Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 65
Filtrer
1.
Sensors (Basel) ; 24(15)2024 Jul 28.
Article de Anglais | MEDLINE | ID: mdl-39123943

RÉSUMÉ

The FinRay soft gripper achieves passive enveloping grasping through its functional flexible structure, adapting to the contact configuration of the object to be grasped. However, variations in beam position and thickness lead to different behaviors, making it important to research the relationship between structure and force. Conventional research using FEM simulations has tested various virtual FinRay models but replicating phenomena such as buckling and slipping has been challenging. While hardware-based methods that involve installing sensors on the gripper and the object to analyze their states have been attempted, no studies have focused on the tangential contact force related to slipping. Therefore, we developed a 16-way object contact force measurement device incorporating two-axis force sensors into each of the 16 segmented objects and compared the normal and tangential components of the enveloping grasping force of the FinRay soft gripper under two types of contact friction conditions. In the first experiment, the proposed device was compared with a device containing a six-axis force sensor in one segmented object, confirming that the proposed device has no issues with measurement performance. In the second experiment, comparisons of the proposed device were made under various conditions: two contact friction states, three object contact positions, and two object motion states. The results demonstrated that the proposed device could decompose and analyze the grasping force into its normal and tangential components for each segmented object. Moreover, low friction conditions result in a wide contact area with lower tangential frictional force and a uniform normal pushing force, achieving effective enveloping grasping.

2.
ACS Nano ; 18(35): 24550-24557, 2024 Sep 03.
Article de Anglais | MEDLINE | ID: mdl-39167712

RÉSUMÉ

Nanomechanical resonators can serve as ultrasensitive, miniaturized force probes. While vertical structures such as nanopillars are ideal for this purpose, transducing their motion is challenging. Pillar-based photonic crystals (PhCs) offer a potential solution by integrating optical transduction within the pillars. However, achieving high-quality PhCs is hindered by inefficient vertical light confinement. Here, we present a full-silicon photonic crystal cavity based on nanopillars as a platform for applications in force sensing and biosensing areas. Its unit cell consists of a silicon pillar with a larger diameter at its top portion than at the bottom, which allows vertical light confinement and an energy band gap in the near-infrared range for transverse-magnetic polarization. We experimentally demonstrate optical cavities with Q factors exceeding 103, constructed by inserting a defect within a periodic arrangement of this type of pillars. Each nanopillar naturally behaves as a nanomechanical cantilever, making the fabricated geometries excellent optomechanical (OM) photonic crystal cavities in which the mechanical motion of each nanopillar composing the cavity can be optically transduced. These geometries display enhanced mechanical properties, cost-effectiveness, integration possibilities, and scalability. They also present an alternative in front of the widely used suspended Si beam OM cavities made on silicon-on-insulator substrates.

3.
Soft Robot ; 2024 Jun 13.
Article de Anglais | MEDLINE | ID: mdl-38868951

RÉSUMÉ

The somatosensory system is crucial for living beings to survive and thrive in complex environments and to interact with their surroundings. Similarly, rapidly developed soft robots need to be aware of their own posture and detect external stimuli. Bending and force sensing are key for soft machines to achieve embodied intelligence. Here, we present a soft inductive bimodal sensor (SIBS) that uses the strain modulation of magnetic permeability and the eddy-current effect for simultaneous bidirectional bending and force sensing with only two wires. The SIBS is made of a flexible planar coil, a porous ferrite film, and a soft conductive film. By measuring the inductance at two different frequencies, the bending angle and force can be obtained and decoupled. Rigorous experiments revealed that the SIBS can achieve high resolution (0.44° bending and 1.09 mN force), rapid response, excellent repeatability, and high durability. A soft crawling robot embedded with one SIBS can sense its own shape and interact with and respond to external stimuli. Moreover, the SIBS is demonstrated as a wearable human-machine interaction to control a crawling robot via wrist bending and touching. This highlights that the SIBS can be readily implemented in diverse applications for reliable bimodal sensing.

4.
Int J Mol Sci ; 25(11)2024 Jun 04.
Article de Anglais | MEDLINE | ID: mdl-38892386

RÉSUMÉ

The mechanical forces exerted by cells on their surrounding microenvironment are known as cellular traction forces. These forces play crucial roles in various biological processes, such as tissue development, wound healing and cell functions. However, it is hard for traditional techniques to measure cellular traction forces accurately because their magnitude (from pN to nN) and the length scales over which they occur (from nm to µm) are extremely small. In order to fully understand mechanotransduction, highly sensitive tools for measuring cellular forces are needed. Current powerful techniques for measuring traction forces include traction force microscopy (TFM) and fluorescent molecular force sensors (FMFS). In this review, we elucidate the force imaging principles of TFM and FMFS. Then we highlight the application of FMFS in a variety of biological processes and offer our perspectives and insights into the potential applications of FMFS.


Sujet(s)
Mécanotransduction cellulaire , Humains , Animaux , Microscopie à force atomique/méthodes , Techniques de biocapteur/méthodes
5.
Sensors (Basel) ; 24(11)2024 May 22.
Article de Anglais | MEDLINE | ID: mdl-38894110

RÉSUMÉ

People with Parkinson's disease often show deficits in dexterity, which, in turn, can lead to limitations in performing activities of daily life. Previous studies have suggested that training in playing the piano may improve or prevent a decline in dexterity in this population. In this pilot study, we tested three participants on a six-week, custom, piano-based training protocol, and quantified dexterity before and after the intervention using a sensor-enabled version of the nine-hole peg test, the box and block test, a test of finger synergies using unidimensional force sensors, and the Quantitative Digitography test using a digital piano, as well as selected relevant items from the motor parts of the MDS-Unified Parkinson's Disease Rating Scale (MDS-UPDRS) and the Parkinson's Disease Questionnaire (PDQ-39) quality of life questionnaire. The participants showed improved dexterity following the training program in several of the measures used. This pilot study proposes measures that can track changes in dexterity as a result of practice in people with Parkinson's disease and describes a potential protocol that needs to be tested in a larger cohort.


Sujet(s)
Maladie de Parkinson , Humains , Maladie de Parkinson/physiopathologie , Projets pilotes , Mâle , Sujet âgé , Femelle , Qualité de vie , Adulte d'âge moyen , Aptitudes motrices/physiologie , Musique , Enquêtes et questionnaires , Activités de la vie quotidienne , Doigts/physiologie , Doigts/physiopathologie
6.
Sensors (Basel) ; 24(7)2024 Apr 05.
Article de Anglais | MEDLINE | ID: mdl-38610530

RÉSUMÉ

Pressure fluctuations in a mixing tank can provide valuable information about the existing flow regime within the tank, which in turn influences the degree of mixing that can be achieved. In the present work, we propose a prototype for identifying the flow regime in mechanically stirred tanks equipped with four vertical baffles through the characterization of pressure fluctuations. Our innovative proposal is based on force sensors strategically placed in the baffles of the mixing tank. The signals coming from the sensors are transmitted to an electronic module based on an Arduino UNO development board. In the electronic module, the pressure signals are conditioned, amplified and sent via Bluetooth to a computer. In the computer, the signals can be plotted or stored in an Excel file. In addition, the proposed system includes a moving average filtering and a hierarchical bottom-up clustering analysis that can determine the real-time flow regime (i.e., the Reynolds number, Re) in which the tank was operated during the mixing process. Finally, to demonstrate the versatility of the proposed prototype, experiments were conducted to identify the Reynolds number for different flow regimes (static, laminar, transition and turbulent), i.e., 0≤Re≤ 42,955. Obtained results were in agreement with the prevailing consensus on the onset and developed from different flow regimes in mechanically stirred tanks.

7.
ACS Appl Mater Interfaces ; 16(17): 21534-21545, 2024 May 01.
Article de Anglais | MEDLINE | ID: mdl-38634566

RÉSUMÉ

Nanoscale biomolecular placement is crucial for advancing cellular signaling, sensor technology, and molecular interaction studies. Despite this, current methods fall short in enabling large-area nanopatterning of multiple biomolecules while minimizing nonspecific interactions. Using bioorthogonal tags at a submicron scale, we introduce a novel hole-mask colloidal lithography method for arranging up to three distinct proteins, DNA, or peptides on large, fully passivated surfaces. The surfaces are compatible with single-molecule fluorescence microscopy and microplate formats, facilitating versatile applications in cellular and single-molecule assays. We utilize fully passivated and transparent substrates devoid of metals and nanotopographical features to ensure accurate patterning and minimize nonspecific interactions. Surface patterning is achieved using bioorthogonal TCO-tetrazine (inverse electron-demand Diels-Alder, IEDDA) ligation, DBCO-azide (strain-promoted azide-alkyne cycloaddition, SPAAC) click chemistry, and biotin-avidin interactions. These are arranged on surfaces passivated with dense poly(ethylene glycol) PEG brushes crafted through the selective and stepwise removal of sacrificial metallic and polymeric layers, enabling the directed attachment of biospecific tags with nanometric precision. In a proof-of-concept experiment, DNA tension gauge tether (TGT) force sensors, conjugated to cRGD (arginylglycylaspartic acid) in nanoclusters, measured fibroblast integrin tension. This novel application enables the quantification of forces in the piconewton range, which is restricted within the nanopatterned clusters. A second demonstration of the platform to study integrin and epidermal growth factor (EGF) proximal signaling reveals clear mechanotransduction and changes in the cellular morphology. The findings illustrate the platform's potential as a powerful tool for probing complex biochemical pathways involving several molecules arranged with nanometer precision and cellular interactions at the nanoscale.


Sujet(s)
Chimie click , ADN , ADN/composition chimique , Techniques de biocapteur/méthodes , Propriétés de surface , Animaux , Souris , Azotures/composition chimique , Biotine/composition chimique , Nanostructures/composition chimique , Polyéthylène glycols/composition chimique , Ligands , Avidine/composition chimique
8.
Entropy (Basel) ; 25(10)2023 Sep 27.
Article de Anglais | MEDLINE | ID: mdl-37895507

RÉSUMÉ

The healthy function of the vestibular system (VS) is of vital importance for individuals to carry out their daily activities independently and safely. This study carries out Tsallis entropy (TE)-based analysis on insole force sensor data in order to extract features to differentiate between healthy and VS-diseased individuals. Using a specifically developed algorithm, we detrend the acquired data to examine the fluctuation around the trend curve in order to consider the individual's walking habit and thus increase the accuracy in diagnosis. It is observed that the TE value increases for diseased people as an indicator of the problem of maintaining balance. As one of the main contributions of this study, in contrast to studies in the literature that focus on gait dynamics requiring extensive walking time, we directly process the instantaneous pressure values, enabling a significant reduction in the data acquisition period. The extracted feature set is then inputted into fundamental classification algorithms, with support vector machine (SVM) demonstrating the highest performance, achieving an average accuracy of 95%. This study constitutes a significant step in a larger project aiming to identify the specific VS disease together with its stage. The performance achieved in this study provides a strong motivation to further explore this topic.

9.
Sensors (Basel) ; 23(14)2023 Jul 11.
Article de Anglais | MEDLINE | ID: mdl-37514602

RÉSUMÉ

Sensing the interaction between the pilot and the control inceptors can provide important information about the pilot's activity during flight, potentially enabling the objective measurement of the pilot workload, the application of preventive actions against loss of situational awareness, and the identification of the insurgence of adverse couplings with the vehicle dynamics. This work presents an innovative pressure-sensing device developed to be seamlessly integrated into the grips of conventional aircraft control inceptors. The sensor, based on frustrated total internal reflection of light, is composed of low-cost elements and can be easily manufactured to be applicable to different hand pressure ranges. The characteristics of the sensor are first demonstrated in laboratory calibration tests. Subsequently, applications in flight simulator testing are presented, focusing on the objective representation of the pilot's instantaneous workload.

10.
J Int Med Res ; 51(6): 3000605231161285, 2023 Jun.
Article de Anglais | MEDLINE | ID: mdl-37272084

RÉSUMÉ

This paper presents a clinical case study investigating the pattern of a saxophonist's embouchure as a possible origin of orofacial pain. The rehabilitation addressed the dental occlusion and a fracture in a metal ceramic bridge. To evaluate the undesirable loads on the upper teeth, two piezoresistive sensors were placed between the central incisors and the mouthpiece during the embouchure. A newly fixed metal ceramic prosthesis was placed from teeth 13 to 25, and two implants were placed in the premolar zone corresponding to teeth 14 and 15. After the oral rehabilitation, the embouchure force measurements showed that higher stability was promoted by the newly fixed metal-ceramic prosthesis. The musician executed a more symmetric loading of the central incisors (teeth 11 and 21). The functional demands of the saxophone player and consequent application of excessive pressure can significantly influence and modify the metal-ceramic position on the anterior zone teeth 21/22. The contribution of engineering (i.e., monitoring the applied forces on the musician's dental structures) was therefore crucial for the correct assessment and design of the treatment plan.


Sujet(s)
Mâchoire , Techniques de physiothérapie , Humains , Algie faciale
11.
Sensors (Basel) ; 23(9)2023 Apr 25.
Article de Anglais | MEDLINE | ID: mdl-37177453

RÉSUMÉ

In this paper, we present an innovative manufacturing process for the production of capacitive pressure and force sensors with excellent thermal stability for high-temperature applications. The sensors, which are manufactured from a stack of two silicon chips mounted via with gold-silicon (Au-Si) or aluminum-silicon (Al-Si) eutectic bonding, are shielded, miniaturized, and allow an operating temperature of up to 500 °C. Compared to conventional methods, the greatest benefit of the manufacturing process is that different sensor dimensions can be produced in the same batch for a wide measuring range, from mN to kN. The characterization of the realized sensors shows a high linearity and a low temperature drift of 99.992% FS and -0.001% FS/K at 350 °C, as well as a nonlinearity of 0.035% FS and a temperature drift of -0.0027% FS/K at 500 °C.

12.
Adv Sci (Weinh) ; 10(11): e2207269, 2023 04.
Article de Anglais | MEDLINE | ID: mdl-36775849

RÉSUMÉ

Biodegradable piezoelectric force sensors can be used as implantable medical devices for monitoring physiological pressures of impaired organs or providing essential stimuli for drug delivery and tissue regeneration without the need of additional invasive removal surgery or battery power. However, traditional piezoelectric materials, such as inorganic ceramics and organic polymers, show unsatisfactory degradability, and cytotoxicity. Amino acid crystals are biocompatible and exhibit outstanding piezoelectric properties, but their small crystal size makes it difficult to align the crystals for practical applications. Here, a mechanical-annealing strategy is reported for engineering all-organic biodegradable piezoelectric force sensors using natural amino acid crystals as piezoelectric materials. It is shown that the piezoelectric constant of the mechanical-annealed crystals can reach 12 times that of the single crystal powders. Moreover, mechanical annealing results in flat and smooth surfaces, thus improving the contact of the crystal films with the electrodes and leading to high output voltages of the devices. The packaged force sensors can be used to monitor dynamic motions, including muscle contraction and lung respiration, in vivo for 4 weeks and then gradually degrade without causing obvious inflammation or systemic toxicity. This work provides a way to engineer all-organic and biodegradable force sensors for potential clinical applications.


Sujet(s)
Acides aminés , Phénomènes mécaniques , Prothèses et implants , Ingénierie , Polymères
13.
Front Sports Act Living ; 4: 1035190, 2022.
Article de Anglais | MEDLINE | ID: mdl-36457663

RÉSUMÉ

Time is considered a primary barrier to exercise adherence. Therefore, developing time-efficient resistance training (RT) strategies that optimize muscular adaptations is of primary interest to practitioners. A novel approach to the problem involves combining intensive stretch protocols with RT. Conceivably, integrating stretch into the inter-set period may provide an added stimulus for muscle growth without increasing session duration. Mechanistically, stretch can regulate anabolic signaling via both active and passive force sensors. Emerging evidence indicates that both lengthening contractions against a high load as well as passive stretch can acutely activate anabolic intracellular signaling pathways involved in muscle hypertrophy. Although longitudinal research investigating the effects of stretching between RT sets is limited, some evidence suggests it may in fact enhance hypertrophic adaptations. Accordingly, the purpose of this paper is threefold: (1) to review how the active force of a muscle contraction and the force of a passive stretched are sensed; (2) to present evidence for the effectiveness of RT with inter-set stretch for muscle hypertrophy (3) to provide practical recommendations for application of inter-set stretch in program design as well as directions for future research.

14.
Sensors (Basel) ; 22(22)2022 Nov 10.
Article de Anglais | MEDLINE | ID: mdl-36433266

RÉSUMÉ

The implementation of robotic systems for minimally invasive surgery and medical procedures is an active topic of research in recent years. One of the most common procedures is the palpation of soft tissues to identify their mechanical characteristics. In particular, it is very useful to identify the tissue's stiffness or equivalently its elasticity coefficient. However, this identification relies on the existence of a force sensor or a tactile sensor mounted at the tip of the robot, as well as on measuring the robot velocity. For some applications it would be desirable to identify the biomechanical characteristics of soft tissues without the need for a force/tactile nor velocity sensors. An estimation of such quantities can be obtained by a model-based state observer for which the inputs are only the robot joint positions and its commanded joint torques. The estimated velocities and forces can then be employed for closed-loop force control, force reflection, and mechanical parameters estimation. In this work, a closed-loop force control is proposed based on the estimated contact forces to avoid any tissue damage. Then, the information from the estimated forces and velocities is used in a least squares estimator of the mechanical parameters. Moreover, the estimated biomechanical parameters are employed in a Bayesian classifier to provide further help for the physician to make a diagnosis. We have found that a combination of the parameters of both linear and nonlinear viscoelastic models provide better classification results: 0% misclassifications against 50% when using a linear model, and 3.12% when using only a nonlinear model, for the case in which the samples have very similar mechanical properties.


Sujet(s)
Robotique , Théorème de Bayes , Palpation , Toucher , Interventions chirurgicales mini-invasives/méthodes
15.
Biol Open ; 11(11)2022 11 01.
Article de Anglais | MEDLINE | ID: mdl-36350289

RÉSUMÉ

Nuclear mechanotransduction is a growing field with exciting implications for the regulation of gene expression and cellular function. Mechanical signals may be transduced to the nuclear interior biochemically or physically through connections between the cell surface and chromatin. To define mechanical stresses upon the nucleus in physiological settings, we generated transgenic mouse strains that harbour FRET-based tension sensors or control constructs in the outer and inner aspects of the nuclear envelope. We knocked-in a published esprin-2G sensor to measure tensions across the LINC complex and generated a new sensor that links the inner nuclear membrane to chromatin. To mitigate challenges inherent to fluorescence lifetime analysis in vivo, we developed software (FLIMvivo) that markedly improves the fitting of fluorescence decay curves. In the mouse embryo, the sensors responded to cytoskeletal relaxation and stretch applied by micro-aspiration. They reported organ-specific differences and a spatiotemporal tension gradient along the proximodistal axis of the limb bud, raising the possibility that mechanical mechanisms coregulate pattern formation. These mouse strains and software are potentially valuable tools for testing and refining mechanotransduction hypotheses in vivo.


Sujet(s)
Mécanotransduction cellulaire , Enveloppe nucléaire , Souris , Animaux , Enveloppe nucléaire/métabolisme , Mécanotransduction cellulaire/physiologie , Protéines nucléaires/génétique , Chromatine/génétique , Chromatine/métabolisme , Souris transgéniques , Logiciel , Mammifères/génétique , Mammifères/métabolisme
16.
ACS Appl Mater Interfaces ; 14(43): 49026-49034, 2022 Nov 02.
Article de Anglais | MEDLINE | ID: mdl-36259783

RÉSUMÉ

This work demonstrates a mixed-dimensional piezoelectric-gated transistor in the microscale that could be used as a millinewton force sensor. The force-sensing transistor consists of 1D piezoelectric zinc oxide (ZnO) nanorods (NRs) as the gate control and multilayer tungsten diselenide (WSe2) as the transistor channel. The applied mechanical force on piezoelectric NRs can induce a drain-source current change (ΔIds) on the WSe2 channel. The different doping types of the WSe2 channel have been found to lead to different directions of ΔIds. The pressure from the calibration weight of 5 g has been observed to result in an ∼30% Ids change for ZnO NRs on the p-type doped WSe2 device and an ∼-10% Ids change for the device with an n-type doped WSe2. The outcome of this work would be useful for applications in future human-machine interfaces and smart biomedical tools.

17.
Sensors (Basel) ; 22(14)2022 Jul 18.
Article de Anglais | MEDLINE | ID: mdl-35891037

RÉSUMÉ

This paper presented the force and displacement analyses of a diaphragm-embedded fiber Bragg grating (FBG) sensor. In the first step, a numerical analysis (via finite element method) was performed considering linear elastic materials, where there is a linear variation on the strain in the optical fiber for both displacement and force (or pressure). In the second step, the experimental analysis was performed using two approaches: (i) controlling the displacement applied in the diaphragm-embedded FBG (while the force is also measured). (ii) Controlling the force applied in the sensor (also with the measurement of the displacement). Results showed reflected optical power variations and wavelength shift following the application of displacement and force. The sensitivities of both wavelength shift and optical power were different (and non-proportional) when displacement and force were compared. However, a higher correlation, determination coefficient (R2) of 0.998, was obtained in the analysis of the wavelength shift as a function of the displacement, which indicated that the strain transmission in the optical fiber is directly related to the strain in the diaphragm, whereas the force has an indirect relation with the strain and depends on the material features. Then, the possibility of simultaneous estimation of force and displacement was investigated, where the linear relation of both parameters (displacement and force) with the wavelength shift and the optical power were obtained in a limited range of displacement and force. In this range, root mean squared errors of 0.37 N and 0.05 mm were obtained for force and displacement, respectively. In addition, the force variation with a step displacement input also shows the possibility of using the proposed FBG device for the characterization of the materials' viscoelastic features such as phase delay, creep, and stress relaxation, which can be employed for in situ characterization of different viscoelastic materials.

18.
Micromachines (Basel) ; 13(6)2022 May 27.
Article de Anglais | MEDLINE | ID: mdl-35744454

RÉSUMÉ

Polymer nanocomposites have found wide acceptance in research applications as pressure sensors under the designation of force-sensing resistors (FSRs). However, given the random dispersion of conductive nanoparticles in the polymer matrix, the sensitivity of FSRs notably differs from one specimen to another; this condition has precluded the use of FSRs in industrial applications that require large part-to-part repeatability. Six Sigma methodology provides a standard framework to reduce the process variability regarding a critical variable. The Six Sigma core is the DMAIC cycle (Define, Measure, Analyze, Improve, and Control). In this study, we have deployed the DMAIC cycle to reduce the process variability of sensor sensitivity, where sensitivity was defined by the rate of change in the output voltage in response to the applied force. It was found that sensor sensitivity could be trimmed by changing their input (driving) voltage. The whole process comprised: characterization of FSR sensitivity, followed by physical modeling that let us identify the underlying physics of FSR variability, and ultimately, a mechanism to reduce it; this process let us enhance the sensors' part-to-part repeatability from an industrial standpoint. Two mechanisms were explored to reduce the variability in FSR sensitivity. (i) It was found that the output voltage at null force can be used to discard noncompliant sensors that exhibit either too high or too low sensitivity; this observation is a novel contribution from this research. (ii) An alternative method was also proposed and validated that let us trim the sensitivity of FSRs by means of changing the input voltage. This study was carried out from 64 specimens of Interlink FSR402 sensors.

19.
Macromol Rapid Commun ; 43(15): e2200134, 2022 Aug.
Article de Anglais | MEDLINE | ID: mdl-35510422

RÉSUMÉ

Developing mechano-responsive fluorescent polymers that exhibit distinct responses to distinct mechanical stresses requires a careful design of the fluorophore in order to tune its interactions with the polymer. A series of mechanofluorochromic (MFC) polymer composites are prepared by dispersing difluoroboron diketonates complexes with various alkyl side-chain lengths (DFB-alkyl) in linear low-density polyethylene. Observation of the resulting polymer composites under a microscope reveals different aggregate sizes of the three DFB-alkyls, thus confirming the functionalization by alkyl side chains as a powerful approach to control the aggregation process in a polymer. Besides, the three polymer composite samples are shown to be sensitive to both stretching and scratching, thereby consisting in the first reported example of MFC polymer responding to these two distinct mechanical stimuli. To establish a structure-property relationship, the strategy consisted in applying controlled tensile or friction forces while simultaneously monitoring fluorescence changes. Interestingly, the intensity of the MFC response to both stretching and scratching depends on the alkyl chain length and thus on the aggregation properties of the fluorophore. According to a time-resolved fluorescence study, the emission is found to originate from different species following the type of applied stress (tensile or friction force).


Sujet(s)
Phénomènes mécaniques , Polymères , Colorants fluorescents/composition chimique , Polymères/composition chimique , Contrainte mécanique
20.
Sensors (Basel) ; 22(7)2022 Mar 29.
Article de Anglais | MEDLINE | ID: mdl-35408223

RÉSUMÉ

A direct ventricular assist device is one of the effective means to treat patients with heart failure; the key point of the problem is the flexible sensor that can measure the drive pressure and shape variable of the heart auxiliary device. This study was based on the high-voltage electric field guidance process and the porous foaming process, and designed an implantable resistance/capacitive composite flexible sensor that can effectively detect the pressure and deformation signal caused by fine surface contact and pneumatic muscle expansion. Experiments showed the performance of composite sensors with special structure design was greatly improved compared with the control group-the strain measurement sensitivity was 22, pressure measurement sensitivity was up to 0.19 Kpa-1. Stable strain measurements were made up to 35 times and pressure measurements over 100 times. In addition, we solved the interference problem of resistance/capacitance flexible sensors through an optimized common substrate process. Finally, we tested a pneumatic muscle direct ventricular assist device with a composite flexible sensor on a model heart; the experiment showed that this resistance/capacitive composite flexible sensor can effectively detect surface contact with pneumatic muscle and the displacement signals.


Sujet(s)
Dispositifs d'assistance circulatoire , Capacité électrique , Humains , Porosité , Pression
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE