Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 1.408
Filtrer
2.
Front Oncol ; 14: 1412716, 2024.
Article de Anglais | MEDLINE | ID: mdl-39148905

RÉSUMÉ

Background: Radiotherapy (RT) can be used to reduce symptoms and maintain open airways for patients with non-small cell lung cancer when systemic treatment is not sufficient. For some patients, tumor control is not achieved due to radioresistance. Concurrent inhibition of epidermal growth factor receptors has been proposed as a strategy to overcome radioresistance but may increase toxicity. We performed a randomized trial to assess the efficacy, tolerance, and quality of life of concurrent erlotinib and palliative thoracic RT for patients with advanced non-small cell lung cancer. Methods: Patients were randomized 1:1 to RT alone (arm A) or in combination with erlotinib (arm B). A computed tomography (CT) scan at baseline and one at 4-12 weeks after inclusion was used to evaluate treatment response. Adverse events were registered during treatment and the subsequent 30 days. Health-related quality-of-life questionnaires were completed by the patients at baseline, weeks 2, 6, and 20. Results: A total of 114 patients were included. Of the 74 patients with CT scans available for evaluation of treatment effect, there were no significant differences in tumor size reduction between the two groups: median 14.5% reduction in the control arm A and 17.0% in the erlotinib arm B (p = 0.68). Overall survival was not significantly different between the two treatment arms: 7.0 and 7.8 months in arm A and arm B, respectively (log-rank p = 0.32). There was no significant increase in adverse events in the experimental arm, other than what is expected from erlotinib treatment alone. Overall, patients reported similar quality of life in both treatment arms. Conclusion: Concurrent erlotinib and palliative thoracic RT for patients with advanced non-small cell lung cancer was well tolerated but did not improve the efficacy of the RT. Clinical trial registration: ClinicalTrials.gov, identifier NCT02714530.

3.
Future Med Chem ; 16(13): 1313-1331, 2024 Jul 02.
Article de Anglais | MEDLINE | ID: mdl-39109434

RÉSUMÉ

Aim: The main goal was to create two new groups of indole derivatives, hydrazine-1-carbothioamide (4a and 4b) and oxadiazole (5, and 6a-e) that target EGFR (4a, 4b, 5) or VEGFR-2 (6a-e). Materials & methods: The new derivatives were characterized using various spectroscopic techniques. Docking studies were used to investigate the binding patterns to EGFR/VEGFR-2, and the anti-proliferative properties were tested in vitro. Results: Compounds 4a (targeting EGFR) and 6c (targeting VEGFR-2) were the most effective cytotoxic agents, arresting cancer cells in the G2/M phase and inducing the extrinsic apoptosis pathway. Conclusion: The results of this study show that compounds 4a and 6c are promising cytotoxic compounds that inhibit the tyrosine kinase activity of EGFR and VEGFR-2, respectively.


[Box: see text].


Sujet(s)
Antinéoplasiques , Prolifération cellulaire , Récepteurs ErbB , Indoles , Récepteur-2 au facteur croissance endothéliale vasculaire , Humains , Antinéoplasiques/composition chimique , Antinéoplasiques/pharmacologie , Apoptose/effets des médicaments et des substances chimiques , Lignée cellulaire tumorale , Prolifération cellulaire/effets des médicaments et des substances chimiques , Tests de criblage d'agents antitumoraux , Récepteurs ErbB/antagonistes et inhibiteurs , Récepteurs ErbB/métabolisme , Indoles/composition chimique , Indoles/pharmacologie , Simulation de docking moléculaire , Structure moléculaire , Relation structure-activité , /pharmacologie , Récepteur-2 au facteur croissance endothéliale vasculaire/antagonistes et inhibiteurs , Récepteur-2 au facteur croissance endothéliale vasculaire/métabolisme
4.
Int J Pharm ; : 124588, 2024 Aug 15.
Article de Anglais | MEDLINE | ID: mdl-39153644

RÉSUMÉ

This study investigates the biodistribution of a nano lipid carrier system (NLCs) containing the hydrophobic drug erlotinib (ERL-NLCs). The system was labelled with the fluorescent dye IR-780 for real-time dynamic imaging. ERL-NLCs were initially developed using the ultrasonication method with oleic acid and stearic acid. In vitro and ex vivo studies were performed to confirm the formation and penetration of NLCs within the intestine. Subsequently, the biological distribution of ERL-NLCs was monitored using a fluorescent dye through the IVIS® fluorescent optical imaging technique in whole live animals. Mice were orally administered blank IR 780 dye solution, ERL suspension, and IR 780 labelled NLCs. Fluorescence images were acquired at different time intervals up to 24 h and then total radiant efficiency was calculated through the region of interest (ROI) of the whole animal at each interval of time for all three groups. To validate the results obtained from in vivo imaging, various organs including lungs, heart, liver, both kidneys, stomach, and intestine were subsequently extracted and examined after 24 h. The ROI was found to be higher in the blank IR 780 dye solution, followed by the drug suspension and IR 780 labelled NLCs. These results confirm that the plain ERL suspension distributes across the body, and its encapsulation in NLCs facilitates passage through the lymphatic intestinal pathway, effectively avoiding first-pass metabolism. The remarkable results indicated that the NLCs formulation effectively circumvents first-pass metabolism by adopting the intestinal lymphatic pathway, thereby enhancing the oral bioavailability of the drug. This observed behaviour underscores the potential of NLCs in optimizing drug delivery and minimizing adverse effects associated with gastrointestinal and metabolic processes.

5.
Gastro Hep Adv ; 3(3): 426-439, 2024.
Article de Anglais | MEDLINE | ID: mdl-39131140

RÉSUMÉ

Background and Aims: Effective approaches for prevention of hepatocellular carcinoma (HCC) will have a significant impact on HCC-related mortality. There are strong preclinical data and rationale to support targeting epidermal growth factor receptor (EGFR) for HCC chemoprevention. Small molecule inhibitors of EGFR have been Food and Drug Administration-approved for cancer therapy, which provides an opportunity to repurpose one of these drugs for chemoprevention of HCC. Unfortunately, the frequency of side effects associated with administration of these drugs at oncology doses renders them ineffective for chemoprevention. This clinical trial assesses whether lower doses of one of these inhibitors, erlotinib, still engages EGFR in the liver to block signaling (eg, EGFR phosphorylation). The objective of this clinical trial was determination of a safe and minimum effective dose of erlorinib for which ≥ 50% reduction phospho-EGFR immunohistochemical staining in the liver was observed. Methods: Forty six participants were preregistered and 25 participants were registered in this multicenter trial. By dose de-escalation trial design, cohorts of participants received a 7-day course of erlotinib 75 mg/day, 50 mg/day or 25 mg/day with liver tissue acquisition prior to and after erlotinib. Results: A ≥50% reduction phospho-EGFR immunohistochemical staining in the liver was observed in a minimum of 40% of participants (predetermined threshhold) at each of the dose levels. Erlotinib was very well tolerated with few side effects observed, particularly at the dose of 25 mg/day. Favorable modulation of the Prognostic Liver Signature was observed in participants who received erlotinib. Conclusion: These data support the selection of erlotinib doses as low as 25 mg/day of for a longer intervention to assess for evidence of efficacy as an HCC chemoprevention drug (ClinicalTrials.govNCT02273362).

6.
Pharmaceutics ; 16(7)2024 Jul 11.
Article de Anglais | MEDLINE | ID: mdl-39065626

RÉSUMÉ

This study explored the combined administration of docetaxel (DOC) and erlotinib (ERL) using nanostructured lipid carriers (NLCs), with folic acid (FA) conjugation to enhance their synergistic anticancer efficacy against triple-negative breast cancer. NLCs were developed through hot melt homogenization-ultrasound dispersion, and optimized by a quality-by-design (QbD) approach using Plackett-Burman design and Box-Behnken design. Plots were generated based on maximum desirability. Spherical, nanosized dispersions (<200 nm) with zeta potential ranging from -16.4 to -14.15 mV were observed. These nanoformulations demonstrated ~95% entrapment efficiency with around 5% drug loading. Stability tests revealed that the NLCs remained stable for 6 months under storage conditions at 4 °C. In vitro release studies indicated sustained release over 24 h, following Higuchi and Korsmeyer-Peppas models for NLCs and FA NLCs, respectively. Additionally, an in vitro pH-stat lipolysis model exhibited a nearly fivefold increase in bioaccessibility compared to drug-loaded suspensions. The DOC-ERL-loaded formulations exhibited dose- and time-dependent cytotoxicity, revealing synergism at a 1:3 molar ratio in MDA-MB-231 and 4T1 cells, with combination indices of 0.35 and 0.37, respectively. Co-treatment with DOC-ERL-loaded FA NLCs demonstrated synergistic anticancer effects in various in vitro assays.

7.
Biochem Biophys Res Commun ; 731: 150395, 2024 Jul 14.
Article de Anglais | MEDLINE | ID: mdl-39024976

RÉSUMÉ

Treatment of non-small-cell lung cancer (NSCLC) patients possessing EGFR-activating mutations with tyrosine kinase inhibitors (TKIs) can confer an initial promising response. However, TKI resistance inevitably arises. Numerous TKI resistance mechanisms are identified including EGFR secondary mutations, bypass receptor tyrosine kinase (RTK) signaling, and cellular transition e.g. epithelial-mesenchymal transition (EMT). To increase the knowledge of TKI resistance we performed an epigenetic screen to identify small non-coding (nc) genes with DNA methylation alterations in HCC827 NSCLC EGFR-mutated cells with acquired TKI resistance. We analyzed Infinium Methylation EPIC 850K Array data for DNA methylation changes present in both TKI-resistant HCC827 cells with EMT and MET-amplification. Hereby, we identified that the polymorphic maternal imprinted gene nc886 (vtRNA2-1) has a decrease in promoter DNA methylation in TKI-resistant cells. This epigenetic change was associated with an increase in the expression of nc886. The induction of EMT did not affect nc886 expression. CRISPR/Cas9-mediated distortion of the nc886 sequence increased the sensitivity of HCC827 cells towards TKI. Finally, nc886 sequence distortion hindered MET RTK activation and instead was EMT the endpoint TKI resistance mechanism. In conclusion, the expression of nc886 contributes to TKI resistance in the HCC827 NSCLC cell line by supporting cell survival and selection of the endpoint TKI resistance mechanism. We propose DNA methylation and expression changes for nc886 to constitute a novel TKI resistance contributing mechanism in NSCLC.

8.
Int J Mol Sci ; 25(13)2024 Jul 06.
Article de Anglais | MEDLINE | ID: mdl-39000534

RÉSUMÉ

In the frame of our diversity-oriented research on multitarget small molecule anticancer agents, utilizing convergent synthetic sequences terminated by Sonogashira coupling reactions, a preliminary selection of representative alkyne-tethered vindoline hybrids was synthesized. The novel hybrids with additional pharmacophoric fragments of well-documented anticancer agents, including FDA-approved tyrosine-kinase inhibitors (imatinib and erlotinib) or ferrocene or chalcone units, were evaluated for their antiproliferative activity on malignant cell lines MDA-MB-231 (triple negative breast cancer), A2780 (ovarian cancer), HeLa (human cervical cancer), and SH-SY5Y (neuroblastoma) as well as on human embryonal lung fibroblast cell line MRC-5, which served as a reference non-malignant cell line for the assessment of the therapeutic window of the tested hybrids. The biological assays identified a trimethoxyphenyl-containing chalcone-vindoline hybrid (36) as a promising lead compound exhibiting submicromolar activity on A2780 cells with a marked therapeutic window.


Sujet(s)
Alcynes , Antinéoplasiques , Prolifération cellulaire , Vinblastine , Humains , Prolifération cellulaire/effets des médicaments et des substances chimiques , Antinéoplasiques/pharmacologie , Antinéoplasiques/synthèse chimique , Antinéoplasiques/composition chimique , Alcynes/composition chimique , Alcynes/pharmacologie , Lignée cellulaire tumorale , Vinblastine/pharmacologie , Vinblastine/analogues et dérivés , Vinblastine/composition chimique , Vinblastine/synthèse chimique , Tests de criblage d'agents antitumoraux , Cellules HeLa , Relation structure-activité
9.
Drug Dev Res ; 85(5): e22231, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-38956926

RÉSUMÉ

The close association between inflammation and cancer inspired the synthesis of a series of 1,3,4-oxadiazole derivatives (compounds H4-A-F) of 6-methoxynaphtalene. The chemical structures of the new compounds were validated utilizing Fourier-transform infrared, proton nuclear magnetic resonance, and carbon-13 nuclear magnetic resonance spectroscopic techniques and CHN analysis. Computer-aided drug design methods were used to predict the compounds biological target, ADMET properties, toxicity, and to evaluate the molecular similarities between the design compounds and erlotinib, a standard epidermal growth factor receptor (EGFR) inhibitor. The antiproliferative effects of the new compounds were evaluated by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assay, cell cycle analysis, apoptosis detection by microscopy, quantitative reverse transcription-polymerase chain reaction, and immunoblotting, and EGFR enzyme inhibition assay. In silico analysis of the new oxadiazole derivatives indicated that these compounds target EGFR, and that compounds H4-A, H4-B, H4-C, and H4-E show similar molecular properties to erlotinib. Additionally, the results indicated that none of the synthesized compounds are carcinogenic, and that compounds H4-A, H4-C, and H4-F are nontoxic. Compound H4-A showed the best-fit score against EGFR pharmacophore model, however, the in vitro studies indicated that compound H4-C was the most cytotoxic. Compound H4-C caused cytotoxicity in HCT-116 colorectal cancer cells by inducing both apoptosis and necrosis. Furthermore, compounds H4-D, H4-C, and H4-B had potent inhibitory effect on EGFR tyrosine kinase that was comparable to erlotinib. The findings of this inquiry offer a basis for further investigation into the differences between the synthesized compounds and erlotinib. However, additional testing will be needed to assess all of these differences and to identify the most promising compound for further research.


Sujet(s)
Antinéoplasiques , Récepteurs ErbB , Simulation de docking moléculaire , Naproxène , Oxadiazoles , Récepteurs ErbB/antagonistes et inhibiteurs , Humains , Oxadiazoles/pharmacologie , Oxadiazoles/composition chimique , Oxadiazoles/synthèse chimique , Naproxène/pharmacologie , Naproxène/analogues et dérivés , Naproxène/composition chimique , Naproxène/synthèse chimique , Antinéoplasiques/pharmacologie , Antinéoplasiques/composition chimique , Antinéoplasiques/synthèse chimique , Lignée cellulaire tumorale , Apoptose/effets des médicaments et des substances chimiques , Chlorhydrate d'erlotinib/pharmacologie , Chlorhydrate d'erlotinib/composition chimique , Inhibiteurs de protéines kinases/pharmacologie , Inhibiteurs de protéines kinases/composition chimique , Inhibiteurs de protéines kinases/synthèse chimique , Prolifération cellulaire/effets des médicaments et des substances chimiques
10.
JMIR Res Protoc ; 13: e51381, 2024 Jul 02.
Article de Anglais | MEDLINE | ID: mdl-38954434

RÉSUMÉ

BACKGROUND: Starting in 2010, the epidermal growth factor receptor (EGFR) kinase inhibitors erlotinib and gefitinib were introduced into routine use in Aotearoa New Zealand (NZ) for treating advanced lung cancer, but their impact in this setting is unknown. OBJECTIVE: The study described in this protocol aims to understand the effectiveness and safety of these new personalized lung cancer treatments and the contributions made by concomitant medicines and other factors to adverse outcomes in the general NZ patient population. A substudy aimed to validate national electronic health databases as the data source and the methods for determining patient eligibility and identifying outcomes and variables. METHODS: This study will include all NZ patients with advanced EGFR mutation-positive lung cancer who were first dispensed erlotinib or gefitinib before October 1, 2020, and followed until death or for at least 1 year. Routinely collected health administrative and clinical data will be collated from national electronic cancer registration, hospital discharge, mortality registration, and pharmaceutical dispensing databases by deterministic data linkage using National Health Index numbers. The primary effectiveness and safety outcomes will be time to treatment discontinuation and serious adverse events, respectively. The primary variable will be high-risk concomitant medicines use with erlotinib or gefitinib. For the validation substudy (n=100), data from clinical records were compared to those from national electronic health databases and analyzed by agreement analysis for categorical data and by paired 2-tailed t tests for numerical data. RESULTS: In the validation substudy, national electronic health databases and clinical records agreed in determining patient eligibility and for identifying serious adverse events, high-risk concomitant medicines use, and other categorical data with overall agreement and κ statistic of >90% and >0.8000, respectively; for example, for the determination of patient eligibility, the comparison of proxy and standard eligibility criteria applied to national electronic health databases and clinical records, respectively, showed overall agreement and κ statistic of 96% and 0.8936, respectively. Dates for estimating time to treatment discontinuation and other numerical variables and outcomes showed small differences, mostly with nonsignificant P values and 95% CIs overlapping with zero difference; for example, for the dates of the first dispensing of erlotinib or gefitinib, national electronic health databases and clinical records differed on average by approximately 4 days with a nonsignificant P value of .33 and 95% CIs overlapping with zero difference. As of May 2024, the main study is ongoing. CONCLUSIONS: A protocol is presented for a national whole-of-patient-population retrospective cohort study designed to describe the safety and effectiveness of erlotinib and gefitinib during their first decade of routine use in NZ for treating EGFR mutation-positive lung cancer. The validation substudy demonstrated the feasibility and validity of using national electronic health databases and the methods for determining patient eligibility and identifying the study outcomes and variables proposed in the study protocol. TRIAL REGISTRATION: Australian New Zealand Clinical Trials Registry ACTRN12615000998549; https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=368928. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/51381.


Sujet(s)
Récepteurs ErbB , Chlorhydrate d'erlotinib , Géfitinib , Tumeurs du poumon , Mutation , Humains , Chlorhydrate d'erlotinib/usage thérapeutique , Chlorhydrate d'erlotinib/effets indésirables , Géfitinib/usage thérapeutique , Tumeurs du poumon/traitement médicamenteux , Tumeurs du poumon/génétique , Tumeurs du poumon/mortalité , Récepteurs ErbB/génétique , Récepteurs ErbB/antagonistes et inhibiteurs , Études rétrospectives , Nouvelle-Zélande , Femelle , Mâle , Inhibiteurs de protéines kinases/usage thérapeutique , Inhibiteurs de protéines kinases/effets indésirables , Antinéoplasiques/usage thérapeutique , Antinéoplasiques/effets indésirables , Études de cohortes , Adulte d'âge moyen , Sujet âgé
11.
Breast Cancer Res Treat ; 207(2): 435-451, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-38958784

RÉSUMÉ

BACKGROUND: Cancer stem cells (CSCs) in triple-negative breast cancer (TNBC) are recognized as a highly challenging subset of cells, renowned for their heightened propensity for relapse and unfavorable prognosis. Monensin, an ionophoric antibiotic, has been reported to exhibit significant therapeutic efficacy against various cancers, especially CSCs. Erlotinib is classified as one of the EGFR-TKIs and has been previously identified as a promising therapeutic target for TNBC. Our research aims to assess the effectiveness of combination of monensin and erlotinib as a potential treatment strategy for TNBC. METHODS: The combination of monensin and erlotinib was assessed for its potential anticancer activity through various in vitro assays, including cytotoxicity assay, colony formation assay, wound healing assay, transwell assay, mammosphere formation assay, and proportion of CSCs assay. Additionally, an in vivo study using tumor-bearing nude mice was conducted to evaluate the inhibitory effect of the monensin and erlotinib combination on tumor growth. RESULTS: The results indicated that combination of monensin with erlotinib synergistically inhibited cell proliferation, the migration rate, the invasion ability and decreased the CSCs proportion, and CSC markers SOX2 and CD133 in vivo and in vitro. Furthermore, the primary proteins involved in the signaling pathways of the EGFR/ERK and PI3K/AKT are simultaneously inhibited by the combination treatment of monensin and erlotinib in vivo and in vitro. CONCLUSIONS: The simultaneous inhibition of the EGFR/ERK and PI3K/AKT/mTOR signaling pathways by the combination of monensin and erlotinib exhibited a synergistic effect on suppressing tumor proliferation and cancer cell stemness in TNBC.


Sujet(s)
Prolifération cellulaire , Synergie des médicaments , Récepteurs ErbB , Chlorhydrate d'erlotinib , Monensin , Cellules souches tumorales , Transduction du signal , Tumeurs du sein triple-négatives , Tests d'activité antitumorale sur modèle de xénogreffe , Chlorhydrate d'erlotinib/pharmacologie , Chlorhydrate d'erlotinib/administration et posologie , Tumeurs du sein triple-négatives/traitement médicamenteux , Tumeurs du sein triple-négatives/anatomopathologie , Tumeurs du sein triple-négatives/métabolisme , Humains , Cellules souches tumorales/effets des médicaments et des substances chimiques , Cellules souches tumorales/métabolisme , Animaux , Récepteurs ErbB/métabolisme , Récepteurs ErbB/antagonistes et inhibiteurs , Femelle , Souris , Transduction du signal/effets des médicaments et des substances chimiques , Monensin/pharmacologie , Lignée cellulaire tumorale , Prolifération cellulaire/effets des médicaments et des substances chimiques , Phosphatidylinositol 3-kinases/métabolisme , Mouvement cellulaire/effets des médicaments et des substances chimiques , Protocoles de polychimiothérapie antinéoplasique/pharmacologie , Protocoles de polychimiothérapie antinéoplasique/usage thérapeutique , Souris nude
12.
Intern Med ; 2024 Jul 25.
Article de Anglais | MEDLINE | ID: mdl-39048364

RÉSUMÉ

Epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs) are key drugs for patients with EGFR mutation-positive non-small-cell lung cancer, and osimertinib is the standard treatment. Although drug-induced interstitial lung disease (ILD) is a remarkable adverse event of EGFR-TKIs, evidence regarding the continuation and re-challenge of EGFR-TKIs after drug-induced severe ILD is lacking. This is the first report of successful switching to ramucirumab plus erlotinib after osimertinib-induced severe ILD in an 81-year-old woman with stage IV lung adenocarcinoma harboring the EGFR L858R mutation in exon 21. These findings suggest that ramucirumab plus erlotinib may be a viable treatment option for osimertinib-induced severe ILD.

13.
Curr Issues Mol Biol ; 46(7): 7530-7547, 2024 Jul 16.
Article de Anglais | MEDLINE | ID: mdl-39057088

RÉSUMÉ

The KRAS gene is mutated in approximately 45% of colorectal cancer patients. There are currently very few targeted treatments or therapies equipped to directly inhibit KRAS due to its unusual structural intricacies. Erlotinib, an EGFR inhibitor, has previously been demonstrated to reduce cell viability by inducing autophagy in lung cancer cell lines with varying EGFR mutations. In contrast to lung cancer cells, evidence is provided herein for the first time that erlotinib treatment in colorectal cancer (CRC) cell lines reduces autophagy and still results in decreased cell viability. However, the effects of erlotinib in CRC cell lines containing a wildtype KRAS gene were different than in cells carrying a mutant KRAS gene. We show that there is significantly more downregulation of autophagy in KRAS mutant CRC cells compared to KRAS wildtype cells, both at transcriptional and translational levels, suggesting that the KRAS mutation is advantageous for cancer growth, even in the presence of erlotinib. Cell viability results determined that KRAS wildtype CRC cells had significantly more cell death compared to KRAS mutant cells. Using patient mRNA datasets, we showed that there was a significant correlation between the presence of the KRAS mutation and the expression of autophagy proteins. Additionally, through molecular dynamics simulations, we develop a blueprint for KRAS and autophagy protein interaction and the impact of the KRAS mutation on autophagy protein regulation. Overall, this is the first report of erlotinib treatment in CRC cells that assesses autophagy, and we demonstrate that autophagy activity is downregulated in these cells. This effect is not only greater in cells carrying a KRAS mutation compared to wildtype cells, but the KRAS mutant cells also have increased cell viability compared to wildtype cells. We hypothesize that the difference in cell viability and autophagy expression between KRAS mutant and KRAS wildtype cells after treatment with erlotinib can be of therapeutic value to treat CRC patients carrying KRAS mutations.

14.
Cancers (Basel) ; 16(13)2024 Jul 08.
Article de Anglais | MEDLINE | ID: mdl-39001552

RÉSUMÉ

Lung adenocarcinoma is the most prevalent form of lung cancer, and drug resistance poses a significant obstacle in its treatment. This study aimed to investigate the overexpression of long non-coding RNAs (lncRNAs) as a mechanism that promotes intrinsic resistance in tumor cells from the onset of treatment. Drug-tolerant persister (DTP) cells are a subset of cancer cells that survive and proliferate after exposure to therapeutic drugs, making them an essential object of study in cancer treatment. The molecular mechanisms underlying DTP cell survival are not fully understood; however, long non-coding RNAs (lncRNAs) have been proposed to play a crucial role. DTP cells from lung adenocarcinoma cell lines were obtained after single exposure to tyrosine kinase inhibitors (TKIs; erlotinib or osimertinib). After establishing DTP cells, RNA sequencing was performed to investigate the differential expression of the lncRNAs. Some lncRNAs and one mRNA were overexpressed in DTP cells. The clinical relevance of lncRNAs was evaluated in a cohort of patients with lung adenocarcinoma from The Cancer Genome Atlas (TCGA). RT-qPCR validated the overexpression of lncRNAs and mRNA in the residual DTP cells and LUAD biopsies. Knockdown of these lncRNAs increases the sensitivity of DTP cells to therapeutic drugs. This study provides an opportunity to investigate the involvement of lncRNAs in the genetic and epigenetic mechanisms that underlie intrinsic resistance. The identified lncRNAs and CD74 mRNA may serve as potential prognostic markers or therapeutic targets to improve the overall survival (OS) of patients with lung cancer.

15.
Am J Cancer Res ; 14(6): 2852-2867, 2024.
Article de Anglais | MEDLINE | ID: mdl-39005692

RÉSUMÉ

Cholangiocarcinoma (CCA) is a common malignancy of the digestive system, and its treatment is greatly challenged by rising chemoresistance. Long non-coding RNAs (lncRNAs) have been shown to play critical roles in the development of drug resistance in tumors. However, the role of the lncRNA CCAT1 in erlotinib resistance in CCA remains unclear. In this investigation, we identified CCAT1 as a pivotal factor contributing to erlotinib resistance in CCA. Furthermore, we uncovered that lncRNA CCAT1 modulated epithelial-mesenchymal transition (EMT) through Rho-associated coiled-coil-forming protein kinase 2 (ROCK2), thereby conferring erlotinib resistance upon CCA cells. Mechanistically, we demonstrated that miR-181a-5p interacted with CCAT1 to modulate the expression of ROCK2. Collectively, these findings shed light on the significant role of CCAT1 in the development of erlotinib resistance in CCA. The functional suppression of CCAT1 holds promise in enhancing the sensitivity to erlotinib by reversing EMT through the miR-181a-5p/ROCK2 signaling pathway. These findings provide valuable insights into the mechanisms underlying erlotinib resistance in CCA and the potential strategies for its treatment.

16.
Front Pharmacol ; 15: 1373020, 2024.
Article de Anglais | MEDLINE | ID: mdl-38974045

RÉSUMÉ

FH-deficient Renal Cell Carcinoma (FH-deficient RCC) are inherited tumors caused by mutations in the fumarate hydratase (FH) gene, which plays a role in the tricarboxylic acid cycle. These mutations often result in aggressive forms of renal cell carcinoma (RCC) and other tumors. Here, we present a case of FH-deficient RCC in a 43-year-old woman with a history of uterine fibroids. She exhibited a new heterozygous mutation in exon six of the FH gene (c.799_803del, c.781_796del). The patient had multiple bone metastases and small subcutaneous nodules in various areas such as the shoulders, back, and buttocks. Biopsy of a subcutaneous nodule on the right side revealed positive expression of 2-succinate-cysteine (2SC), and FH staining indicated FH expression deletion. The patient underwent treatment with a combination of erlotinib and bevacizumab, which resulted in significant efficacy with moderate side effects. This treatment combination may be recommended as a standard regimen. This case underscores the importance of genetic testing in patients with advanced renal cancer to enhance diagnostic accuracy. Furthermore, it provides insights into potential treatment approaches for FH-deficient RCC.

17.
Eur J Pharm Biopharm ; 201: 114386, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-38950717

RÉSUMÉ

The goal of the study was to fabricate folic acid functionalized docetaxel (DOC)/erlotinib (ERL)-loaded solid lipid nanoparticles (SLNs) to synergistically increase the anticancer activity against triple-negative breast cancer. DOC/ERL-SLNs were prepared by the high shear homogenization - ultrasound dispersion method (0.1 % w/v for DOC, and 0.3 %w/v for ERL) and optimized using Plackett Burman Design (PBD) followed by Box Behnken Design (BBD). The optimized SLNs demonstrated particle size < 200 nm, PDI < 0.35, and negative zeta potential with entrapment and loading efficiency of ∼80 and ∼4 %, respectively. The SLNs and folic acid functionalized SLNs (FA-SLNs) showed sustained release for both drugs, followed by Higuchi and Korsemeyer-Peppas drug release models, respectively. Further, the in vitro pH-stat lipolysis model demonstrated an approximately 3-fold increase in the bioaccessibility of drugs from SLNs compared to suspension. The TEM images revealed the spherical morphology of the SLNs. DOC/ERL loaded SLNs showed dose- and time-dependent cytotoxicity and exhibited a synergism at a molar ratio of 1:3 in TNBC with a combination index of 0.35 and 0.37, respectively. FA-DOC/ERL-SLNs showed enhanced anticancer activity as evidenced by MMP and ROS assay and further inhibited the colony-forming ability and the migration capacity of TNBC cells. Conclusively, the study has shown that SLNs are encouraging systems to improve the pharmaceutical attributes of poorly bioavailable drugs.


Sujet(s)
Docetaxel , Libération de médicament , Synergie des médicaments , Chlorhydrate d'erlotinib , Lipides , Nanoparticules , Taille de particule , Tumeurs du sein triple-négatives , Tumeurs du sein triple-négatives/traitement médicamenteux , Docetaxel/administration et posologie , Docetaxel/pharmacologie , Docetaxel/pharmacocinétique , Humains , Nanoparticules/composition chimique , Chlorhydrate d'erlotinib/administration et posologie , Chlorhydrate d'erlotinib/pharmacologie , Chlorhydrate d'erlotinib/pharmacocinétique , Lignée cellulaire tumorale , Femelle , Lipides/composition chimique , Antinéoplasiques/administration et posologie , Antinéoplasiques/pharmacologie , Vecteurs de médicaments/composition chimique , Survie cellulaire/effets des médicaments et des substances chimiques , Acide folique/composition chimique , Liposomes
18.
J Virol ; 98(7): e0058024, 2024 Jul 23.
Article de Anglais | MEDLINE | ID: mdl-38856640

RÉSUMÉ

Hepatitis E virus (HEV) poses a global threat, which currently remains understudied in terms of host interactions. Epidermal growth factor receptor (EGFR) plays multifaceted roles in viral pathogenesis, impacting host-cell entry, viral replication, and host-defense modulation. On the one hand, EGFR signaling emerged as a major driver in innate immunity; on the other hand, a crosstalk between HEV and EGFR requires deeper analysis. We therefore aimed to dissect the receptor's involvement in the HEV life cycle. In persistently HEV-infected cells, the EGFR amount is decreased alongside with enhanced receptor internalization. As compared with the control ligand-induced EGFR, activation revealed an early receptor internalization and degradation in HEV-replicating cells, resulting in a notable EGFR signaling delay. Interestingly, inhibition or silencing of EGFR increased viral replication, extracellular and intracellular viral transcripts, and released infectious particles. The pro-viral impact of EGFR inhibition was attributed to (i) impaired expression of interferon-stimulated genes, (ii) activation of the autophagosomal system, (iii) virus-induced inhibition of lysosomal acidification, and (iv) a decrease of the cellular cholesterol level. IMPORTANCE: This study identifies epidermal growth factor receptor (EGFR) as a novel host factor affecting hepatitis E virus (HEV): EGFR downregulation promotes viral replication, release, and evasion from the innate immune response. The discovery that EGFR inhibition favors viral spread is particularly concerning for HEV patients undergoing EGFR inhibitor treatment.


Sujet(s)
Récepteurs ErbB , Virus de l'hépatite E , Hépatite E , Transduction du signal , Réplication virale , Virus de l'hépatite E/physiologie , Récepteurs ErbB/métabolisme , Récepteurs ErbB/antagonistes et inhibiteurs , Humains , Hépatite E/virologie , Hépatite E/métabolisme , Pénétration virale , Immunité innée , Interactions hôte-pathogène , Lignée cellulaire
19.
Am J Cancer Res ; 14(5): 2439-2452, 2024.
Article de Anglais | MEDLINE | ID: mdl-38859830

RÉSUMÉ

lncRNA PTCSC3, which stands for Papillary Thyroid Carcinoma Susceptibility Candidate 3, has been found to play a role in various cellular processes, including cell proliferation, apoptosis, and migration, acting as either an oncogene or a tumor suppressor depending on the context. This study investigates the influence of lncRNA PTCSC3, derived from human bone marrow mesenchymal stem cell (hBMSC), on the efficacy of erlotinib (Er)-resistant lung adenocarcinoma (LUAD) cells and elucidates underlying mechanism. The hBMSCs and LUAD (PC9 and A549) cells were employed to establish an Er-resistant LUAD cell model. It was observed that exposure to hBMSCs reduced the viability of A549-Er and PC9-Er cells and increased their rate of apoptosis. Further investigations revealed that in the presence of hBMSCs-containing medium, PTCSC3 expression was significantly upregulated, concomitantly with a suppression of the Wnt/ß-Catenin pathway. Conversely, silencing PTCSC3 led to enhanced A549-Er and PC9-Er activities, reduced cell apoptosis, and activated Wnt/ß-Catenin pathway. The effects of PTCSC3 modulation were also examined by transfecting LUAD cells with different PTCSC3 expression vectors and treating them with XAV939, a Wnt/ß-Catenin pathway inhibitor, which similarly decreased cell viability. In the rescue experiment, the effect of hBMSCs on LUAD cells could be counteracted by down-regulation of PTCSC3, and the effect of PTCSC3 down-regulation on cells was mitigated by XAV939. This study revealed that hBMSCs promote the up-regulation of PTCSC3 in LUAD cells, thus inhibiting Wnt/ß-Catenin pathway and reversing Er resistance, offering a potential novel strategy to enhance the efficacy of chemotherapy in LUAD.

20.
Article de Anglais | MEDLINE | ID: mdl-38851151

RÉSUMÉ

In this study, a magnetic three-dimensional nano-composite based on Rubber-Fe3O4@Ni-Co Layered double hydroxide derived from ZIF-67 template was synthesized by a hydrothermal method. The proposed nano-composite was used as a sorbent for the enrichment of trace amounts of anti-cancer drugs (dasatinib and erlotinib hydrochloride) from plasma samples followed by determination using high-performance liquid chromatographic analysis (HPLC-UV). The synthesized nano-sorbent was characterized by X-ray diffraction, field emission scanning electron microscopy, Fourier transform infrared spectroscopy, vibrating-sample magnetometer, Brunauer-Emmett-Teller surface analysis, Barrett-Joyner-Halenda pore size analysis and energy dispersive X-ray spectroscopy. Under optimal experimental conditions, factors affecting on extraction efficiency such as pH, ionic strength, extraction temperature and time, desorption solvent and time, the limit of detection (LODs) and the limit of quantification (LOQs) were obtained as 0.6, 2 µg/L for both of dasatinib and erlotinib, respectively. Also, linear range of the method were 2-500 and 2-1000 µg/L for dasatinib and erlotinib, respectively. Relative standard deviations (RSD%) for the repeatability of extraction on sorbent to sorbent were obtained as 3.59, 1.97 %, and one sorbent reusability were investigated and relative standard deviation values were obtained 5.35, 3.30 % for dasatinib and erlotinib, respectively.


Sujet(s)
Antinéoplasiques , Chlorhydrate d'erlotinib , Limite de détection , Caoutchouc , Caoutchouc/composition chimique , Antinéoplasiques/sang , Antinéoplasiques/composition chimique , Chromatographie en phase liquide à haute performance/méthodes , Reproductibilité des résultats , Humains , Chlorhydrate d'erlotinib/sang , Chlorhydrate d'erlotinib/composition chimique , Modèles linéaires , Dasatinib/sang , Dasatinib/composition chimique , Hydroxydes/composition chimique , Imidazoles/composition chimique , Imidazoles/sang , Adsorption , Extraction en phase solide/méthodes , Cobalt/composition chimique , Cobalt/sang , Nanostructures/composition chimique , Zéolites
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE