation/complications , Inflammation/anatomopathologie , Acide lactique/sang , Acide lactique/métabolisme , Lipopolysaccharides , Mâle , Concentration osmolaire , Proto-oncogène Mas , Protéines proto-oncogènes/métabolisme , Rat Wistar , Récepteurs couplés aux protéines G/métabolisme , Sodium/sang , Vasopressines/génétique
16.
Diabetol Metab Syndr ; 12(1): 98, 2020 Nov 11.
Article de Anglais | MEDLINE | ID: mdl-33292434

RÉSUMÉ

BACKGROUND: Research on intestinal microbiota has grown considerably, as well as the interest on probiotics' supplementation effects on metabolism. Considering high prevalence rates of metabolic diseases linked by insulin resistance, we performed a systematic review of existing literature which addressed the role of probiotics in modulating insulin sensitivity in animals and humans. METHODS: This systematic review was based on PRISMA guidelines. Searches for original articles published in English from 1990 to January 2020 were made in the electronic database of PubMed from the National Library of Medicine, using Medical Subject Headings to identify longitudinal studies conducted in animals and humans which reported effects of probiotics in a variety of insulin resistance parameters. RESULTS: Overall, results from 27 probiotic interventions (Lactobacillus, Bifidobacterium, Clostridium and Akkermansia) indicated significant beneficial changes in insulin resistance measures in animal studies. Additionally, they improved lipid profile, inflammatory and oxidative markers, short-chain fatty acids production and microbiota composition. In seven clinical trials, samples and designs were heterogeneous. Five showed benefits in insulin resistance parameters and in two others no effect was detected. CONCLUSION: Available data regarding the effects of certain probiotics do not guarantee sustained amelioration of insulin resistance in humans. Consistent beneficial results for intestinal barrier function, immune system and metabolism were reported in animals may encourage long-term randomized clinical trials in people with obesity and cardiometabolic risk. Whether supplementation with probiotics in combination with medications and/or prebiotics, associated with a healthy lifestyle, will prove useful to attenuate insulin resistance requires further investigation.

17.
Foods ; 9(12)2020 Dec 03.
Article de Anglais | MEDLINE | ID: mdl-33287102

RÉSUMÉ

Highly branched neo-fructans (agavins) are natural prebiotics found in Agave plants, with a large capacity to mitigate the development of obesity and metabolic syndrome. Here, we investigated the impact of agavins intake on gut microbiota modulation and their metabolites as well as their effect on metabolic endotoxemia and low-grade inflammation in mice fed high-fat diet. Mice were fed with a standard diet (ST) and high-fat diet (HF) alone or plus an agavins supplement (HF+A) for ten weeks. Gut microbiota composition, fecal metabolite profiles, lipopolysaccharides (LPS), pro-inflammatory cytokines, and systemic effects were analyzed. Agavins intake induced substantial changes in gut microbiota composition, enriching Bacteroides, Parabacteroides, Prevotella, Allobaculum, and Akkermansia genus (LDA > 3.0). l-leucine, l-valine, uracil, thymine, and some fatty acids were identified as possible biomarkers for this prebiotic supplement. As novel findings, agavins supplementation significantly decreased LPS and pro-inflammatory (IL-1α, IL-1ß, and TNF-α; p < 0.05) cytokines levels in portal vein. In addition, lipid droplets content in the liver and adipocytes size also decreased with agavins consumption. In conclusion, agavins supplementation mitigate metabolic endotoxemia and low-grade inflammation in association with gut microbiota regulation and their metabolic products, thus inducing beneficial responses on metabolic disorders in high-fat diet-fed mice.

18.
Reprod Toxicol ; 98: 82-91, 2020 12.
Article de Anglais | MEDLINE | ID: mdl-32916274

RÉSUMÉ

Bacterial infection alters placental ABC transporters expression. These transporters provide fetal protection against circulating xenobiotics and environmental toxins present in maternal blood. We hypothesized that lipopolysaccharide (LPS-bacterial mimic) alters the yolk sac morphology and expression of key ABC transporters in a gestational-age dependent manner. Yolk sac samples from C57BL/6 mice were obtained at gestational ages (GD) 15.5 and GD18.5, 4 or 24 h after LPS exposure (150ug/kg; n = 8/group). Samples underwent morphometrical, qPCR and immunohistochemistry analysis. The volumetric proportions of the histological components of the yolk sac did not change in response to LPS. LPS increased Abcg2 expression at GD15.5, after 4 h of treatment (p < 0.05). No changes in Abca1, Abcb1a/b, Abcg1, Glut1, Snat1, Il-1ß, Ccl2 and Mif were observed. Il-6 and Cxcl1 were undetectable in the yolk sac throughout pregnancy. Abca1, breast cancer resistance protein (Bcrp, encoded by Abcg2) and P-glycoprotein (P-gp/ Abcb1a/b) were localized in the endodermal (uterine-facing) epithelium and to a lesser extent in the mesothelium (amnion-facing), whereas Abca1 was also localized to the endothelium of the yolk sac blood vessels. LPS increased the labeling area and intensity of Bcrp in the yolk sac's mesothelial cells at GD15.5 (4 h), whereas at GD18.5, the area of Bcrp labeling in the mesothelium (4 and 24 h) was decreased (p < 0.05). Bacterial infection has the potential to change yolk sac barrier function by affecting Bcrp and Abcg2 expression in a gestational-age dependent-manner. These changes may alter fetal exposure to xenobiotics and toxic substances present in the maternal circulation and in the uterine cavity.


Sujet(s)
Membre-2 de la sous-famille G des transporteurs à cassette liant l'ATP/génétique , Lipopolysaccharides/pharmacologie , Vésicule vitelline/effets des médicaments et des substances chimiques , Animaux , Femelle , Âge gestationnel , Souris de lignée C57BL , Grossesse , Vésicule vitelline/métabolisme
19.
Mol Nutr Food Res ; 64(17): e2000532, 2020 09.
Article de Anglais | MEDLINE | ID: mdl-32729948

RÉSUMÉ

SCOPE: Soy protein is a high-quality protein and its consumption has been associated with a reduction of serum cholesterol and triglycerides and an improvement in insulin resistance. However, it is not known whether the effects of soy protein are mediated by the gut microbiota. Thus, the aim of this study is to assess whether using antibiotics to partially eradicate the gut microbiota can prevent the beneficial effects of soy protein in rats. METHODS AND RESULTS: Thus, rats are fed one of the following diets for 16 weeks: casein control, soy protein control, high-fat casein, and high-fat soy protein. The rats are then treated for 4 weeks with antibiotics. Body weight and composition, energy expenditure, glucose tolerance test, metabolic endotoxemia, and gut microbiota are measured before and after treatment with antibiotic. The results show that soy protein consumption decreases weight gain, body fat, metabolic endotoxemia, and increases energy expenditure and glucose tolerance. Antibiotic treatment suppresses all these metabolic effects. These changes are accompanied by modifying the diversity and taxonomy of the gut microbiota. CONCLUSION: In conclusion, the evidence suggests that the health benefits of soy protein are partly dependent of the gut microbiota.


Sujet(s)
Antibactériens/pharmacologie , Microbiome gastro-intestinal/effets des médicaments et des substances chimiques , Protéines de soja/pharmacologie , Tissu adipeux/effets des médicaments et des substances chimiques , Ampicilline/effets indésirables , Ampicilline/pharmacologie , Animaux , Antibactériens/effets indésirables , Marqueurs biologiques/métabolisme , Composition corporelle/effets des médicaments et des substances chimiques , Caséines/pharmacologie , Alimentation riche en graisse/effets indésirables , Endotoxémie/induit chimiquement , Métabolisme énergétique/effets des médicaments et des substances chimiques , Acides gras volatils/métabolisme , Microbiome gastro-intestinal/physiologie , Inflammation/génétique , Inflammation/métabolisme , Mâle , Néomycine/effets indésirables , Néomycine/pharmacologie , Rat Wistar , Prise de poids/effets des médicaments et des substances chimiques
20.
Nutrition ; 73: 110727, 2020 05.
Article de Anglais | MEDLINE | ID: mdl-32179403

RÉSUMÉ

OBJECTIVE: The aim of this study was to investigate the protective effects of probiotics and fecal transplantation on inflammatory and oxidative parameters in the intestines of two rat models of sepsis. METHODS: Rats were treated with prebiotics, probiotics, or symbiotics and exposed to lipopolysaccharide (LPS) or zymosan after 15 d to induce endotoxemia. Oxidative damage and inflammation were analyzed, and histologic examination of the intestinal tissue was performed. Fecal microbiota transplantation (FMT) was carried out in LPS- and zymosan-induced rat models of sepsis. RESULTS: Supplementation with symbiotics for 15 d effectively reduced the inflammatory parameters compared with supplementation for 7 d. Probiotics, prebiotics, and symbiotics exerted different effects on the evaluated parameters. In general, Lactobacillus rhamnosus and L. casei exerted better local protective effects. Evaluation of the role of the intestinal microbiota through FMT revealed its protective effects irrespective of the previous treatment with probiotics. CONCLUSION: Probiotic strains significantly differ among themselves and exert different effects on the host's health. Symbiotics and FMT could offer additional immunomodulatory benefits to drug therapy, thus serving as a new therapeutic alternative in pediatric patients with sepsis.


Sujet(s)
Microbiome gastro-intestinal , Probiotiques , Sepsie , Animaux , Enfant , Transplantation de microbiote fécal , Humains , Prébiotiques , Rats , Sepsie/thérapie
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE