Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 498
Filtrer
1.
FASEB Bioadv ; 6(8): 263-275, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-39114446

RÉSUMÉ

Chronic psychological stress has been reported to decrease circulating iron concentrations and impair hematopoiesis. However, the underlying mechanisms remain unclear. This study aimed to investigate the effects of psychological stress on biological iron metabolism by using the social defeat stress (SDS) model, a widely used model of depression. Compared with control mice, mice subjected to SDS (SDS mice) had lower social interaction (SI) behavior. The SDS mice also showed impaired hematopoiesis, as evidenced by reduced circulating red blood cell counts, elevated reticulocyte counts, and decreased plasma iron levels. In the SDS mice, the iron contents in the bone marrow decreased, whereas those in the spleen increased, suggesting dysregulation in systemic iron metabolism. The concentrations of plasma hepcidin, an important regulator of systemic iron homeostasis, increased in the SDS mice. Meanwhile, the concentrations of ferroportin, an iron transport protein negatively regulated by hepcidin, were lower in the spleen and duodenum of the SDS mice than in those of the control mice. Treatment with dalteparin, a hepcidin inhibitor, prevented the decrease in plasma iron levels in the SDS mice. The gene expression and enzyme activity of furin, which converts the precursor hepcidin to active hepcidin, were high and positively correlated with plasma hepcidin concentration. Thus, furin activation might be responsible for the increased plasma hepcidin concentration. This study is the first to show that psychological stress disrupts systemic iron homeostasis by activating the hepcidin-ferroportin axis. Consideration of psychological stressors might be beneficial in the treatment of diseases with iron-refractory anemia.

2.
Genetics ; 2024 Jul 20.
Article de Anglais | MEDLINE | ID: mdl-39031646

RÉSUMÉ

PACS (Phosphofurin Acidic Cluster Sorting Protein) proteins are known for their roles in sorting cargo proteins to organelles and can physically interact with WD40 repeat-containing protein WDR37. PACS1, PACS2, and WDR37 variants are associated with multisystemic syndromes and neurodevelopmental disorders characterized by intellectual disability, seizures, developmental delays, craniofacial abnormalities, and autism spectrum disorder. However, the functional effects of syndromic variants at the cellular level remain unknown. Here, we report the expression pattern of C. elegans orthologs of PACS and WDR37 and their interaction. We show that cePACS-1 and ceWDR-37 co-localize to somatic cytoplasm of many types of cells, and are mutually required for expression, supporting a conclusion that the intermolecular dependence of PACS1/PACS2/PACS-1 and WDR37/WDR-37 is evolutionarily conserved. We further show that editing in PACS1 and PACS2 variants in cePACS-1 changes protein localization in multiple cell types, including neurons. Moreover, expression of human PACS1 can functionally complement C. elegans PACS-1 in neurons, demonstrating conserved functions of the PACS-WDR37 axis in an invertebrate model system. Our findings reveal effects of human variants and suggest potential strategies to identify regulatory network components that may contribute to understanding molecular underpinnings of PACS/WDR37 syndromes.

3.
Virus Res ; 347: 199430, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-38964470

RÉSUMÉ

A multistep priming process involving furin and endosomal cathepsin B and L (CatB/L) has been described for the Orthoebolavirus zairense (EBOV) glycoprotein GP. Inhibition or knockdown of either furin or endosomal cathepsins, however, did not prevent virus multiplication in cell cultures. Moreover, an EBOV mutant lacking the furin cleavage motif (RRTRR→AGTAA) was able to replicate and cause fatal disease in nonhuman primates, indicating that furin cleavage may be dispensable for virus infectivity. Here, by using protease inhibitors and EBOV GP-carrying recombinant vesicular stomatitis virus (VSV) and transcription and replication-competent virus-like particles (trVLPs) we found that processing of EBOV GP is mediated by different proteases in different cell lines depending on the protease repertoire available. Endosomal cathepsins were essential for EBOV GP entry in Huh-7 but not in Vero cells, in which trypsin-like proteases and stably expressed trypsin-like transmembrane serine protease 2 (TMPRSS2) supported wild-type EBOV GP and EBOV GP_AGTAA mutant entry. Furthermore, we show that the EBOV GP_AGTAA mutant is cleaved into fusion-competent GP2 by TMPRSS2 and by CatL at a so far unknown site. Fluorescence microscopy co-localization studies indicate that EBOV GP cleavage by TMPRSS2 may occur in the TGN prior to virus release or in the late endosome at the stage of virus entry into a new cell. Our data show that EBOV GP must be proteolytically activated to support virus entry but has even greater flexibility in terms of proteases and the precise cleavage site than previously assumed.


Sujet(s)
Cathepsine L , Ebolavirus , Furine , Serine endopeptidases , Protéines de l'enveloppe virale , Pénétration virale , Cathepsine L/métabolisme , Cathepsine L/génétique , Furine/métabolisme , Furine/génétique , Ebolavirus/génétique , Ebolavirus/physiologie , Ebolavirus/métabolisme , Animaux , Humains , Serine endopeptidases/métabolisme , Serine endopeptidases/génétique , Chlorocebus aethiops , Protéines de l'enveloppe virale/métabolisme , Protéines de l'enveloppe virale/génétique , Protéolyse , Cellules Vero , Lignée cellulaire , Endosomes/métabolisme , Endosomes/virologie
4.
Adv Sci (Weinh) ; : e2403732, 2024 Jul 19.
Article de Anglais | MEDLINE | ID: mdl-39031635

RÉSUMÉ

Furin primarily localizes to the trans-Golgi network (TGN), where it cleaves and activates a broad range of immature proproteins that play critical roles in cellular homeostasis, disease progression, and infection. Furin is retrieved from endosomes to the TGN after being phosphorylated, but it is still unclear how furin exits the TGN to initiate the post-Golgi trafficking and how its activity is regulated in the TGN. Here three membrane-associated RING-CH finger (MARCHF) proteins (2, 8, 9) are identified as furin E3 ubiquitin ligases, which catalyze furin K33-polyubiquitination. Polyubiquitination prevents furin from maturation by blocking its ectodomain cleavage inside cells but promotes its egress from the TGN and shedding. Further ubiquitin-specific protease 32 (USP32) is identified as the furin deubiquitinase in the TGN that counteracts the MARCHF inhibitory activity on furin. Thus, the furin post-Golgi trafficking is regulated by an interplay between polyubiquitination and phosphorylation. Polyubiquitination is required for furin anterograde transport but inhibits its proprotein convertase activity, and phosphorylation is required for furin retrograde transport to produce fully active furin inside cells.

5.
Chem Biodivers ; : e202400717, 2024 Jun 04.
Article de Anglais | MEDLINE | ID: mdl-38837886

RÉSUMÉ

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses ongoing global health challenges due to its propensity for mutations, which can undermine vaccine efficacy. With no definitive treatment available, urgent research into affordable and biocompatible therapeutic agents is extremely urgent. Angiotensin converting enzyme-2 (ACE-2), transmembrane protease serine subtype 2 (TMPRSS2), and Furin enzymes, which allow the virus to enter cells, are particularly important as potential drug targets among scientists. Olive leaf extract (OLE) has garnered attention for its potential against Coronavirus Disease-9 (COVID-19), yet its mechanism remains understudied. In this study, we aimed to investigate the effects of OLE on ACE-2, TMPRSS2, and Furin protein expressions by cell culture study. Total phenol, flavonoid content, and antioxidant capacity were measured by photometric methods, and oleuropein levels were measured by liquid LC-HR-MS. Cell viability was analyzed by ATP levels using a luminometric method. ACE-2, TMPRSS2, and Furin expressions were analyzed by the Western Blotting method. ACE-2, TMPRSS2, and Furin protein expression levels were significantly lower in a dose dependent manner and the highest inhibition was seen at 100 µg/ml OLE. The results showed that OLE may be a promising treatment candidate for COVID-19 disease. However, further studies need to be conducted in cells co-infected with the virus.

6.
Front Cell Infect Microbiol ; 14: 1391288, 2024.
Article de Anglais | MEDLINE | ID: mdl-38919703

RÉSUMÉ

The coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus, is a highly contagious respiratory disease with widespread societal impact. The symptoms range from cough, fever, and pneumonia to complications affecting various organs, including the heart, kidneys, and nervous system. Despite various ongoing efforts, no effective drug has been developed to stop the spread of the virus. Although various types of medications used to treat bacterial and viral diseases have previously been employed to treat COVID-19 patients, their side effects have also been observed. The way SARS-CoV-2 infects the human body is very specific, as its spike protein plays an important role. The S subunit of virus spike protein cleaved by human proteases, such as furin protein, is an initial and important step for its internalization into a human host. Keeping this context, we attempted to inhibit the furin using phytochemicals that could produce minimal side effects. For this, we screened 408 natural phytochemicals from various plants having antiviral properties, against furin protein, and molecular docking and dynamics simulations were performed. Based on the binding score, the top three compounds (robustaflavone, withanolide, and amentoflavone) were selected for further validation. MM/GBSA energy calculations revealed that withanolide has the lowest binding energy of -57.2 kcal/mol followed by robustaflavone and amentoflavone with a binding energy of -45.2 kcal/mol and -39.68 kcal/mol, respectively. Additionally, ADME analysis showed drug-like properties for these three lead compounds. Hence, these natural compounds robustaflavone, withanolide, and amentoflavone, may have therapeutic potential for the management of SARS-CoV-2 by targeting furin.


Sujet(s)
Antiviraux , Traitements médicamenteux de la COVID-19 , Furine , Simulation de docking moléculaire , Composés phytochimiques , SARS-CoV-2 , Furine/antagonistes et inhibiteurs , Furine/métabolisme , Composés phytochimiques/pharmacologie , Composés phytochimiques/composition chimique , Humains , SARS-CoV-2/effets des médicaments et des substances chimiques , SARS-CoV-2/enzymologie , Antiviraux/pharmacologie , Antiviraux/composition chimique , Inhibiteurs de protéases/pharmacologie , Inhibiteurs de protéases/composition chimique , Glycoprotéine de spicule des coronavirus/métabolisme , Glycoprotéine de spicule des coronavirus/antagonistes et inhibiteurs , Glycoprotéine de spicule des coronavirus/composition chimique , COVID-19/virologie , Liaison aux protéines
7.
Vet Microbiol ; 295: 110164, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-38936155

RÉSUMÉ

The membrane-associated RING-CH (MARCH) family of proteins are members of the E3 ubiquitin ligase family and are essential for a variety of biological functions. Currently, MARCH proteins are discovered to execute antiviral functions by directly triggering viral protein degradation or blocking the furin cleavage of viral class I fusion proteins. Here, we report a novel antiviral mechanism of MARCH1 and MARCH2 (MARCH1/2) in the replication of Pseudorabies virus (PRV), a member of the Herpesviridae family. We discovered MARCH1/2 restrict PRV replication at the cell-to-cell fusion step. Furthermore, MARCH1/2 block gB cleavage, and this is dependent on their E3 ligase activity. Interestingly, the blocking of gB cleavage by MARCH1/2 does not contribute to their antiviral activity in vitro. We discovered that MARCH1/2 are associated with the cell-to-cell fusion complex of gB, gD, gH, and gL and trap these viral proteins in the trans-Golgi network (TGN) rather than degrading them. Overall, we conclude that MARCH1/2 inhibit PRV by trapping the viral cell-to-cell fusion complex in TGN.


Sujet(s)
Herpèsvirus porcin de type 1 , Ubiquitin-protein ligases , Réplication virale , Réseau trans-golgien , Herpèsvirus porcin de type 1/physiologie , Animaux , Réseau trans-golgien/virologie , Réseau trans-golgien/métabolisme , Ubiquitin-protein ligases/métabolisme , Fusion cellulaire , Suidae , Lignée cellulaire , Humains , Protéines virales/métabolisme , Protéines virales/génétique , Cellules HEK293 , Maladie d'Aujeszky/virologie
8.
bioRxiv ; 2024 Apr 26.
Article de Anglais | MEDLINE | ID: mdl-38712144

RÉSUMÉ

PACS (Phosphofurin Acidic Cluster Sorting Protein) proteins are known for their roles in sorting cargo proteins to organelles and can physically interact with WD40 repeat-containing protein WDR37. PACS1, PACS2, and WDR37 variants are associated with multisystemic syndromes and neurodevelopmental disorders characterized by intellectual disability, seizures, developmental delays, craniofacial abnormalities, and autism spectrum disorder. However, the effects of syndromic variants on function in vivo remains unknown. Here, we report the expression pattern of C. elegans orthologs of PACS and WDR37 and their interaction. We show that cePACS-1 and ceWDR-37 co-localize to somatic cytoplasm of many types of cells, and are mutually required for expression, supporting a conclusion that the intermolecular dependence of PACS1/PACS2/PACS-1 and WDR37/WDR-37 is evolutionarily conserved. We further show that editing in PACS1 and PACS2 variants in cePACS-1 changes protein localization in multiple cell types, including neurons. Moreover, expression of human PACS1 can functionally complement C. elegans PACS-1 in neurons, demonstrating conserved functions of the PACS-WDR37 axis in an invertebrate model system. Our findings reveal effects of human variants and suggest potential strategies to identify regulatory network components that may contribute to understanding molecular underpinnings of PACS/WDR37 syndromes.

9.
Drug Discov Today ; 29(7): 104026, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38762086

RÉSUMÉ

SARS-CoV-2 has triggered an international outbreak of the highly contagious acute respiratory disease known as COVID-19. Identifying key targets in the virus infection lifecycle is crucial for developing effective prevention and therapeutic strategies against it. Furin is a serine endoprotease that belongs to the family of proprotein convertases and plays a critical role in the entry of host cells by SARS-CoV-2. Furin can cleave a specific S1/S2 site, PRRAR, on the spike protein of SARS-CoV-2, which promotes viral transmission by facilitating membrane fusion. Hence, targeting furin could hold clinical implications for the prevention and treatment of COVID-19. This review offers an overview of furin's structure, substrates, function, and inhibitors, with a focus on its potential role in SARS-CoV-2 infection.


Sujet(s)
Antiviraux , Traitements médicamenteux de la COVID-19 , COVID-19 , Furine , SARS-CoV-2 , Furine/métabolisme , Humains , COVID-19/prévention et contrôle , Antiviraux/pharmacologie , Antiviraux/usage thérapeutique , SARS-CoV-2/effets des médicaments et des substances chimiques , Pénétration virale/effets des médicaments et des substances chimiques , Animaux , Glycoprotéine de spicule des coronavirus/métabolisme
10.
Article de Anglais | MEDLINE | ID: mdl-38820014

RÉSUMÉ

BACKGROUND: In the pathogenesis of atherosclerotic cardiovascular disorders, vascular endothelium is crucial. A critical step in the development of atherosclerosis is endothelial dysfunction. Furin may play a factor in vascular remodeling, inflammatory cell infiltration, regulation of plaque stability, and atherosclerosis by affecting the adhesion and migration of endothelial cells. It is yet unknown, though, how furin contributes to endothelial dysfunction. METHODS: We stimulated endothelial cells with oxidized modified lipoprotein (ox-LDL). Endothelial-to-mesenchymal transition (EndMT) was found using immunofluorescence (IF) and western blot (WB). Furin expression level and Hippo/YAP signal activation were found using reverse transcription-quantitative PCR (RT-qPCR) and WB, respectively. To achieve the goal of furin knockdown, we transfected siRNA using the RNA transmate reagent. Following furin knockdown, cell proliferation, and migration were assessed by the CCK-8, scratch assay, and transwell gold assay, respectively. WB and IF both picked up on EndMT. WB and RT-qPCR, respectively, were used to find furin's expression level. We chose the important micrornas that can regulate furin and we then confirmed them using RT-qPCR. RESULTS: EndMT was created by ox-LDL, evidenced by the up-regulation of mesenchymal cell markers and the down-regulation of endothelial cell markers. Furin expression levels in both protein and mRNA were increased, and the Hippo/YAP signaling pathway was turned on. Furin knockdown dramatically reduced the aberrant migration and proliferation of endothelial cells by ox-LDL stimulation. Furin knockdown can also suppress ox-LDL-induced EndMT, up-regulate indicators of endothelial cells, and down-regulate markers of mesenchymal cells. After ox-LDL stimulation and siRNA transfection, furin's expression level was up-regulated and down-regulated. CONCLUSION: Our study demonstrated that furin knockdown could affect ox-LDL-induced abnormal endothelial cell proliferation, migration, and EndMT. This implies that furin plays an important role in endothelial dysfunction.

11.
Infection ; 2024 May 04.
Article de Anglais | MEDLINE | ID: mdl-38703289

RÉSUMÉ

BACKGROUND AND AIM: A wide range of clinical manifestations and outcomes, including liver injury, have been reported in COVID-19 patients. We investigated the association of three substantial gene polymorphisms (FURIN, IFNL4, and TLR2) with COVID-19 disease susceptibility and severity to help predict prognosis. METHODS: 150 adult COVID-19-assured cases were categorized as follows: 78 patients with a non-severe presentation, 39 patients with severe disease, and 33 critically ill patients. In addition, 74 healthy controls were included. Clinical and laboratory evaluations were carried out, including complete and differential blood counts, D-dimer, lactate dehydrogenase (LDH), C-reactive protein (CRP), procalcitonin, ferritin, interleukin-6 (Il-6), and liver and kidney functions. FURIN (rs6226), IFNL4 (rs12979860), and TLR2 (rs3804099) genotyping allelic discrimination assays were conducted using real-time PCR. RESULTS: The FURIN, IFNL4, and TLR2 genotypes and their alleles differed significantly between COVID-19 patients and controls, as well as between patients with severe or critical illness and those with a non-severe presentation. According to a multivariable regression analysis, FURIN (C/T + T/T) and TLR2 (T/C + C/C) mutants were associated with COVID-19 susceptibility, with odds ratios of 3.293 and 2.839, respectively. FURIN C/C and IFNL4 T/T mutants were significantly linked to severe and critical illnesses. Multivariate regression analysis showed that FURIN (G/C + C/C) genotypes and IFNL4 T/T homozygosity were independent risk factors associated with increased mortality. CONCLUSION: FURIN, IFNL4, and TLR2 gene variants are associated with the risk of COVID-19 occurrence as well as increased severity and poor outcomes in Egyptian patients.

12.
Int J Mol Sci ; 25(10)2024 May 07.
Article de Anglais | MEDLINE | ID: mdl-38791119

RÉSUMÉ

SARS-CoV-2 is the pathogen responsible for the most recent global pandemic, which has claimed hundreds of thousands of victims worldwide. Despite remarkable efforts to develop an effective vaccine, concerns have been raised about the actual protection against novel variants. Thus, researchers are eager to identify alternative strategies to fight against this pathogen. Like other opportunistic entities, a key step in the SARS-CoV-2 lifecycle is the maturation of the envelope glycoprotein at the RARR685↓ motif by the cellular enzyme Furin. Inhibition of this cleavage greatly affects viral propagation, thus representing an ideal drug target to contain infection. Importantly, no Furin-escape variants have ever been detected, suggesting that the pathogen cannot replace this protease by any means. Here, we designed a novel fluorogenic SARS-CoV-2-derived substrate to screen commercially available and custom-made libraries of small molecules for the identification of new Furin inhibitors. We found that a peptide substrate mimicking the cleavage site of the envelope glycoprotein of the Omicron variant (QTQTKSHRRAR-AMC) is a superior tool for screening Furin activity when compared to the commercially available Pyr-RTKR-AMC substrate. Using this setting, we identified promising novel compounds able to modulate Furin activity in vitro and suitable for interfering with SARS-CoV-2 maturation. In particular, we showed that 3-((5-((5-bromothiophen-2-yl)methylene)-4-oxo-4,5 dihydrothiazol-2-yl)(3-chloro-4-methylphenyl)amino)propanoic acid (P3, IC50 = 35 µM) may represent an attractive chemical scaffold for the development of more effective antiviral drugs via a mechanism of action that possibly implies the targeting of Furin secondary sites (exosites) rather than its canonical catalytic pocket. Overall, a SARS-CoV-2-derived peptide was investigated as a new substrate for in vitro high-throughput screening (HTS) of Furin inhibitors and allowed the identification of compound P3 as a promising hit with an innovative chemical scaffold. Given the key role of Furin in infection and the lack of any Food and Drug Administration (FDA)-approved Furin inhibitor, P3 represents an interesting antiviral candidate.


Sujet(s)
Furine , SARS-CoV-2 , Bibliothèques de petites molécules , Furine/antagonistes et inhibiteurs , Furine/métabolisme , SARS-CoV-2/effets des médicaments et des substances chimiques , SARS-CoV-2/métabolisme , Humains , Bibliothèques de petites molécules/pharmacologie , Bibliothèques de petites molécules/composition chimique , Antiviraux/pharmacologie , Antiviraux/composition chimique , COVID-19/virologie , Glycoprotéine de spicule des coronavirus/métabolisme , Glycoprotéine de spicule des coronavirus/antagonistes et inhibiteurs , Glycoprotéine de spicule des coronavirus/composition chimique , Glycoprotéine de spicule des coronavirus/génétique , Évaluation préclinique de médicament/méthodes
13.
bioRxiv ; 2024 Mar 11.
Article de Anglais | MEDLINE | ID: mdl-38559216

RÉSUMÉ

The rapid evolution of SARS-CoV-2 variants presents a constant challenge to the global vaccination effort. In this study, we conducted a comprehensive investigation into two newly emerged variants, BA.2.87.1 and JN.1, focusing on their neutralization resistance, infectivity, antigenicity, cell-cell fusion, and spike processing. Neutralizing antibody (nAb) titers were assessed in diverse cohorts, including individuals who received a bivalent mRNA vaccine booster, patients infected during the BA.2.86/JN.1-wave, and hamsters vaccinated with XBB.1.5-monovalent vaccine. We found that BA.2.87.1 shows much less nAb escape from WT-BA.4/5 bivalent mRNA vaccination and JN.1-wave breakthrough infection sera compared to JN.1 and XBB.1.5. Interestingly. BA.2.87.1 is more resistant to neutralization by XBB.15-monovalent-vaccinated hamster sera than BA.2.86/JN.1 and XBB.1.5, but efficiently neutralized by a class III monoclonal antibody S309, which largely fails to neutralize BA.2.86/JN.1. Importantly, BA.2.87.1 exhibits higher levels of infectivity, cell-cell fusion activity, and furin cleavage efficiency than BA.2.86/JN.1. Antigenically, we found that BA.2.87.1 is closer to the ancestral BA.2 compared to other recently emerged Omicron subvariants including BA.2.86/JN.1 and XBB.1.5. Altogether, these results highlight immune escape properties as well as biology of new variants and underscore the importance of continuous surveillance and informed decision-making in the development of effective vaccines.

14.
Nutrients ; 16(8)2024 Apr 15.
Article de Anglais | MEDLINE | ID: mdl-38674868

RÉSUMÉ

Vitamin A deficiency (VAD) induced TGF-ß hyperactivation and reduced expression of cell adhesion proteins in the lung, suggesting that the disruption of retinoic acid (RA) signaling leads to epithelial-mesenchymal transition (EMT). To elucidate the role of lung vitamin A status in EMT, several EMT markers and the expression of the proprotein convertase furin, which activates TGF-ß, were analyzed in two experimental models. Our in vivo model included control rats, VAD rats, and both control rats and VAD rats, treated with RA. For the in vitro studies, human bronchoalveolar epithelial cells treated with RA were used. Our data show that EMT and furin are induced in VAD rats. Furthermore, furin expression continues to increase much more markedly after treatment of VAD rats with RA. In control rats and cell lines, an acute RA treatment induced a significant increase in furin expression, concomitant with changes in EMT markers. A ChIP assay demonstrated that RA directly regulates furin transcription. These results emphasize the importance of maintaining vitamin A levels within the physiological range since both levels below and above this range can cause adverse effects that, paradoxically, could be similar. The role of furin in EMT is discussed.


Sujet(s)
Transition épithélio-mésenchymateuse , Furine , Poumon , Carence en vitamine A , Rétinol , Furine/métabolisme , Transition épithélio-mésenchymateuse/effets des médicaments et des substances chimiques , Animaux , Humains , Poumon/métabolisme , Poumon/effets des médicaments et des substances chimiques , Rétinol/pharmacologie , Rétinol/métabolisme , Rats , Carence en vitamine A/métabolisme , Mâle , Trétinoïne/pharmacologie , Cellules épithéliales/métabolisme , Cellules épithéliales/effets des médicaments et des substances chimiques , Transduction du signal/effets des médicaments et des substances chimiques , Facteur de croissance transformant bêta/métabolisme , Lignée cellulaire , Rat Wistar
15.
mBio ; 15(5): e0075124, 2024 May 08.
Article de Anglais | MEDLINE | ID: mdl-38591890

RÉSUMÉ

The rapid evolution of SARS-CoV-2 variants presents a constant challenge to the global vaccination effort. In this study, we conducted a comprehensive investigation into two newly emerged variants, BA.2.87.1 and JN.1, focusing on their neutralization resistance, infectivity, antigenicity, cell-cell fusion, and spike processing. Neutralizing antibody (nAb) titers were assessed in diverse cohorts, including individuals who received a bivalent mRNA vaccine booster, patients infected during the BA.2.86/JN.1-wave, and hamsters vaccinated with XBB.1.5-monovalent vaccine. We found that BA.2.87.1 shows much less nAb escape from WT-BA.4/5 bivalent mRNA vaccination and JN.1-wave breakthrough infection sera compared to JN.1 and XBB.1.5. Interestingly, BA.2.87.1 is more resistant to neutralization by XBB.1.5-monovalent-vaccinated hamster sera than BA.2.86/JN.1 and XBB.1.5, but efficiently neutralized by a class III monoclonal antibody S309, which largely fails to neutralize BA.2.86/JN.1. Importantly, BA.2.87.1 exhibits higher levels of infectivity, cell-cell fusion activity, and furin cleavage efficiency than BA.2.86/JN.1. Antigenically, we found that BA.2.87.1 is closer to the ancestral BA.2 compared to other recently emerged Omicron subvariants including BA.2.86/JN.1 and XBB.1.5. Altogether, these results highlight immune escape properties as well as biology of new variants and underscore the importance of continuous surveillance and informed decision-making in the development of effective vaccines. IMPORTANCE: This study investigates the recently emerged SARS-CoV-2 variants, BA.2.87.1 and JN.1, in comparison to earlier variants and the parental D614G. Varied infectivity and cell-cell fusion activity among these variants suggest potential disparities in their ability to infect target cells and possibly pathogenesis. BA.2.87.1 exhibits lower nAb escape from bivalent mRNA vaccinee and BA.2.86/JN.1-infected sera than JN.1 but is relatively resistance to XBB.1.5-vaccinated hamster sera, revealing distinct properties in immune reason and underscoring the significance of continuing surveillance of variants and reformulation of vaccines. Antigenic differences between BA.2.87.1 and other earlier variants yield critical information not only for antibody evasion but also for viral evolution. In conclusion, this study furnishes timely insights into the spike biology and immune escape of the emerging variants BA.2.87.1 and JN.1, thus guiding effective vaccine development and informing public health interventions.


Sujet(s)
Anticorps neutralisants , Anticorps antiviraux , COVID-19 , Fusion cellulaire , Échappement immunitaire , SARS-CoV-2 , Animaux , SARS-CoV-2/immunologie , SARS-CoV-2/génétique , Anticorps neutralisants/immunologie , Anticorps neutralisants/sang , COVID-19/immunologie , COVID-19/virologie , Humains , Anticorps antiviraux/sang , Anticorps antiviraux/immunologie , Cricetinae , Glycoprotéine de spicule des coronavirus/immunologie , Glycoprotéine de spicule des coronavirus/génétique , Vaccins contre la COVID-19/immunologie
16.
Cells ; 13(7)2024 Mar 28.
Article de Anglais | MEDLINE | ID: mdl-38607027

RÉSUMÉ

The pro-protein convertase FURIN (PCSK3) is implicated in a wide range of normal and pathological biological processes such as infectious diseases, cancer and cardiovascular diseases. Previously, we performed a systemic inhibition of FURIN in a mouse model of atherosclerosis and demonstrated significant plaque reduction and alterations in macrophage function. To understand the cellular mechanisms affected by FURIN inhibition in myeloid cells, we optimized a CRISPR-mediated gene deletion protocol for successfully deriving hemizygous (HZ) and nullizygous (NZ) FURIN knockout clones in U937 monocytic cells using lipotransfection-based procedures and a dual guide RNA delivery strategy. We observed differences in monocyte and macrophage functions involving phagocytosis, lipid accumulation, cell migration, inflammatory gene expression, cytokine release patterns, secreted proteomics (cytokines) and whole-genome transcriptomics between wild-type, HZ and NZ FURIN clones. These studies provide a mechanistic basis on the possible roles of myeloid cell FURIN in cardiovascular disorders.


Sujet(s)
Furine , Édition de gène , Monocytes , Animaux , Humains , Souris , Clustered regularly interspaced short palindromic repeats , Cytokines/génétique , Furine/génétique , Furine/métabolisme , Monocytes/métabolisme , Multi-omique , , Cellules U937
17.
Am J Physiol Renal Physiol ; 326(6): F1066-F1077, 2024 Jun 01.
Article de Anglais | MEDLINE | ID: mdl-38634134

RÉSUMÉ

The epithelial Na+ channel (ENaC) γ subunit is essential for homeostasis of Na+, K+, and body fluid. Dual γ subunit cleavage before and after a short inhibitory tract allows dissociation of this tract, increasing channel open probability (PO), in vitro. Cleavage proximal to the tract occurs at a furin recognition sequence (143RKRR146, in the mouse γ subunit). Loss of furin-mediated cleavage prevents in vitro activation of the channel by proteolysis at distal sites. We hypothesized that 143RKRR146 mutation to 143QQQQ146 (γQ4) in 129/Sv mice would reduce ENaC PO, impair flow-stimulated flux of Na+ (JNa) and K+ (JK) in perfused collecting ducts, reduce colonic amiloride-sensitive short-circuit current (ISC), and impair Na+, K+, and body fluid homeostasis. Immunoblot of γQ4/Q4 mouse kidney lysates confirmed loss of a band consistent in size with the furin-cleaved proteolytic fragment. However, γQ4/Q4 male mice on a low Na+ diet did not exhibit altered ENaC PO or flow-induced JNa, though flow-induced JK modestly decreased. Colonic amiloride-sensitive ISC in γQ4/Q4 mice was not altered. γQ4/Q4 males, but not females, exhibited mildly impaired fluid volume conservation when challenged with a low Na+ diet. Blood Na+ and K+ were unchanged on a regular, low Na+, or high K+ diet. These findings suggest that biochemical evidence of γ subunit cleavage should not be used in isolation to evaluate ENaC activity. Furthermore, factors independent of γ subunit cleavage modulate channel PO and the influence of ENaC on Na+, K+, and fluid volume homeostasis in 129/Sv mice, in vivo.NEW & NOTEWORTHY The epithelial Na+ channel (ENaC) is activated in vitro by post-translational proteolysis. In vivo, low Na+ or high K+ diets enhance ENaC proteolysis, and proteolysis is hypothesized to contribute to channel activation in these settings. Using a mouse expressing ENaC with disruption of a key proteolytic cleavage site, this study demonstrates that impaired proteolytic activation of ENaC's γ subunit has little impact upon channel open probability or the ability of mice to adapt to low Na+ or high K+ diets.


Sujet(s)
Canaux sodium épithéliaux , Protéolyse , Sodium , Animaux , Canaux sodium épithéliaux/métabolisme , Canaux sodium épithéliaux/génétique , Mâle , Femelle , Sodium/métabolisme , Tubules collecteurs rénaux/métabolisme , Homéostasie , Furine/métabolisme , Furine/génétique , Souris , Côlon/métabolisme , Potassium/métabolisme , Régime pauvre en sel , Souris de souche-129 , Mutation , Amiloride/pharmacologie
18.
Microbiol Res ; 282: 127659, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38430890

RÉSUMÉ

The presence of a multibasic cleavage site in the Spike protein of SARS-CoV-2 makes it prone to be cleaved by Furin at the S1/S2 junction (aa. 685-686), which enhances the usage of TMPRSS2 to promote cell-cell fusion to form syncytia. Syncytia may contribute to pathology by facilitating viral dissemination, cytopathicity, immune evasion, and inflammation. However, the role of other SARS-CoV-2 encoding viral proteins in syncytia formation remains largely unknown. Here, we report that SARS-CoV-2 M protein effectively inhibits syncytia formation triggered by Spike or its variants (Alpha, Delta, Omicron, etc.) and prevents Spike cleavage into S1 and S2 based on a screen assay of 20 viral proteins. Mechanistically, M protein interacts with Furin and inhibits its enzymatic activity, preventing the cleavage of Spike. In addition, M interacts with Spike independent of its cytoplasmic tail, retaining it within the cytoplasm and reducing cell membrane localization. Our findings offer new insights into M protein's role in regulating Spike's function and underscore the importance of functional interplay among viral proteins, highlighting potential avenues for SARS-CoV-2 therapy development.


Sujet(s)
COVID-19 , Furine , Humains , SARS-CoV-2 , Membrane cellulaire , Protéines membranaires , Glycoprotéine de spicule des coronavirus
19.
Viruses ; 16(3)2024 02 22.
Article de Anglais | MEDLINE | ID: mdl-38543698

RÉSUMÉ

The human genome is estimated to encode more than 500 proteases performing a wide range of important physiological functions. They digest proteins in our food, determine the activity of hormones, induce cell death and regulate blood clotting, for example. During viral infection, however, some proteases can switch sides and activate viral glycoproteins, allowing the entry of virions into new target cells and the spread of infection. To reduce unwanted effects, multiple protease inhibitors regulate the proteolytic processing of self and non-self proteins. This review summarizes our current knowledge of endogenous protease inhibitors, which are known to limit viral replication by interfering with the proteolytic activation of viral glycoproteins. We describe the underlying molecular mechanisms and highlight the diverse strategies by which protease inhibitors reduce virion infectivity. We also provide examples of how viruses evade the restriction imposed by protease inhibitors. Finally, we briefly outline how cellular protease inhibitors can be modified and exploited for therapeutic purposes. In summary, this review aims to summarize our current understanding of cellular protease inhibitors as components of our immune response to a variety of viral pathogens.


Sujet(s)
Inhibiteurs de protéases , Virus , Humains , Inhibiteurs de protéases/pharmacologie , Glycoprotéines/métabolisme , Protéolyse , Virus/métabolisme , Peptide hydrolases/métabolisme
20.
Biochem Cell Biol ; 102(3): 275-284, 2024 Jun 01.
Article de Anglais | MEDLINE | ID: mdl-38484367

RÉSUMÉ

Neutrophil myeloperoxidase/H2O2/chloride system is a key mechanism to control pathogen infection. This enzyme, myeloperoxidase, plays a pivotal role in the arsenal of azurophilic granules that are released through degranulation upon neutrophil activation, which trigger local hypochlorous acid production. Myeloperoxidase gene encodes a protein precursor named promyeloperoxidase that arbors a propeptide that gets cleaved later during secretory routing in post-endoplasmic reticulum compartments. Although evidence suggested that this processing event was performed by one or different enzymes from the proprotein convertases family, the identity of this enzyme was never investigated. In this work, the naturally producing myeloperoxidase promyelocytic cell line HL-60 was used to investigate promyeloperoxidase cleavage during granulocytic differentiation in response to proprotein convertase inhibitors decanoyl-RVKR-chloromethylketone and hexa-d-arginine. Stable PC knockdown of endogenously expressed proprotein convertases, furin and PC7, was achieved using lentiviral delivery of shRNAs. None of the knockdown cell line could reproduce the effect of the pan-proprotein convertases inhibitor decanoyl-RVKR-chloromethylketone that accumulated intracellular promyeloperoxidase stores in HL-60 cells, therefore illustrating that both furin and PC7 redundantly process this proprotein.


Sujet(s)
Furine , Myeloperoxidase , Humains , Cellules HL-60 , Furine/métabolisme , Furine/génétique , Myeloperoxidase/métabolisme , Granulocytes/métabolisme , Granulocytes/cytologie , Différenciation cellulaire , Subtilisines/métabolisme , Proenzymes/métabolisme , Proenzymes/génétique , Chlorométhyl cétones d'acides aminés/pharmacologie
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE