Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 24
Filtrer
1.
Sci Rep ; 14(1): 15684, 2024 07 08.
Article de Anglais | MEDLINE | ID: mdl-38977919

RÉSUMÉ

The global spread of COVID-19 has profoundly affected health and economies, highlighting the need for precise epidemic trend predictions for effective interventions. In this study, we used infectious disease models to simulate and predict the trajectory of COVID-19. An SEIR (susceptible, exposed, infected, removed) model was established using Wuhan data to reflect the pandemic. We then trained a genetic algorithm-based SEIR (GA-SEIR) model using data from a specific U.S. region and focused on individual susceptibility and infection dynamics. By integrating socio-psychological factors, we achieved a significant enhancement to the GA-SEIR model, leading to the development of an optimized version. This refined GA-SEIR model significantly improved our ability to simulate the spread and control of the epidemic and to effectively track trends. Remarkably, it successfully predicted the resurgence of COVID-19 in mainland China in April 2023, demonstrating its robustness and reliability. The refined GA-SEIR model provides crucial insights for public health authorities, enabling them to design and implement proactive strategies for outbreak containment and mitigation. Its substantial contributions to epidemic modelling and public health planning are invaluable, particularly in managing and controlling respiratory infectious diseases such as COVID-19.


Sujet(s)
Algorithmes , COVID-19 , COVID-19/épidémiologie , COVID-19/virologie , COVID-19/psychologie , Humains , Chine/épidémiologie , SARS-CoV-2 , Pandémies , États-Unis/épidémiologie
2.
Entropy (Basel) ; 26(4)2024 Mar 25.
Article de Anglais | MEDLINE | ID: mdl-38667832

RÉSUMÉ

Accurate epidemic forecasting plays a vital role for governments to develop effective prevention measures for suppressing epidemics. Most of the present spatio-temporal models cannot provide a general framework for stable and accurate forecasting of epidemics with diverse evolutionary trends. Incorporating epidemiological domain knowledge ranging from single-patch to multi-patch into neural networks is expected to improve forecasting accuracy. However, relying solely on single-patch knowledge neglects inter-patch interactions, while constructing multi-patch knowledge is challenging without population mobility data. To address the aforementioned problems, we propose a novel hybrid model called metapopulation-based spatio-temporal attention network (MPSTAN). This model aims to improve the accuracy of epidemic forecasting by incorporating multi-patch epidemiological knowledge into a spatio-temporal model and adaptively defining inter-patch interactions. Moreover, we incorporate inter-patch epidemiological knowledge into both model construction and the loss function to help the model learn epidemic transmission dynamics. Extensive experiments conducted on two representative datasets with different epidemiological evolution trends demonstrate that our proposed model outperforms the baselines and provides more accurate and stable short- and long-term forecasting. We confirm the effectiveness of domain knowledge in the learning model and investigate the impact of different ways of integrating domain knowledge on forecasting. We observe that using domain knowledge in both model construction and the loss function leads to more efficient forecasting, and selecting appropriate domain knowledge can improve accuracy further.

3.
J Infect Dis ; 229(1): 10-18, 2024 Jan 12.
Article de Anglais | MEDLINE | ID: mdl-37988167

RÉSUMÉ

We developed mathematical models to analyze a large dengue virus (DENV) epidemic in Reunion Island in 2018-2019. Our models captured major drivers of uncertainty including the complex relationship between climate and DENV transmission, temperature trends, and underreporting. Early assessment correctly concluded that persistence of DENV transmission during the austral winter 2018 was likely and that the second epidemic wave would be larger than the first one. From November 2018, the detection probability was estimated at 10%-20% and, for this range of values, our projections were found to be remarkably accurate. Overall, we estimated that 8% and 18% of the population were infected during the first and second wave, respectively. Out of the 3 models considered, the best-fitting one was calibrated to laboratory entomological data, and accounted for temperature but not precipitation. This study showcases the contribution of modeling to strengthen risk assessments and planning of national and local authorities.


Sujet(s)
Aedes , Virus de la dengue , Dengue , Épidémies , Animaux , Humains , Réunion/épidémiologie , Temps (météorologie)
4.
Int J Gen Med ; 16: 4705-4718, 2023.
Article de Anglais | MEDLINE | ID: mdl-37872963

RÉSUMÉ

Introduction: Epidemiological modelling of infectious diseases plays an important role in driving public health policy. Commonly used models are described, including those based on exponential growth (Laplace and related distributions); susceptible-infected-removed; the Gompertz distribution; and the skew-reflected-Gompertz distribution. These are all sensitive to the timing of peak infection. The development of a novel method for forecasting the number of deaths occurring during epidemics of infectious diseases is described. Methods: The mathematical development of the authors' novel asymmetric difference model is detailed in this paper. Its predictions for mortality rates associated with the COVID-19 pandemic for 14 countries were compared with the corresponding published mortality data. Results: Forecasts by the asymmetric difference model of deaths from SARS-CoV-2 in different countries, actual recorded deaths to 30th June 2020, and corresponding errors included UK (42,700; 55,904; -24%); Poland (1490; 1444; +3%); Denmark (580; 605; -4%); Netherlands (6510; 6189; +5%); France (34,280; 29,836; +15%); Canada (1500; 8591; -78%); USA (44,540; 124,734; -64%); and Italy (22,020; 34,980; -37%). The model output was dependent upon forecast date accuracy for the peak of the disease outbreak. For Spain, the forecast date was one day early and for 10 (71%) countries the forecast peak occurred within seven days (inclusive) of the actual date. Discussion: Mortality prediction by the asymmetric difference model is relatively accurate. Furthermore, this new model does not appear to be as unduly sensitive to the timing of peak infection as other models. Indeed, its prediction of peak infection also appears to be relatively accurate.

5.
Nonlinear Dyn ; 111(1): 549-558, 2023.
Article de Anglais | MEDLINE | ID: mdl-36188164

RÉSUMÉ

The long duration of the COVID-19 pandemic allowed for multiple bursts in the infection and death rates, the so-called epidemic waves. This complex behavior is no longer tractable by simple compartmental model and requires more sophisticated mathematical techniques for analyzing epidemic data and generating reliable forecasts. In this work, we propose a framework for analyzing complex dynamical systems by dividing the data in consecutive time-windows to be separately analyzed. We fit parameters for each time-window through an approximate Bayesian computation (ABC) algorithm, and the posterior distribution of parameters obtained for one window is used as the prior distribution for the next window. This Bayesian learning approach is tested with data on COVID-19 cases in multiple countries and is shown to improve ABC performance and to produce good short-term forecasting. Supplementary Information: The online version contains supplementary material available at 10.1007/s11071-022-07865-x.

6.
Soc Netw Anal Min ; 12(1): 116, 2022.
Article de Anglais | MEDLINE | ID: mdl-35996384

RÉSUMÉ

During an epidemic, decision-makers in public health need accurate predictions of the future case numbers, in order to control the spread of new cases and allow efficient resource planning for hospital needs and capacities. In particular, considering that infectious diseases are spread through human-human transmissions, the analysis of spatio-temporal mobility data can play a fundamental role to enable epidemic forecasting. This paper presents the design and implementation of a predictive approach, based on spatial analysis and regressive models, to discover spatio-temporal predictive epidemic patterns from mobility and infection data. The experimental evaluation, performed on mobility and COVID-19 data collected in the city of Chicago, is aimed to assess the effectiveness of the approach in a real-world scenario.

7.
Chaos Solitons Fractals ; 161: 112306, 2022 Aug.
Article de Anglais | MEDLINE | ID: mdl-35765601

RÉSUMÉ

Recent infectious disease outbreaks, such as the COVID-19 pandemic and the Zika epidemic in Brazil, have demonstrated both the importance and difficulty of accurately forecasting novel infectious diseases. When new diseases first emerge, we have little knowledge of the transmission process, the level and duration of immunity to reinfection, or other parameters required to build realistic epidemiological models. Time series forecasts and machine learning, while less reliant on assumptions about the disease, require large amounts of data that are also not available in early stages of an outbreak. In this study, we examine how knowledge of related diseases can help make predictions of new diseases in data-scarce environments using transfer learning. We implement both an empirical and a synthetic approach. Using data from Brazil, we compare how well different machine learning models transfer knowledge between two different dataset pairs: case counts of (i) dengue and Zika, and (ii) influenza and COVID-19. In the synthetic analysis, we generate data with an SIR model using different transmission and recovery rates, and then compare the effectiveness of different transfer learning methods. We find that transfer learning offers the potential to improve predictions, even beyond a model based on data from the target disease, though the appropriate source disease must be chosen carefully. While imperfect, these models offer an additional input for decision makers for pandemic response.

8.
JMIR Public Health Surveill ; 8(6): e35266, 2022 06 16.
Article de Anglais | MEDLINE | ID: mdl-35507921

RÉSUMÉ

BACKGROUND: The SARS-COV-2 virus and its variants pose extraordinary challenges for public health worldwide. Timely and accurate forecasting of the COVID-19 epidemic is key to sustaining interventions and policies and efficient resource allocation. Internet-based data sources have shown great potential to supplement traditional infectious disease surveillance, and the combination of different Internet-based data sources has shown greater power to enhance epidemic forecasting accuracy than using a single Internet-based data source. However, existing methods incorporating multiple Internet-based data sources only used real-time data from these sources as exogenous inputs but did not take all the historical data into account. Moreover, the predictive power of different Internet-based data sources in providing early warning for COVID-19 outbreaks has not been fully explored. OBJECTIVE: The main aim of our study is to explore whether combining real-time and historical data from multiple Internet-based sources could improve the COVID-19 forecasting accuracy over the existing baseline models. A secondary aim is to explore the COVID-19 forecasting timeliness based on different Internet-based data sources. METHODS: We first used core terms and symptom-related keyword-based methods to extract COVID-19-related Internet-based data from December 21, 2019, to February 29, 2020. The Internet-based data we explored included 90,493,912 online news articles, 37,401,900 microblogs, and all the Baidu search query data during that period. We then proposed an autoregressive model with exogenous inputs, incorporating real-time and historical data from multiple Internet-based sources. Our proposed model was compared with baseline models, and all the models were tested during the first wave of COVID-19 epidemics in Hubei province and the rest of mainland China separately. We also used lagged Pearson correlations for COVID-19 forecasting timeliness analysis. RESULTS: Our proposed model achieved the highest accuracy in all 5 accuracy measures, compared with all the baseline models of both Hubei province and the rest of mainland China. In mainland China, except for Hubei, the COVID-19 epidemic forecasting accuracy differences between our proposed model (model i) and all the other baseline models were statistically significant (model 1, t198=-8.722, P<.001; model 2, t198=-5.000, P<.001, model 3, t198=-1.882, P=.06; model 4, t198=-4.644, P<.001; model 5, t198=-4.488, P<.001). In Hubei province, our proposed model's forecasting accuracy improved significantly compared with the baseline model using historical new confirmed COVID-19 case counts only (model 1, t198=-1.732, P=.09). Our results also showed that Internet-based sources could provide a 2- to 6-day earlier warning for COVID-19 outbreaks. CONCLUSIONS: Our approach incorporating real-time and historical data from multiple Internet-based sources could improve forecasting accuracy for epidemics of COVID-19 and its variants, which may help improve public health agencies' interventions and resource allocation in mitigating and controlling new waves of COVID-19 or other relevant epidemics.


Sujet(s)
COVID-19 , Épidémies , Médias sociaux , COVID-19/épidémiologie , Épidémies de maladies , Humains , SARS-CoV-2
9.
Healthc Anal (N Y) ; 2: 100115, 2022 Nov.
Article de Anglais | MEDLINE | ID: mdl-37520620

RÉSUMÉ

Following the outbreak of the coronavirus epidemic in early 2020, municipalities, regional governments and policymakers worldwide had to plan their Non-Pharmaceutical Interventions (NPIs) amidst a scenario of great uncertainty. At this early stage of an epidemic, where no vaccine or medical treatment is in sight, algorithmic prediction can become a powerful tool to inform local policymaking. However, when we replicated one prominent epidemiological model to inform health authorities in a region in the south of Brazil, we found that this model relied too heavily on manually predetermined covariates and was too reactive to changes in data trends. Our four proposed models access data of both daily reported deaths and infections as well as take into account missing data (e.g., the under-reporting of cases) more explicitly, with two of the proposed versions also attempting to model the delay in test reporting. We simulated weekly forecasting of deaths from the period from 31/05/2020 until 31/01/2021, with first week data being used as a cold-start to the algorithm, after which we use a lighter variant of the model for faster forecasting. Because our models are significantly more proactive in identifying trend changes, this has improved forecasting, especially in long-range predictions and after the peak of an infection wave, as they were quicker to adapt to scenarios after these peaks in reported deaths. Assuming reported cases were under-reported greatly benefited the model in its stability, and modelling retroactively-added data (due to the "hot" nature of the data used) had a negligible impact on performance.

10.
ISA Trans ; 124: 182-190, 2022 May.
Article de Anglais | MEDLINE | ID: mdl-33551132

RÉSUMÉ

The coronavirus disease-2019 (COVID-19) has been spreading rapidly in South Africa (SA) since its first case on 5 March 2020. In total, 674,339 confirmed cases and 16,734 mortality cases were reported by 30 September 2020, and this pandemic has made severe impacts on economy and life. In this paper, analysis and long-term prediction of the epidemic dynamics of SA are made, which could assist the government and public in assessing the past Infection Prevention and Control Measures and designing the future ones to contain the epidemic more effectively. A Susceptible-Infectious-Recovered model is adopted to analyse epidemic dynamics. The model parameters are estimated over different phases with the SA data. They indicate variations in the transmissibility of COVID-19 under different phases and thus reveal weakness of the past Infection Prevention and Control Measures in SA. The model also shows that transient behaviours of the daily growth rate and the cumulative removal rate exhibit periodic oscillations. Such dynamics indicates that the underlying signals are not stationary and conventional linear and nonlinear models would fail for long-term prediction. Therefore, a large class of mappings with rich functions and operations is chosen as the model class and the evolutionary algorithm is utilized to obtain the optimal model for long term prediction. The resulting models on the daily growth rate, the cumulative removal rate and the cumulative mortality rate predict that the peak and inflection point will occur on November 4, 2020 and October 15, 2020, respectively; the virus shall cease spreading on April 28, 2021; and the ultimate numbers of the COVID-19 cases and mortality cases will be 785,529 and 17,072, respectively. The approach is also benchmarked against other methods and shows better accuracy of long-term prediction.


Sujet(s)
COVID-19 , COVID-19/épidémiologie , Prévision , Humains , Pandémies , SARS-CoV-2 , République d'Afrique du Sud/épidémiologie
11.
Clin Epidemiol Glob Health ; 12: 100853, 2021.
Article de Anglais | MEDLINE | ID: mdl-34395949

RÉSUMÉ

OBJECTIVE: Mathematical models are known to help determine potential intervention strategies by providing an approximate idea of the transmission dynamics of infectious diseases. To develop proper responses, not only are more accurate disease spread models needed, but also those that are easy to use. MATERIALS AND METHODS: As of July 1, 2020, we selected the 20 countries with the highest numbers of COVID-19 cases in the world. Using the Verhulst-Pearl logistic function formula, we calculated estimates for the total number of cases for each country. We compared these estimates to the actual figures given by the WHO on the same dates. Finally, the formula was tested for longer-term reliability at t = 18 and t = 40 weeks. RESULTS: The Verhulst-Pearl logistic function formula estimated the actual numbers precisely, with only a 0.5% discrepancy on average for the first month. For all countries in the study and the world at large, the estimates for the 40th week were usually overestimated, although the estimates for some countries were still relatively close to the actual numbers in the forecasting long term. The estimated number for the world in general was about 8 times that actually observed for the long term. CONCLUSIONS: The Verhulst-Pearl equation has the advantage of being very straightforward and applicable in clinical use for predicting the demand on hospitals in the short term of 4-6 weeks, which is usually enough time to reschedule elective procedures and free beds for new waves of the pandemic patients.

12.
Nonlinear Dyn ; 106(2): 1509-1523, 2021.
Article de Anglais | MEDLINE | ID: mdl-34376920

RÉSUMÉ

A novel approach to link the environmental stresses with the COVID-19 cases is adopted during this research. The time-dependent data are extracted from the online repositories that are freely available for knowledge and research. Since the time series data analysis is desired for the COVID-19 time-dependent frequent waves, here in this manuscript, we have developed a time series model with the aid of "nonlinear autoregressive network with exogenous inputs (NARX)" approach. The distribution of infectious agent-containing droplets from an infected person to an uninfected person is a common form of respiratory disease transmission. SARS-CoV-2 has mainly spread via short-range respiratory droplet transmission. Airborne transmission of SARS-CoV-2 seems to have occurred over long distances or times in unusual conditions; SARS-CoV-2 RNA was found in PM10 collected in Italy. This research shows that SARS-CoV-2 particles adsorbed to outdoor PM remained viable for a long time, given the epidemiology of COVID-19, outdoor air pollution is unlikely to be a significant route of transmission. In this research, ANN time series is used to analyze the data resulting from the COVID-19 first and second waves and the forecasted results show that air pollution affects people in different areas of Italy and make more people sick with covid-19. The model is developed based on the disease transmission data of Italy.

13.
Health Econ ; 30(11): 2808-2828, 2021 11.
Article de Anglais | MEDLINE | ID: mdl-34428329

RÉSUMÉ

The classic "logistic" model has provided a realistic model of the behaviour of Covid-19 in China and many East Asian countries. Once these countries passed the peak, the daily case count fell back, mirroring its initial climb in a symmetric way, just as the classic model predicts. However, in Italy and Spain and most other Western countries, the first wave of the epidemic was very different. The daily count fell back gradually from the peak but remained stubbornly high. The reason for the divergence from the classical model remain unclear. We take an empirical stance on this issue and develop a model framework based upon the statistical characteristics of the time series. With the possible exception of China, the workhorse logistic model is decisively rejected against more flexible alternatives.


Sujet(s)
COVID-19 , Épidémies , Chine/épidémiologie , Humains , Italie , SARS-CoV-2
14.
J Biomed Inform ; 119: 103818, 2021 07.
Article de Anglais | MEDLINE | ID: mdl-34022420

RÉSUMÉ

OBJECTIVE: Study the impact of local policies on near-future hospitalization and mortality rates. MATERIALS AND METHODS: We introduce a novel risk-stratified SIR-HCD model that introduces new variables to model the dynamics of low-contact (e.g., work from home) and high-contact (e.g., work on-site) subpopulations while sharing parameters to control their respective R0(t) over time. We test our model on data of daily reported hospitalizations and cumulative mortality of COVID-19 in Harris County, Texas, from May 1, 2020, until October 4, 2020, collected from multiple sources (USA FACTS, U.S. Bureau of Labor Statistics, Southeast Texas Regional Advisory Council COVID-19 report, TMC daily news, and Johns Hopkins University county-level mortality reporting). RESULTS: We evaluated our model's forecasting accuracy in Harris County, TX (the most populated county in the Greater Houston area) during Phase-I and Phase-II reopening. Not only does our model outperform other competing models, but it also supports counterfactual analysis to simulate the impact of future policies in a local setting, which is unique among existing approaches. DISCUSSION: Mortality and hospitalization rates are significantly impacted by local quarantine and reopening policies. Existing models do not directly account for the effect of these policies on infection, hospitalization, and death rates in an explicit and explainable manner. Our work is an attempt to improve prediction of these trends by incorporating this information into the model, thus supporting decision-making. CONCLUSION: Our work is a timely effort to attempt to model the dynamics of pandemics under the influence of local policies.


Sujet(s)
COVID-19 , Hospitalisation , Humains , Pandémies , Politique (principe) , SARS-CoV-2 , États-Unis
15.
J Med Internet Res ; 22(8): e15394, 2020 08 05.
Article de Anglais | MEDLINE | ID: mdl-32755888

RÉSUMÉ

BACKGROUND: Changeful seasonal influenza activity in subtropical areas such as Taiwan causes problems in epidemic preparedness. The Taiwan Centers for Disease Control has maintained real-time national influenza surveillance systems since 2004. Except for timely monitoring, epidemic forecasting using the national influenza surveillance data can provide pivotal information for public health response. OBJECTIVE: We aimed to develop predictive models using machine learning to provide real-time influenza-like illness forecasts. METHODS: Using surveillance data of influenza-like illness visits from emergency departments (from the Real-Time Outbreak and Disease Surveillance System), outpatient departments (from the National Health Insurance database), and the records of patients with severe influenza with complications (from the National Notifiable Disease Surveillance System), we developed 4 machine learning models (autoregressive integrated moving average, random forest, support vector regression, and extreme gradient boosting) to produce weekly influenza-like illness predictions for a given week and 3 subsequent weeks. We established a framework of the machine learning models and used an ensemble approach called stacking to integrate these predictions. We trained the models using historical data from 2008-2014. We evaluated their predictive ability during 2015-2017 for each of the 4-week time periods using Pearson correlation, mean absolute percentage error (MAPE), and hit rate of trend prediction. A dashboard website was built to visualize the forecasts, and the results of real-world implementation of this forecasting framework in 2018 were evaluated using the same metrics. RESULTS: All models could accurately predict the timing and magnitudes of the seasonal peaks in the then-current week (nowcast) (ρ=0.802-0.965; MAPE: 5.2%-9.2%; hit rate: 0.577-0.756), 1-week (ρ=0.803-0.918; MAPE: 8.3%-11.8%; hit rate: 0.643-0.747), 2-week (ρ=0.783-0.867; MAPE: 10.1%-15.3%; hit rate: 0.669-0.734), and 3-week forecasts (ρ=0.676-0.801; MAPE: 12.0%-18.9%; hit rate: 0.643-0.786), especially the ensemble model. In real-world implementation in 2018, the forecasting performance was still accurate in nowcasts (ρ=0.875-0.969; MAPE: 5.3%-8.0%; hit rate: 0.582-0.782) and remained satisfactory in 3-week forecasts (ρ=0.721-0.908; MAPE: 7.6%-13.5%; hit rate: 0.596-0.904). CONCLUSIONS: This machine learning and ensemble approach can make accurate, real-time influenza-like illness forecasts for a 4-week period, and thus, facilitate decision making.


Sujet(s)
Épidémies de maladies/statistiques et données numériques , Grippe humaine/épidémiologie , Apprentissage machine/normes , Prévision , Humains , Taïwan
16.
Article de Anglais | MEDLINE | ID: mdl-32429517

RÉSUMÉ

This paper investigates whether the Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2) pandemic could have been favored by specific weather conditions and other factors. It is found that the 2020 winter weather in the region of Wuhan (Hubei, Central China)-where the virus first broke out in December and spread widely from January to February 2020-was strikingly similar to that of the Northern Italian provinces of Milan, Brescia and Bergamo, where the pandemic broke out from February to March. The statistical analysis was extended to cover the United States of America, which overtook Italy and China as the country with the highest number of confirmed COronaVIrus Disease 19 (COVID-19) cases, and then to the entire world. The found correlation patterns suggest that the COVID-19 lethality significantly worsens (4 times on average) under weather temperatures between 4 ∘ C and 12 ∘ C and relative humidity between 60% and 80%. Possible co-factors such as median population age and air pollution were also investigated suggesting an important influence of the former but not of the latter, at least, on a synoptic scale. Based on these results, specific isotherm world maps were generated to locate, month by month, the world regions that share similar temperature ranges. From February to March, the 4-12 ∘ C isotherm zone extended mostly from Central China toward Iran, Turkey, West-Mediterranean Europe (Italy, Spain and France) up to the United State of America, optimally coinciding with the geographic regions most affected by the pandemic from February to March. It is predicted that in the spring, as the weather gets warm, the pandemic will likely worsen in northern regions (United Kingdom, Germany, East Europe, Russia and North America) while the situation will likely improve in the southern regions (Italy and Spain). However, in autumn, the pandemic could come back and affect the same regions again. The Tropical Zone and the entire Southern Hemisphere, but in restricted colder southern regions, could avoid a strong pandemic because of the sufficiently warm weather during the entire year and because of the lower median age of their population. Google-Earth-Pro interactive-maps covering the entire world are provided as supplementary files.


Sujet(s)
Climat , Infections à coronavirus/épidémiologie , Pneumopathie virale/épidémiologie , Saisons , Facteurs âges , Betacoronavirus , COVID-19 , Infections à coronavirus/mortalité , Humains , Pandémies , Pneumopathie virale/mortalité , SARS-CoV-2
17.
Zhonghua Liu Xing Bing Xue Za Zhi ; 41(4): 470-475, 2020 Apr 10.
Article de Chinois | MEDLINE | ID: mdl-32113198

RÉSUMÉ

Objectives: Fitting and forecasting the trend of COVID-19 epidemics. Methods: Based on SEIR dynamic model, considering the COVID-19 transmission mechanism, infection spectrum and prevention and control procedures, we developed SEIR(+CAQ) dynamic model to fit the frequencies of laboratory confirmed cases obtained from the government official websites. The data from January 20, 2020 to February 7, 2020 were used to fit the model, while the left data between February 8-12 were used to evaluate the quality of forecasting. Results: According to the cumulative number of confirmed cases between January 29 to February 7, the fitting bias of SEIR(+CAQ) model for overall China (except for cases of Hubei province), Hubei province (except for cases of Wuhan city) and Wuhan city was less than 5%. For the data of subsequent 5 days between February 8 to 12, which were not included in the model fitting, the prediction biases were less than 10%. Regardless of the cases diagnosed by clinical examines, the numbers of daily emerging cases of China (Hubei province not included), Hubei Province (Wuhan city not included) and Wuhan city reached the peak in the early February. Under the current strength of prevention and control, the total number of laboratory-confirmed cases in overall China will reach 80 417 till February 29, 2020, respectively. Conclusions: The proposed SEIR(+CAQ) dynamic model fits and forecasts the trend of novel coronavirus pneumonia well and provides evidence for decision making.


Sujet(s)
Infections à coronavirus/épidémiologie , Infections à coronavirus/prévention et contrôle , Prévision , Modèles statistiques , Pandémies/prévention et contrôle , Pneumopathie virale/épidémiologie , Pneumopathie virale/prévention et contrôle , Betacoronavirus , COVID-19 , Chine/épidémiologie , Humains , SARS-CoV-2
18.
Chinese Journal of Epidemiology ; (12): 470-475, 2020.
Article de Chinois | WPRIM (Pacifique Occidental) | ID: wpr-811646

RÉSUMÉ

Objectives@#Fitting and forecasting the trend of COVID-19 epidemics.@*Methods@#Based on SEIR dynamic model, considering the COVID-19 transmission mechanism, infection spectrum and prevention and control procedures, we developed SEIR+ CAQ dynamic model to fit the frequencies of laboratory confirmed cases obtained from the government official websites. The data from January 20, 2020 to February 7, 2020 were used to fit the model, while the left data between February 8-12 were used to evaluate the quality of forecasting.@*Results@#According to the cumulative number of confirmed cases between January 29 to February 7, the fitting bias of SEIR+ CAQ model for overall China (except for cases of Hubei province), Hubei province (except for cases of Wuhan city) and Wuhan city was less than 5%. For the data of subsequent 5 days between February 8 to 12, which were not included in the model fitting, the prediction biases were less than 10%. Regardless of the cases diagnosed by clinical examines, the numbers of daily emerging cases of China (Hubei province not included), Hubei Province (Wuhan city not included) and Wuhan city reached the peak in the early February. Under the current strength of prevention and control, the total number of laboratory- confirmed cases in overall China will reach 80 417 till February 29, 2020, respectively.@*Conclusions@#The proposed SEIR+ CAQ dynamic model fits and forecasts the trend of novel coronavirus pneumonia well and provides evidence for decision making.

19.
Front Public Health ; 8: 575145, 2020.
Article de Anglais | MEDLINE | ID: mdl-33553085

RÉSUMÉ

Background: This study aims to estimate the total number of infected people, evaluate the effects of NPIs on the healthcare system, and predict the expected number of cases, deaths, hospitalizations due to COVID-19 in Turkey. Methods: This study was carried out according to three dimensions. In the first, the actual number of infected people was estimated. In the second, the expected total numbers of infected people, deaths, hospitalizations have been predicted in the case of no intervention. In the third, the distribution of the expected number of infected people and deaths, and ICU and non-ICU bed needs over time has been predicted via a SEIR-based simulator (TURKSAS) in four scenarios. Results: According to the number of deaths, the estimated number of infected people in Turkey on March 21 was 123,030. In the case of no intervention the expected number of infected people is 72,091,595 and deaths is 445,956, the attack rate is 88.1%, and the mortality ratio is 0.54%. The ICU bed capacity in Turkey is expected to be exceeded by 4.4-fold and non-ICU bed capacity by 3.21-fold. In the second and third scenarios compliance with NPIs makes a difference of 94,303 expected deaths. In both scenarios, the predicted peak value of occupied ICU and non-ICU beds remains below Turkey's capacity. Discussion: Predictions show that around 16 million people can be prevented from being infected and 94,000 deaths can be prevented by full compliance with the measures taken. Modeling epidemics and establishing decision support systems is an important requirement.


Sujet(s)
COVID-19/épidémiologie , Prévision , Besoins et demandes de services de santé , Hospitalisation , Modèles théoriques , Algorithmes , Humains , Unités de soins intensifs , SARS-CoV-2 , Turquie/épidémiologie
20.
Epidemics ; 29: 100371, 2019 12.
Article de Anglais | MEDLINE | ID: mdl-31784341

RÉSUMÉ

Epidemiological models are routinely used to predict the effects of interventions aimed at reducing the impacts of Ebola epidemics. Most models of interventions targeting symptomatic hosts, such as isolation or treatment, assume that all symptomatic hosts are equally likely to be detected. In other words, following an incubation period, the level of symptoms displayed by an individual host is assumed to remain constant throughout an infection. In reality, however, symptoms vary between different stages of infection. During an Ebola infection, individuals progress from initial non-specific symptoms through to more severe phases of infection. Here we compare predictions of a model in which a constant symptoms level is assumed to those generated by a more epidemiologically realistic model that accounts for varying symptoms during infection. Both models can reproduce observed epidemic data, as we show by fitting the models to data from the ongoing epidemic in the Democratic Republic of the Congo and the 2014-16 epidemic in Liberia. However, for both of these epidemics, when interventions are altered identically in the models with and without levels of symptoms that depend on the time since first infection, predictions from the models differ. Our work highlights the need to consider whether or not varying symptoms should be accounted for in models used by decision makers to assess the likely efficacy of Ebola interventions.


Sujet(s)
Épidémies , Fièvre hémorragique à virus Ebola/complications , Fièvre hémorragique à virus Ebola/prévention et contrôle , République démocratique du Congo/épidémiologie , Prévision , Fièvre hémorragique à virus Ebola/épidémiologie , Humains , Liberia/épidémiologie , Évaluation des symptômes
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE