Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Sci Total Environ ; 855: 158897, 2023 Jan 10.
Article de Anglais | MEDLINE | ID: mdl-36411601

RÉSUMÉ

Rapid detection technology of aquaculture fishery drug residues is needed to supplement large-scale instrument methods. To do this, the time-resolved fluorescence immunoassay (TRFIA) method and portable three-dimensional (3D) printing equipment platform were used, in combination with smartphones, to detect malachite green (MG) in pond sediments. The TRFIA was coupled to MG monoclonal antibodies (mAb) through lanthanide metal microspheres europium (Eu3+). The labeled antibody produced competitive immunity in the immune reaction system, and the specific fluorescence intensity in the product was determined by a portable 3D printing equipment platform to achieve quantitative analysis. To test this method, leucomalachite green (LMG) was converted to MG by oxidation of dicyanoquinone (DDQ), and a qualitative analysis was achieved. Methodological evaluation results were satisfactory, recoveries were 83 %-104 %, the limit of detection (LOD) was 0.3 ng/g, the limit of quantitation (LOQ) was 0.7 ng/g, and the coefficient of variation was 1.3 %-7.3 %. The linear equation y = -0.1496x + 0.5585 was in the range of 0-10 ng/g. The linear regression correlation coefficient was 99.2 %. The TRFIA was confirmed and positive samples were measured. Results were consistent with the standard method, which demonstrated that the TRFIA was feasible and that the detection results were reliable. Compared with the national standard method, the TRFIA saves time, is more convenient, and has high sensitivity. It provides an efficient technical method for the rapid screening of MG in the sediments of aquaculture environments.


Sujet(s)
Dosage fluoroimmunologique , Impression tridimensionnelle , Technique d'immunofluorescence , Microsphères
2.
Anal Bioanal Chem ; 413(23): 5799-5810, 2021 Sep.
Article de Anglais | MEDLINE | ID: mdl-34331087

RÉSUMÉ

Porcine reproductive and respiratory syndrome virus (PRRSV) has caused worldwide economic losses in the swine industry. Pigs infected with highly pathogenic (HP)-PRRSV display more severe symptoms than those infected with classical (C)-PRRSV. A rapid, sensitive, and reliable detection method to distinguish between HP-PRRSV and C-PRRSV is needed. In this study, we prepared a monoclonal antibody from a hybridoma that can distinguish HP-PRRSV(including TP, QJ, LQ, JN-HS, and TY strain) from C-PRRSV (CH-1A strain) using cell surface-fluorescence immunosorbent assays (CSFIA). Based on this monoclonal antibody (4D5), we developed a europium microsphere-based lateral flow immunochromatographic strip (EuNPs-LFICS) for the differential diagnostic detection of HP-PRRSV and C-PRRSV. Under optimized conditions, the method was rapid (15 min), sensitive (LOD: 2.57 ng mL-1, 606 TCID50/0.1 mL), selective for HP-PRRSV detection, and quantitative (DLR: 3.56-228 ng mL-1). In clinical samples, the EuNPs-LFICS assay was largely consistent with PCR results, indicating its practical clinical application.


Sujet(s)
Anticorps monoclonaux/composition chimique , Europium/composition chimique , Technique d'immunofluorescence/méthodes , Colorants fluorescents/composition chimique , Nanoparticules métalliques/composition chimique , Syndrome dysgénésique et respiratoire porcin/diagnostic , Virus du syndrome respiratoire et reproducteur porcin/isolement et purification , Animaux , Lignée cellulaire , Diagnostic différentiel , Souris , Souris de lignée BALB C , Suidae
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE