Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 38
Filtrer
1.
Cell Biochem Funct ; 42(6): e4102, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-39076066

RÉSUMÉ

GM1 gangliosidosis is one type of hereditary error of metabolism that occurs due to the absence or reduction of ß-galactosidase enzyme content in the lysosome of cells, including neurons. In vitro, the use of neural cell lines could facilitate the study of this disease. By creating a cell model of GM1 gangliosidosis on the SH-SY5Y human nerve cell line, it is possible to understand the main role of this enzyme in breaking down lipid substrate and other pathophysiologic phenomena this disease. To knock-out the human GLB1 gene, guides targeting exons 14 and 16 of the GLB1 gene were designed using the CRISPOR and CHOP-CHOP websites, and high-efficiency guides were selected for cloning in the PX458 vector. After confirming the cloning, the vectors were transformed into DH5α bacteria and then the target vector was extracted and transfected into human nerve cells (SH-SY5Y cell line) by electroporation. After 48 h, GFP+ cells were sorted using the FACS technique and homozygous (compound heterozygous) single cells were isolated using the serial dilution method and sequencing was done to confirm them. Finally, gap PCR tests, X-gal and Periodic acid-Schiff (PAS) staining, and qPCR were used to confirm the knock-out of the human GLB1 gene. Additionally, RNA sequencing data analysis from existing data of the Gene Expression Omnibus (GEO) was used to find the correlation of GLB1 with other genes, and then the top correlated genes were tested for further evaluation of knock-out effects. The nonviral introduction of two guides targeting exons 14 and 16 of the GLB1 gene into SH-SY5Y cells led to the deletion of a large fragment with a size of 4.62 kb. In contrast to the non-transfected cell, X-gal staining resulted in no blue color in GLB1 gene knock-out cells indicating the absence of ß-galactosidase enzyme activity in these cells. Real-time PCR (qPCR) results confirmed the RNA-Seq analysis outcomes on the GEO data set and following the GLB1 gene knock-out, the expression of its downstream genes, NEU1 and CTSA, has been decreased. It has been also shown that the downregulation of GLB1-NEU1-CTSA complex gene was involved in suppressed proliferation and invasion ability of knock-out cells. This study proved that using dual guide RNA can be used as a simple and efficient tool for targeting the GLB1 gene in nerve cells and the knockout SH-SY5Y cells can be used as a model investigation of basic and therapeutic surveys for GM1 gangliosidosis disease.


Sujet(s)
Systèmes CRISPR-Cas , Gangliosidose à GM1 , Humains , Gangliosidose à GM1/génétique , Gangliosidose à GM1/métabolisme , beta-Galactosidase/métabolisme , beta-Galactosidase/génétique , Neurones/métabolisme , Techniques de knock-out de gènes , Modèles biologiques
2.
Diagnostics (Basel) ; 14(5)2024 Feb 24.
Article de Anglais | MEDLINE | ID: mdl-38472963

RÉSUMÉ

Gangliosidosis (ORPHA: 79255) is an autosomal recessive lysosomal storage disease (LSD) with a variable phenotype and an incidence of 1:200000 live births. The underlying genotype is comprised GLB1 mutations that lead to ß-galactosidase deficiency and subsequently to the accumulation of monosialotetrahexosylganglioside (GM1) in the brain and other organs. In total, two diseases have been linked to this gene mutation: Morquio type B and Gangliosidosis. The most frequent clinical manifestations include dysmorphic facial features, nervous and skeletal systems abnormalities, hepatosplenomegaly, and cardiomyopathies. The correct diagnosis of GM1 is a challenge due to the overlapping clinical manifestation between this disease and others, especially in infants. Therefore, in the current study we present the case of a 3-month-old male infant, admitted with signs and symptoms of respiratory distress alongside rapid progressive heart failure, with minimal neurologic and skeletal abnormalities, but with cardiovascular structural malformations. The atypical clinical presentation raised great difficulties for our diagnostic team. Unfortunately, the diagnostic of GM1 was made postmortem based on the DBS test and we were able to correlate the genotype with the unusual phenotypic findings.

3.
Front Genet ; 15: 1344051, 2024.
Article de Anglais | MEDLINE | ID: mdl-38404665

RÉSUMÉ

Ganglioside-monosialic acid (GM1) gangliosidosis (ICD-10: E75.1; OMIM: 230500, 230600, 230650) is a rare autosomal recessive hereditary disease, lysosomal storage disorder caused by mutations in the GLB1 gene that lead to the absence or insufficiency of ß-galactosidase. In this study, we report a case of a Russian family with a history of GM1 gangliosidosis. The family had a child who, from the age of 6 months, experienced a gradual loss of developmental skills, marked by muscle flaccidity, psychomotor retardation, hepatosplenomegaly, and the onset of tonic seizures by the age of 8 months. Funduscopic examination revealed a «cherry red spot¼ in the macula, which is crucial for the diagnosis of lipid storage disorders. To find the pathogenic variants responsible for these clinical symptoms, the next-generation sequencing approach was used. The analysis revealed two variants in the heterozygous state: a frameshift variant c.699delG (rs1452318343, ClinVar ID 928700) in exon 6 and a missense variant c.809A>C (rs371546950, ClinVar ID 198727) in exon 8 of the GLB1 gene. The spouses were advised to plan the pregnancy with assisted reproductive technology (ART), followed by preimplantation genetic testing for monogenic disorder (PGT-M) on the embryos. Trophectoderm biopsy was performed on 8 out of 10 resulting embryos at the blastocyst stage. To perform PGT-M, we developed a novel testing system, allowing for direct analysis of disease-causing mutations, as well as haplotype analysis based on the study of polymorphic markers-short tandem repeats (STR), located upstream and downstream of the GLB1 gene. The results showed that four embryos were heterozygous carriers of pathogenic variants in the GLB1 gene (#1, 2, 5, 8). Two embryos had a compound heterozygous genotype (#3, 4), while the embryos #7 and 9 did not carry disease-causing alleles of the GLB1 gene. The embryo #7 without pathogenic variants was transferred after consideration of its morphology and growth rate. Prenatal diagnosis in the first trimester showed the absence of the variants analyzed in the GLB1 gene in the fetus. The pregnancy resulted in the delivery of a female infant who did not inherit the disease-causing variants in the GLB1 gene.

5.
Cell Biochem Funct ; 41(8): 1093-1105, 2023 Dec.
Article de Anglais | MEDLINE | ID: mdl-38018878

RÉSUMÉ

One of the most important inherited metabolic disorders is GM1 gangliosidosis, which is a progressive neurological disorder. The main cause of this disease is a genetic defect in the enzyme ß-galactosidase due to a mutation in the glb1 gene. Lack of this enzyme in cells (especially neurons) leads to the accumulation of ganglioside substrate in nerve tissues, followed by three clinical forms of GM1 disease (neonatal, juvenile, and adult variants). Genetically, many mutations occur in the exons of the glb1 gene, such as exons 2, 6, 15, and 16, so the most common ones reported in scientific studies include missense/nonsense mutations. Therefore, many studies have examined the genotype-phenotype relationships of this disease and subsequently using gene therapy techniques have been able to reduce the complications of the disease and alleviate the signs and symptoms of the disease. In this regard, the present article reviews the general features of GM1 gangliosidosis and its mutations, as well as gene therapy studies and animal and human models of the disease.


Sujet(s)
Gangliosidose à GM1 , Adulte , Animaux , Nouveau-né , Humains , Gangliosidose à GM1/génétique , Gangliosidose à GM1/thérapie , Mutation , Mutation faux-sens , Neurones , Thérapie génétique
6.
Mol Genet Metab ; 138(2): 107508, 2023 02.
Article de Anglais | MEDLINE | ID: mdl-36709532

RÉSUMÉ

GM1 gangliosidosis is a rare lysosomal storage disorder affecting multiple organ systems, primarily the central nervous system, and is caused by functional deficiency of ß-galactosidase (GLB1). Using CRISPR/Cas9 genome editing, we generated a mouse model to evaluate characteristics of the disease in comparison to GM1 gangliosidosis patients. Our Glb1-/- mice contain small deletions in exons 2 and 6, producing a null allele. Longevity is approximately 50 weeks and studies demonstrated that female Glb1-/- mice die six weeks earlier than male Glb1-/- mice. Gait analyses showed progressive abnormalities including abnormal foot placement, decreased stride length and increased stance width, comparable with what is observed in type II GM1 gangliosidosis patients. Furthermore, Glb1-/- mice show loss of motor skills by 20 weeks assessed by adhesive dot, hanging wire, and inverted grid tests, and deterioration of motor coordination by 32 weeks of age when evaluated by rotarod testing. Brain MRI showed progressive cerebellar atrophy in Glb1-/- mice as seen in some patients. In addition, Glb1-/- mice also show significantly increased levels of a novel pentasaccharide biomarker in urine and plasma which we also observed in GM1 gangliosidosis patients. Glb1-/- mice also exhibit accumulation of glycosphingolipids in the brain with increases in GM1 and GA1 beginning by 8 weeks. Surprisingly, despite being a null variant, this Glb1-/- mouse most closely models the less severe type II disease and will guide the development of new therapies for patients with the disorder.


Sujet(s)
Gangliosidose à GM1 , Maladies lysosomiales , Mâle , Femelle , Animaux , Souris , Gangliosidose à GM1/génétique , Souris knockout , beta-Galactosidase/génétique , Maladies lysosomiales/génétique , Exons
7.
JIMD Rep ; 63(6): 540-545, 2022 Nov.
Article de Anglais | MEDLINE | ID: mdl-36341176

RÉSUMÉ

Deficiency of the enzyme ß-galactosidase due to variants in the GLB1-gene is associated with metabolic disorders: Morquio B and GM1-gangliosidosis. Here, we report a case compound heterozygous for variants in the GLB1-gene and a severe muscular phenotype. Full body T1-w MRI was conducted for muscular involvement. Biopsy was stained with hematoxylin and eosin for histopathological evaluation. EDTA blood-sample was subjected to whole exome sequencing. Metabolic analysis included residual enzyme activity and evaluation urinary substrate secretion. Additionally, electroneurography, echocardiography, forced volume capacity and biochemistry were evaluated. Examination showed severe proximal weakness (MRC: hip flexion 2, hip extension 2, and shoulder rotation 2), Gower's sign, no extrapyramidal symptoms and normal creatine kinase levels. MRI showed severe muscle wasting of the thigh and shoulder girdle. Muscle biopsy showed mild myopathic changes. ß-galactosidase activity was reduced to 28%-34%. Urinary glycosaminoglycan was elevated by 5.9-8.6 mg/mmol (ref.:0-5.1 mg/mmol). Electrophoresis indicated excess keratan sulfate. Exome sequencing revealed two missense variants in the GLB1 gene. Clinical features, genetic testing and laboratory findings indicate a case of ß-galactosidase-deficiency with a muscular phenotype.

9.
Molecules ; 27(13)2022 Jun 22.
Article de Anglais | MEDLINE | ID: mdl-35807262

RÉSUMÉ

GM1 gangliosidosis is a rare lysosomal disease caused by the deficiency of the enzyme ß-galactosidase (ß-Gal; GLB1; E.C. 3.2.1.23), responsible for the hydrolysis of terminal ß-galactosyl residues from GM1 ganglioside, glycoproteins, and glycosaminoglycans, such as keratan-sulfate. With the aim of identifying new pharmacological chaperones for GM1 gangliosidosis, the synthesis of five new trihydroxypiperidine iminosugars is reported in this work. The target compounds feature a pentyl alkyl chain in different positions of the piperidine ring and different absolute configurations of the alkyl chain at C-2 and the hydroxy group at C-3. The organometallic addition of a Grignard reagent onto a carbohydrate-derived nitrone in the presence or absence of a suitable Lewis Acid was exploited, providing structural diversity at C-2, followed by the ring-closure reductive amination step. An oxidation-reduction process allowed access to a different configuration at C-3. The N-pentyl trihydroxypiperidine iminosugar was also synthesized for the purpose of comparison. The biological evaluation of the newly synthesized compounds was performed on leucocyte extracts from healthy donors and identified two suitable ß-Gal inhibitors, namely compounds 10 and 12. Among these, compound 12 showed chaperoning properties since it enhanced ß-Gal activity by 40% when tested on GM1 patients bearing the p.Ile51Asn/p.Arg201His mutations.


Sujet(s)
Gangliosidose à GM1 , Gangliosidose à GM1/traitement médicamenteux , Gangliosidose à GM1/génétique , Humains , Lysosomes , Chaperons moléculaires/génétique , Mutation , beta-Galactosidase/composition chimique
10.
J Exp Clin Cancer Res ; 41(1): 220, 2022 Jul 13.
Article de Anglais | MEDLINE | ID: mdl-35831908

RÉSUMÉ

BACKGROUND: The mechanism by which glioblastoma evades temozolomide (TMZ)-induced cytotoxicity is largely unknown. We hypothesized that mitochondria plays a role in this process. METHODS: RNA transcriptomes were obtained from tumor samples and online databases. Expression of different proteins was manipulated using RNA interference or gene amplification. Autophagic activity and mitochondrial metabolism was assessed in vitro using the respective cellular and molecular assays. In vivo analysis were also carried out in this study. RESULTS: High SH3GLB1 gene expression was found to be associated with higher disease grading and worse survival profiles. Single-cell transcriptome analysis of clinical samples suggested that SH3GLB1 and the altered gene levels of oxidative phosphorylation (OXPHOS) were related to subsets expressing a tumor-initiating cell signature. The SH3GLB1 protein was regulated by promoter binding with Sp1, a factor associated with TMZ resistance. Downregulation of SH3GLB1 resulted in retention of TMZ susceptibility, upregulated p62, and reduced LC3B-II. Autophagy inhibition by SH3GLB1 deficiency and chloroquine resulted in attenuated OXPHOS expression. Inhibition of SH3GLB1 in resistant cells resulted in alleviation of TMZ-enhanced mitochondrial metabolic function, such as mitochondrial membrane potential, mitochondrial respiration, and ATP production. SH3GLB1 modulation could determine tumor susceptibility to TMZ. Finally, in animal models, resistant tumor cells with SH3GLB1 knockdown became resensitized to the anti-tumor effect of TMZ, including the suppression of TMZ-induced autophagy and OXPHOS. CONCLUSIONS: SH3GLB1 promotes TMZ resistance via autophagy to alter mitochondrial function. Characterizing SH3GLB1 in glioblastoma may help develop new therapeutic strategies against this disease in the future.


Sujet(s)
Tumeurs du cerveau , Glioblastome , Animaux , Antinéoplasiques alcoylants/pharmacologie , Antinéoplasiques alcoylants/usage thérapeutique , Autophagie , Tumeurs du cerveau/traitement médicamenteux , Tumeurs du cerveau/génétique , Lignée cellulaire tumorale , Résistance aux médicaments antinéoplasiques/génétique , Glioblastome/traitement médicamenteux , Glioblastome/génétique , Glioblastome/anatomopathologie , Mitochondries , Témozolomide/pharmacologie , Témozolomide/usage thérapeutique
11.
Animals (Basel) ; 12(10)2022 May 12.
Article de Anglais | MEDLINE | ID: mdl-35625088

RÉSUMÉ

GM1 gangliosidosis is a progressive, recessive, autosomal, neurodegenerative, lysosomal storage disorder that affects the brain and multiple systemic organs due to an acid ß-galactosidase deficiency encoded by the GLB1 gene. This disease occurs in the Shiba Inu breed, which is one of the most popular traditional breeds in Japan, due to the GLB1:c.1649delC (p.P550Rfs*50) mutation. Previous surveys performed of the Shiba Inu population in Japan found a carrier rate of 1.02-2.94%. Currently, a miniature type of the Shiba Inu called "Mame Shiba", bred via artificial selection to yield smaller individuals, is becoming more popular than the standard Shiba Inu and it is now one of the most popular breeds in Japan and China. The GM1 gangliosidosis mutation has yet to be surveyed in the Mame Shiba population. This study aimed to determine the frequency of the mutant allele and carrier rate of GM1 gangliosidosis in the Mame Shiba breed. Blood samples were collected from 1832 clinically healthy adult Mame Shiba Inus used for breeding across 143 Japanese kennels. The genotyping was performed using a real-time PCR assay. The survey found nine carriers among the Mame Shibas, indicating that the carrier rate and mutant allele frequency were 0.49% and 0.00246, respectively. This study demonstrated that the mutant allele has already been inherited by the Mame Shiba population. There is a risk of GM1 gangliosidosis occurrence in the Mame Shiba breed if breeders use carriers for mating. Further genotyping surveys are necessary for breeding Mame Shibas to prevent the inheritance of this disease.

13.
Appl Clin Genet ; 14: 209-233, 2021.
Article de Anglais | MEDLINE | ID: mdl-33859490

RÉSUMÉ

The lysosomal storage disorder, GM1 gangliosidosis (GM1), is a neurodegenerative condition resulting from deficiency of the enzyme ß-galactosidase (ß-gal). Mutation of the GLB1 gene, which codes for ß-gal, prevents cleavage of the terminal ß-1,4-linked galactose residue from GM1 ganglioside. Subsequent accumulation of GM1 ganglioside and other substrates in the lysosome impairs cell physiology and precipitates dysfunction of the nervous system. Beyond palliative and supportive care, no FDA-approved treatments exist for GM1 patients. Researchers are critically evaluating the efficacy of substrate reduction therapy, pharmacological chaperones, enzyme replacement therapy, stem cell transplantation, and gene therapy for GM1. A Phase I/II clinical trial for GM1 children is ongoing to evaluate the safety and efficacy of adeno-associated virus-mediated GLB1 delivery by intravenous injection, providing patients and families with hope for the future.

14.
Mol Genet Metab ; 132(3): 180-188, 2021 03.
Article de Anglais | MEDLINE | ID: mdl-33558080

RÉSUMÉ

Morquio B disease is an attenuated phenotype within the spectrum of beta galactosidase (GLB1) deficiencies. It is characterised by dysostosis multiplex, ligament laxity, mildly coarse facies and heart valve defects due to keratan sulphate accumulation, predominantly in the cartilage. Morquio B patients have normal neurological development, setting them apart from those with the more severe GM1 gangliosidosis. Morquio B disease, with an incidence of 1:250.000 to 1:1.000.000 live births, is very rare. Here we report the clinical-biochemical data of nine patients. High amounts of keratan sulfate were detected using LC-MS/MS in the patients' urinary samples, while electrophoresis, the standard procedure of qualitative glycosaminoglycans analysis, failed to identify this metabolite in any of the patients' samples. We performed molecular analyses at gene, gene expression and protein expression levels, for both isoforms of the GLB1 gene, lysosomal GLB1, and the cell-surface expressed Elastin Binding Protein. We characterised three novel GLB1 mutations [c.75 + 2 T > G, c.575A > G (p.Tyr192Cys) and c.2030 T > G (p.Val677Gly)] identified in three heterozygous patients. We also set up a copy number variation assay by quantitative PCR to evaluate the presence of deletions/ insertions in the GLB1 gene. We propose a diagnostic plan, setting out the specific clinical- biochemical and molecular features of Morquio B, in order to avoid misdiagnoses and improve patients' management.


Sujet(s)
Gangliosidose à GM1/diagnostic , Glycosaminoglycanes/génétique , Mucopolysaccharidose de type IV/diagnostic , beta-Galactosidase/génétique , Enfant , Enfant d'âge préscolaire , Femelle , Gangliosidose à GM1/génétique , Gangliosidose à GM1/physiopathologie , Régulation de l'expression des gènes/génétique , Études d'associations génétiques , Prédisposition génétique à une maladie , Humains , Lysosomes/génétique , Mâle , Mucopolysaccharidose de type IV/génétique , Mucopolysaccharidose de type IV/physiopathologie , Mutation faux-sens/génétique , Récepteurs de surface cellulaire/génétique
15.
Metab Brain Dis ; 36(3): 499-508, 2021 03.
Article de Anglais | MEDLINE | ID: mdl-33394287

RÉSUMÉ

Lysosomal storage diseases comprise different forms of autosomal recessive disorders from which GM1 gangliosidosis has categorized by the accumulation of complex glycolipids associated with a range of progressive neurologic phenotypes. GM1 gangliosidosis is an inherited disorder that progressively destroys nerve cells (neurons) in the brain and spinal cord. GM1 has three main types of onsets, namely infantile (type I), juvenile (type II), and adult (type III) forms. This study provides a series of computational methods that examine the mutations that occurred in GLB1 protein. Initially, the mutational analysis started with 689 amino acid variants for a sequence-based screening and it was done with quite a few In-silico tools to narrow down the most significant variants by utilizing the standard tools; namely, Evolutionary analysis (77 variants), Pathogenicity prediction (44 variants), Stability predictions (30 variants), Biophysical functions (19 variants) and according to the binding site of protein structure with PDB ID 3THC, seven variants (Y83D, Y83H, Y270S, Y270D, W273R, W273D, and Y333H) were narrowed down. Structure based analysis was performed to understand the interacting profile of the native protein and variants with Miglustat; which is the currently used FDA drug as an alternative to enzyme replacement therapy. Molecular Docking study was done to analyze the protein interaction with Miglustat (ligand), as a result native (3THC) structure had a binding affinity of -8.18 kcal/mol and two variant structures had an average binding affinities of -2.61 kcal/mol (Y83D) and - 7.63 kcal/mol (Y270D). Finally, Molecular Dynamics Simulation was performed to know the mutational activity of the protein structures on Miglustat for 50,000 ps. The Y83D variant showed higher deviation than native protein and Y270D in all trajectory analysis. The analysis was done to the protein structures to check the structural variations happened through simulations. This study aids to understand the most deleterious mutants, the activity of the drug to the protein structure and also gives an insight on the stability of the drug with the native and selected variants.


Sujet(s)
Gangliosidose à GM1/métabolisme , Mutation , Phénotype , beta-Galactosidase/métabolisme , Séquence d'acides aminés , Analyse de mutations d'ADN , Gangliosidose à GM1/génétique , Humains , Simulation de docking moléculaire , Simulation de dynamique moléculaire , beta-Galactosidase/génétique
16.
Int J Mol Sci ; 21(23)2020 Nov 30.
Article de Anglais | MEDLINE | ID: mdl-33266180

RÉSUMÉ

Morquio B disease (MBD) is an autosomal recessive GLB1-gene-related lysosomal storage disease, presenting with a peculiar type of dysostosis multiplex which is also observed in GALNS-related Morquio A disease. MBD may present as pure skeletal phenotype (pure MBD) or in combination with the neuronopathic manifestations seen in type 2 (juvenile) or type 3 (late onset) GM1 gangliosidosis (MBD plus). The main skeletal features are progressive growth impairment, kyphoscoliosis, coxa/genua valga, joint laxity, platyspondyly and odontoid hypoplasia. The main neuronopathic features are dystonia, ataxia, and intellectual/developmental/speech delay. Spinal cord compression occurs as a complication of spinal dysostosis. Chronic pain is reported, along with mobility issues and challenges with daily living and self-care activities, as the most common health concern. The most commonly reported orthopedic surgeries are hip and knee replacements. Keratan sulphate-derived oligosaccharides are characteristic biomarkers. Residual ß-galactosidase activities measured against synthetic substrates do not correlate with the phenotype. W273 L and T500A are the most frequently observed GLB1 variants in MBD, W273L being invariably associated with pure MBD. Cytokines play a role in joint destruction and pain, providing a promising treatment target. In the future, patients may benefit from small molecule therapies, and gene and enzyme replacement therapies, which are currently being developed for GM1 gangliosidosis.


Sujet(s)
Mucopolysaccharidose de type IV/diagnostic , Mucopolysaccharidose de type IV/thérapie , Marqueurs biologiques , Cytokines/métabolisme , Diagnostic différentiel , Prédisposition aux maladies , Gangliosidose à GM1/diagnostic , Gangliosidose à GM1/génétique , Gangliosidose à GM1/thérapie , Humains , Mucopolysaccharidose de type IV/étiologie , Mutation , Phénotype , beta-Galactosidase/génétique
17.
Viruses ; 12(11)2020 11 02.
Article de Anglais | MEDLINE | ID: mdl-33147813

RÉSUMÉ

In addition to regulatory or accessory proteins, some complex retroviruses gain a repertoire of micro-RNAs (miRNAs) to regulate and control virus-host interactions for efficient replication and spread. In particular, bovine and simian foamy viruses (BFV and SFV) have recently been shown to express a diverse set of RNA polymerase III-directed miRNAs, some with a unique primary miRNA double-hairpin, dumbbell-shaped structure not known in other viruses or organisms. While the mechanisms of expression and structural requirements have been studied, the functional importance of these miRNAs is still far from understood. Here, we describe the in silico identification of BFV miRNA targets and the subsequent experimental validation of bovine Ankyrin Repeat Domain 17 (ANKRD17) and Bax-interacting factor 1 (Bif1) target genes in vitro and, finally, the suppression of ANKRD17 downstream genes in the affected pathway. Deletion of the entire miRNA cassette in the non-coding part of the U3 region of the long terminal repeats attenuated replication of corresponding BFV mutants in bovine cells. This repression can be almost completely trans-complemented by the most abundant miRNA BF2-5p having the best scores for predicted and validated BFV miRNA target genes. Deletion of the miRNA cassette does not grossly affect particle release and overall particle composition.


Sujet(s)
Interactions hôte-microbes/génétique , microARN/génétique , Spumavirus/génétique , Réplication virale , Animaux , Bovins , Lignée cellulaire , Simulation numérique , Interactions hôte-pathogène , Virus spumeux simien/génétique , Spumavirus/physiologie , Séquences répétées terminales
18.
BMC Med Genet ; 21(1): 59, 2020 03 24.
Article de Anglais | MEDLINE | ID: mdl-32209057

RÉSUMÉ

BACKGROUND: Intellectual disability (ID) is both a clinically diverse and genetically heterogeneous group of disorder, with an onset of cognitive impairment before the age of 18 years. ID is characterized by significant limitations in intellectual functioning and adaptive behaviour. The identification of genetic variants causing ID and neurodevelopmental disorders using whole-exome sequencing (WES) has proven to be successful. So far more than 1222 primary and 1127 candidate genes are associated with ID. METHODS: To determine pathogenic variants causative of ID in three unrelated consanguineous Pakistani families, we used a combination of WES, homozygosity-by-descent mapping, de-deoxy sequencing and bioinformatics analysis. RESULTS: Rare pathogenic single nucleotide variants identified by WES which passed our filtering strategy were confirmed by traditional Sanger sequencing and segregation analysis. Novel and deleterious variants in VPS53, GLB1, and MLC1, genes previously associated with variable neurodevelopmental anomalies, were found to segregate with the disease in the three families. CONCLUSIONS: This study expands our knowledge on the molecular basis of ID as well as the clinical heterogeneity associated to different rare genetic causes of neurodevelopmental disorders. This genetic study could also provide additional knowledge to help genetic assessment as well as clinical and social management of ID in Pakistani families.


Sujet(s)
Consanguinité , Déficience intellectuelle/génétique , Protéines membranaires/génétique , Polymorphisme génétique , Protéines du transport vésiculaire/génétique , beta-Galactosidase/génétique , Enfant , Enfant d'âge préscolaire , Famille , Femelle , Gènes récessifs/génétique , Hétérogénéité génétique , Dépistage génétique , Homozygote , Humains , Déficience intellectuelle/complications , Déficience intellectuelle/anatomopathologie , Mâle , Troubles du développement neurologique/complications , Troubles du développement neurologique/génétique , Troubles du développement neurologique/anatomopathologie , Pakistan/épidémiologie , Pedigree ,
19.
Mol Genet Metab Rep ; 21: 100524, 2019 Dec.
Article de Anglais | MEDLINE | ID: mdl-31720227

RÉSUMÉ

INTRODUCTION: GM1 gangliosidosis is a rare autosomal recessive genetic disorder caused by the disruption of the GLB1 gene that encodes ß-galactosidase, a lysosomal hydrolase that removes ß-linked galactose from the non-reducing end of glycans. Deficiency of this catabolic enzyme leads to the lysosomal accumulation of GM1 and its asialo derivative GA1 in ß-galactosidase deficient patients and animal models. In addition to GM1 and GA1, there are other glycoconjugates that contain ß-linked galactose whose metabolites are substrates for ß-galactosidase. For example, a number of N-linked glycan structures that have galactose at their non-reducing end have been shown to accumulate in GM1 gangliosidosis patient tissues and biological fluids. OBJECTIVE: In this study, we attempt to fully characterize the broad array of GLB1 substrates that require GLB1 for their lysosomal turnover. RESULTS: Using tandem mass spectrometry and glycan reductive isotope labeling with data-dependent mass spectrometry, we have confirmed the accumulation of glycolipids (GM1 and GA1) and N-linked glycans with terminal beta-linked galactose. We have also discovered a novel set of core 1 and 2 O-linked glycan metabolites, many of which are part of structurally-related isobaric series that accumulate in disease. In the brain of GLB1 null mice, the levels of these glycan metabolites increased along with those of both GM1 and GA1 as a function of age. In addition to brain tissue, we found elevated levels of both N-linked and O-linked glycan metabolites in a number of peripheral tissues and in urine. Both brain and urine samples from human GM1 gangliosidosis patients exhibited large increases in steady state levels for the same glycan metabolites, demonstrating their correlation with this disease in humans as well. CONCLUSIONS: Our studies illustrate that GLB1 deficiency is not purely a ganglioside accumulation disorder, but instead a broad oligosaccharidosis that include representatives of many ß-linked galactose containing glycans and glycoconjugates including glycolipids, N-linked glycans, and various O-linked glycans. Accounting for all ß-galactosidase substrates that accumulate when this enzyme is deficient increases our understanding of this severe disorder by identifying metabolites that may drive certain aspects of the disease and may also serve as informative disease biomarkers to fully evaluate the efficacy of future therapies.

20.
J Pediatr ; 215: 152-157.e3, 2019 12.
Article de Anglais | MEDLINE | ID: mdl-31761138

RÉSUMÉ

OBJECTIVE: To evaluate the clinical presentation of patients with GM1 gangliosidosis and to determine whether specific clinical or biochemical signs could lead to a prompt diagnosis. STUDY DESIGN: We retrospectively analyzed clinical, biochemical, and genetic data of 22 patients with GM1 gangliosidosis from 5 metabolic centers in Germany and Austria. RESULTS: Eight patients were classified as infantile, 11 as late-infantile, and 3 as juvenile form. Delay of diagnosis was 6 ± 2.6 months in the infantile, 2.6 ± 3.79 years in the late-infantile, and 14 ± 3.48 years in the juvenile form. Coarse facial features, cherry red spots, and visceromegaly occurred only in patients with the infantile form. Patients with the late-infantile and juvenile forms presented with variable neurologic symptoms. Seventeen patients presented with dystonia and 14 with dysphagia. Laboratory analysis revealed an increased ASAT concentration (13/20), chitotriosidase activity (12/15), and pathologic urinary oligosaccharides (10/19). Genotype analyses revealed 23 causative or likely causative mutations in 19 patients, 7 of them being novel variants. In the majority, a clear genotype-phenotype correlation was found. CONCLUSIONS: Diagnosis of GM1 gangliosidosis often is delayed, especially in patients with milder forms of the disease. GM1 gangliosidosis should be considered in patients with progressive neurodegeneration and spastic-dystonic movement disorders, even in the absence of visceral symptoms or cherry red spots. ASAT serum concentrations and chitotriosidase activity may be of value in screening for GM1 gangliosidosis.


Sujet(s)
Transporteurs ABC/métabolisme , ADN/génétique , Gangliosidose à GM1/génétique , Mutation , beta-Galactosidase/génétique , Adolescent , Autriche/épidémiologie , Enfant , Enfant d'âge préscolaire , Analyse de mutations d'ADN , Femelle , Études de suivi , Gangliosidose à GM1/diagnostic , Gangliosidose à GM1/épidémiologie , Génotype , Allemagne/épidémiologie , Humains , Incidence , Nourrisson , Mâle , Phénotype , Études rétrospectives , Jeune adulte , beta-Galactosidase/métabolisme
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE