Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 382
Filtrer
1.
Methods Mol Biol ; 2852: 199-209, 2025.
Article de Anglais | MEDLINE | ID: mdl-39235746

RÉSUMÉ

This document outlines the steps necessary to assemble and submit the standard data package required for contributing to the global genomic surveillance of enteric pathogens. Although targeted to GenomeTrakr laboratories and collaborators, these protocols are broadly applicable for enteric pathogens collected for different purposes. There are five protocols included in this chapter: (1) quality control (QC) assessment for the genome sequence data, (2) validation for the contextual data, (3) data submission for the standard pathogen package or Pathogen Data Object Model (DOM) to the public repository, (4) viewing and querying data at NCBI, and (5) data curation for maintaining relevance of public data. The data are available through one of the International Nucleotide Sequence Database Consortium (INSDC) members, with the National Center for Biotechnology Information (NCBI) being the primary focus of this document. NCBI Pathogen Detection is a custom dashboard at NCBI that provides easy access to pathogen data plus results for a standard suite of automated cluster and genotyping analyses important for informing public health and regulatory decision-making.


Sujet(s)
Génomique , Contrôle de qualité , Humains , Génomique/méthodes , Génomique/normes , Bases de données génétiques , Logiciel , Génome bactérien , Curation de données/méthodes
2.
Malar J ; 23(1): 280, 2024 Sep 17.
Article de Anglais | MEDLINE | ID: mdl-39285410

RÉSUMÉ

BACKGROUND: Intensive deployment of insecticide based malaria vector control tools resulted in the rapid evolution of phenotypes resistant to these chemicals. Understanding this process at the genomic level is important for the deployment of successful vector control interventions. Therefore, longitudinal sampling followed by whole genome sequencing (WGS) is necessary to understand how these evolutionary processes evolve over time. This study investigated the change in genetic structure and the evolution of the insecticide resistance variants in natural populations of Anopheles gambiae over time and space from 2012 to 2017 in Burkina Faso. METHODS: New genomic data have been generated from An. gambiae mosquitoes collected from three villages in the western part of Burkina Faso between 2012 and 2017. The samples were whole-genome sequenced and the data used in the An. gambiae 1000 genomes (Ag1000G) project as part of the Vector Observatory. Genomic data were analysed using the analysis pipeline previously designed by the Ag1000G project. RESULTS: The results showed similar and consistent nucleotide diversity and negative Tajima's D between An. gambiae sensu stricto (s.s.) and Anopheles coluzzii. Principal component analysis (PCA) and the fixation index (FST) showed a clear genetic structure in the An. gambiae sensu lato (s.l.) species. Genome-wide FST and H12 scans identified genomic regions under divergent selection that may have implications in the adaptation to ecological changes. Novel voltage-gated sodium channel pyrethroid resistance target-site alleles (V402L, I1527T) were identified at increasing frequencies alongside the established alleles (Vgsc-L995F, Vgsc-L995S and N1570Y) within the An. gambiae s.l. POPULATIONS: Organophosphate metabolic resistance markers were also identified, at increasing frequencies, within the An. gambiae s.s. populations from 2012 to 2017, including the SNP Ace1-G280S and its associated duplication. Variants simultaneously identified in the same vector populations raise concerns about the long-term efficacy of new generation bed nets and the recently organophosphate pirimiphos-methyl indoor residual spraying in Burkina Faso. CONCLUSION: These findings highlighted the benefit of genomic surveillance of malaria vectors for the detection of new insecticide resistance variants, the monitoring of the existing resistance variants, and also to get insights into the evolutionary processes driving insecticide resistance.


Sujet(s)
Anopheles , Résistance aux insecticides , Vecteurs moustiques , Séquençage du génome entier , Résistance aux insecticides/génétique , Anopheles/génétique , Anopheles/effets des médicaments et des substances chimiques , Animaux , Burkina , Vecteurs moustiques/génétique , Vecteurs moustiques/effets des médicaments et des substances chimiques , Études longitudinales , Évolution moléculaire , Insecticides/pharmacologie , Paludisme/transmission
3.
Cell ; 2024 Sep 20.
Article de Anglais | MEDLINE | ID: mdl-39332413

RÉSUMÉ

Phage therapy is gaining increasing interest in the fight against critically antibiotic-resistant nosocomial pathogens. However, the narrow host range of bacteriophages hampers the development of broadly effective phage therapeutics and demands precision approaches. Here, we combine large-scale phylogeographic analysis with high-throughput phage typing to guide the development of precision phage cocktails targeting carbapenem-resistant Acinetobacter baumannii, a top-priority pathogen. Our analysis reveals that a few strain types dominate infections in each world region, with their geographical distribution remaining stable within 6 years. As we demonstrate in Eastern Europe, this spatiotemporal distribution enables preemptive preparation of region-specific phage collections that target most local infections. Finally, we showcase the efficacy of phage cocktails against prevalent strain types using in vitro and animal infection models. Ultimately, genomic surveillance identifies patients benefiting from the same phages across geographical scales, thus providing a scalable framework for precision phage therapy.

4.
One Health ; 19: 100887, 2024 Dec.
Article de Anglais | MEDLINE | ID: mdl-39323428

RÉSUMÉ

The occurrence of carbapenemases encoding genes in Providencia rettgeri is a critical public health concern since this species has intrinsic resistance to several antimicrobials, including polymyxins. The identification of this multidrug-resistant (MDR) pathogen outside the hospital setting has become increasingly frequent, and raises an alert for the global health agencies, as they indicate a possible spread of such pathogens. Herein, we described three MDR P. rettgeri isolates carrying a diversity of antimicrobial resistance genes (ARGs) isolated from stool samples of swine and bovine in Brazil. Molecular analysis revealed that all isolates belonged to the same clone. The whole genome sequencing (WGS) of a representative isolate (PVR-188) was performed by MiSeq Illumina® platform, while the assembling and annotation was achieved using SPAdes and Prooka, respectively. The WGS analyses indicated the presence of ARGs that confer resistance to ß-lactams (bla NDM-1, bla CTX-M-2), quinolones (qnrD1), aminoglycosides (aadA2, aadA1, aph(3')-Via), phenicol (catB2), sulfonamides (sul1, sul2), and trimethoprim (dfrA12, dfrA1). The presence of three plasmid replicons (Col3M, IncQ1, and IncT) was detected, but no phage sequences were found. The phylogenetic analyses confirmed the genomic relationship of the PVR-188 with P. rettgeri isolates recovered from animals and humans in the USA and Malaysia. In conclusion, we report the occurrence of MDR P. rettgeri clone colonizing the gut microbiota of food-producing animals in Brazil, revealing the spread of this pathogen beyond hospital boundaries.

5.
Environ Int ; 192: 109029, 2024 Sep 21.
Article de Anglais | MEDLINE | ID: mdl-39326241

RÉSUMÉ

The emergence of infectious diseases, particularly those caused by respiratory pathogens like COVID-19 and influenza viruses, poses a significant threat to public health, especially in the context of climate change. Vulnerable variants and major pathogenicities are appearing, leading to a wide range of illnesses and increased morbidity. Wastewater genomic surveillance represents a cost-effective and a crucial tool for tracking infectious diseases, particularly in regions where clinical testing resources might be limited or inadequate. However, there are numerous limitations that need to be addressed in order to enhance its effectiveness for monitoring a wide range of pathogens. The current study uses this approach for the first time in Morocco to monitor the epidemiology of SARS-CoV-2 and Influenza A, B and RSV virus infections during the third wave of COVID-19 caused by the Omicron variant. The virome was concentrated from wastewater collected from two sewersheds of two cities, Agadir and Inezgane, using the the polyethylene glycol (PEG)/NaCl method. All 26 samples from both cities exhibited positive results for SARS-CoV-2, indicating varying viral loads. In the case of the Influenza A virus, four samples tested positive in Inezgane. However, no detection of Influenza B or RSV was observed in any of the samples. The estimated SARS-CoV-2 viral RNA copy numbers observed were then used to estimate the number of infected individuals using the SEIR model. The estimated number of cases correlates positively with the number of reported cases. Next Generation Sequencing showed that samples contain the following two variants: BA.1 and BA.2 that have been detected in clinical samples. In the case of Influenza A, clinical samples revealed a mild presence of the influenza virus subtype A(H3N2). This study demonstrates the effectiveness and feasibility of wastewater genomic surveillance in monitoring pathogens such as SARS-CoV-2 in Morocco. This approach can become an even more powerful tool for monitoring and predicting the spread of infectious diseases by addressing several key considerations. These include enhancing data collection methods, making environmental corrections for factors affecting RNA stability in wastewater, and refining mathematical models to improve their accuracy in predicting the number of infected cases. Incorporating statistical and machine learning models can further enhance the precision of these predictions.

6.
Virus Res ; 350: 199471, 2024 Sep 25.
Article de Anglais | MEDLINE | ID: mdl-39306246

RÉSUMÉ

As COVID-19 has become endemic, SARS-CoV-2 variants are becoming increasingly diverse, underscoring the escalating importance of global genomic surveillance. This study analyzed 86,762 COVID-19 samples identified in the Republic of Korea from September 2022 to November 2023. The results revealed a consistent increase in the prevalence of the XBB variants following the dominance of BN.1, with various XBB sub-lineages co-circulating in the Republic of Korea. The overall nucleotide diversity (π) among the SARS-CoV-2 genomes was 0.00155. Evolutionary analysis revealed that the average time interval between the first detection and estimated date of the most recent common ancestor of Korean XBB sub-lineages was 47 d, suggesting that the novel variants were efficiently identified in the Korean surveillance system. The mutation rate was determined to be in the range of 5.6 × 10-4 to 9.1 × 10-4 substitutions/site/year. In conclusion, this study provides insights into the genetic diversity and evolutionary interpretation of the XBB sub-lineages during the XBB wave in the Republic of Korea, highlighting the importance of continued genomic surveillance for emerging variants.

7.
Antimicrob Agents Chemother ; : e0109024, 2024 Sep 20.
Article de Anglais | MEDLINE | ID: mdl-39302119

RÉSUMÉ

Genomic surveillance detected clonal Escherichia coli sequence type-361 isolates carrying blaNDM-5, blaKPC-3, blaCTX-M-15, and rmtB1 from a patient in Ukraine and four wounded foreign soldiers evacuated to Germany. Isolates were non-susceptible to carbapenems, aminoglycosides, and cefiderocol and aztreonam/avibactam due to a PBP3 YRIN insertion and the blaCMY-145 AmpC ß-lactamase. Coordinated surveillance efforts across civilian, military, and veteran healthcare systems are essential to prevent further spread as international volunteers return home after medical evacuation from Ukraine.

9.
Emerg Infect Dis ; 30(10): 2090-2098, 2024 Oct.
Article de Anglais | MEDLINE | ID: mdl-39320165

RÉSUMÉ

West Nile virus (WNV) is the most common cause of human arboviral disease in the contiguous United States, where only lineage 1 (L1) WNV had been found. In 2023, an immunocompetent patient was hospitalized in Nebraska with West Nile neuroinvasive disease and multisystem organ failure. Testing at the Centers for Disease Control and Prevention indicated an unusually high viral load and acute antibody response. Upon sequencing of serum and cerebrospinal fluid, we detected lineage 3 (L3) and L1 WNV genomes. L3 WNV had previously only been found in Central Europe in mosquitoes. The identification of L3 WNV in the United States and the observed clinical and laboratory features raise questions about the potential effect of L3 WNV on the transmission dynamics and pathogenicity of WNV infections. Determining the distribution and prevalence of L3 WNV in the United States and any public health and clinical implications is critical.


Sujet(s)
Phylogenèse , Fièvre à virus West Nile , Virus du Nil occidental , Humains , Fièvre à virus West Nile/virologie , Fièvre à virus West Nile/épidémiologie , Virus du Nil occidental/génétique , Nébraska/épidémiologie , Génome viral , Mâle
10.
Microorganisms ; 12(9)2024 Aug 23.
Article de Anglais | MEDLINE | ID: mdl-39338420

RÉSUMÉ

Brazil is one of the countries most affected by COVID-19, with the highest number of deaths recorded. Brazilian Health Institutions have reported four main peaks of positive COVID-19 cases. The last two waves were characterized by the emergence of the VOC Omicron and its sublineages. This study aimed to conduct a retrospective surveillance study illustrating the emergence, dissemination, and diversification of the VOC Omicron in 15 regional health units (RHUs) in MG, the second most populous state in Brazil, by combining epidemiological and genomic data. A total of 5643 confirmed positive COVID-19 samples were genotyped using the panels TaqMan SARS-CoV-2 Mutation and 4Plex SC2/VOC Bio-Manguinhos to define mutations classifying the BA.1, BA.2, BA.4, and BA.5 sublineages. While sublineages BA.1 and BA.2 were more prevalent during the third wave, BA.4 and BA.5 dominated the fourth wave in the state. Epidemiological and viral genome data suggest that age and vaccination with booster doses were the main factors related to clinical outcomes, reducing the number of deaths, irrespective of the Omicron sublineages. Complete genome sequencing of 253 positive samples confirmed the circulation of the BA.1, BA.2, BA.4, and BA.5 subvariants, and phylogenomic analysis demonstrated that the VOC Omicron was introduced through multiple international events, followed by transmission within the state of MG. In addition to the four subvariants, other lineages have been identified at low frequency, including BQ.1.1 and XAG. This integrative study reinforces that the evolution of Omicron sublineages was the most significant factor driving the highest peaks of positive COVID-19 cases without an increase in more severe cases, prevented by vaccination boosters.

11.
J Glob Antimicrob Resist ; 39: 3-5, 2024 Aug 06.
Article de Anglais | MEDLINE | ID: mdl-39117141

RÉSUMÉ

OBJECTIVES: Klebsiella spp. are leading causes of nosocomial infections. Their ability to harbour antimicrobial resistance genes makes them an important public health threat. This study aimed to report the genomic background of carbapenemase-producing Klebsiella quasipneumoniae (HV55B) and Klebsiella michiganensis (HV55D) strains isolated from fresh vegetables destined for hospitalized inpatients. METHODS: Microbiological and molecular methods were used to isolate and identify the strains, which were submitted to the antimicrobial susceptibility test and pH tolerance assays. Whole genome sequencing was performed on MiSeq and NextSeq platforms, and online available tools were applied to bioinformatic analysis of clinically relevant information. RESULTS: Both isolates were considered multidrug-resistant and tolerated pH ≥ 4 for 24 h. HV55B belonged to sequence type (ST) ST668, and presented a broad resistome and plasmids from four incompatibility groups. HV55D belonged to ST40. Both strains HV55B and HV55D were genetically close to isolates responsible for human infections around the world, which stands for the plausibility of such bacteria to cause disease in patients of the studied institution. CONCLUSIONS: Our results confirm the presence of carbapenemase-producing Klebsiella spp. in fresh foodstuffs intended for hospitalized inpatients' consumption. The genomes characterized here also provide clinically and genomically relevant information to forthcoming epidemiological surveillance studies.

12.
Heliyon ; 10(14): e34365, 2024 Jul 30.
Article de Anglais | MEDLINE | ID: mdl-39108880

RÉSUMÉ

Background: The Severe Acute Respiratory Syndrome Coronavirus 2 virus (SARS-CoV-2) has been undergoing evolutionary changes to improve its ability to thrive within human hosts, leading to the emergence of specific variants associated with subsequent waves of the coronavirus diseases 2019 (COVID-19) pandemic. Indonesia has grappled with the effects of this pandemic and subsequent waves affecting various regions, including West Sumatra. Although located outside Java island epicenter, West Sumatra experienced significant COVID-19 transmission, especially during the third wave in early 2022. Objective: This study aimed to investigate the genetic evolution and epidemiological dynamics of SARS-CoV-2 variants in West Sumatra throughout the three pandemic waves. Methods: We conducted a genotyping study retrospectively using 278 COVID-19 patient samples from 2020 to 2022. The Real-Time Quantitative Reverse Transcription PCR (RT-qPCR) was used for screening, and whole-genome sequence analysis was conducted through the Illumina MiSeq instrument. Result: The analysis revealed distinct patterns in the prevalence of viral lineages across the waves. The initial wave was predominated by clade 20A (77,4 %) especially lineage B.1.466.2 (50 %). The second wave was marked by a significant emergence of the Delta variant (72,5 %), particularly lineage AY.23 (81,1 %), originating from India, with subsequent local evolution leading to the formation of distinct clusters. We found that about 96,7 % of the third wave variant was dominated by Omicron variants, especially the generation of lineages BA.1 and BA.2, demonstrating widespread global dissemination and local variant development. Phylogenetic analysis indicated a close relatedness of West Sumatra variants to those from Malaysia and other parts of Indonesia, highlighting regional transmission dynamics and potential sources of variant introductions. Conclusion: This study has identified unique variant clusters within each wave, suggesting distinct evolutionary pathways and local adaptations. These findings provide valuable insights into the genomic landscape of SARS-CoV-2 in West Sumatra and emphasize the crucial role of ongoing genomic surveillance in tracking viral changes and guiding public health measures.

13.
Stud Health Technol Inform ; 316: 1962-1966, 2024 Aug 22.
Article de Anglais | MEDLINE | ID: mdl-39176877

RÉSUMÉ

Submitted genomic data for respiratory viruses reflect the emergence and spread of new variants. Although delays in submission limit the utility of these data for prospective surveillance, they may be useful for evaluating other surveillance sources. However, few studies have investigated the use of these data for evaluating aberration detection in surveillance systems. Our study used a Bayesian online change point detection algorithm (BOCP) to detect increases in the number of submitted genome samples as a means of establishing 'gold standard' dates of outbreak onset in multiple countries. We compared models using different data transformations and parameter values. BOCP detected change points that were not sensitive to different parameter settings. We also found data transformations were essential prior to change point detection. Our study presents a framework for using global genomic submission data to develop 'gold standard' dates about the onset of outbreaks due to new viral variants.


Sujet(s)
COVID-19 , Épidémies de maladies , Génome viral , SARS-CoV-2 , Humains , SARS-CoV-2/génétique , COVID-19/épidémiologie , Théorème de Bayes , Algorithmes
14.
J Infect Dis ; 2024 Aug 20.
Article de Anglais | MEDLINE | ID: mdl-39163245

RÉSUMÉ

BACKGROUND: Antimicrobial resistance (AMR) surveillance in low- and middle-income countries (LMICs) often relies on poorly resourced laboratory processes. Centralized sequencing was combined with cloud-based, open-source bioinformatics solutions for national AMR surveillance in Cambodia. METHODS: Blood cultures growing gram-negative bacteria were collected at six Cambodian hospitals (January 2021 - October 2022). Isolates were obtained from pure plate growth and shotgun DNA sequencing performed in-country. Using public nucleotide and protein databases, reads were aligned for pathogen identification and AMR gene characterization. Multilocus sequence typing was performed on whole genome assemblies and haplotype clusters compared against published genomes. FINDINGS: Genes associated with acquired resistance to fluoroquinolones were identified in 59%, TMP/SMX in 45%, and aminoglycosides in 52% of 715 isolates. Extended-spectrum beta-lactamase encoding genes were identified in 34% isolates, most commonly blaCTX-M-15, blaCTX-M-27, and blaCTX-M-55 in E. coli sequence types 131 and 1193. Carbapenemase genes were identified in 12% isolates, most commonly blaOXA-23, blaNDM-1, blaOXA-58 and blaOXA-66 in Acinetobacter species. Phylogenetic analysis revealed clonal strains of A. baumannii, representing suspected nosocomial outbreaks, and genetic clusters of quinolone-resistant typhoidal Salmonella and ESBL E. coli cases suggesting community transmission. INTERPRETATION: With accessible sequencing platforms and bioinformatics solutions, bacterial genomics can supplement AMR surveillance in LMICs. FUNDING: Research was supported by the National Institute of Allergy and Infectious Diseases and the Bill and Melinda Gates Foundation [OPP1211806].

15.
Virol J ; 21(1): 171, 2024 Aug 01.
Article de Anglais | MEDLINE | ID: mdl-39090721

RÉSUMÉ

BACKGROUND: This study aimed to demonstrate that the genomic material of SARS-CoV-2 can be isolated from strips of COVID-19 rapid diagnostic test cassettes. METHOD: It was a prospective cross-sectional study involving patients admitted to treatment centers and sampling sites in the city of Conakry, Guinea. A total of 121 patients were double sampled, and 9 more patients were tested only for RDT. PCR was conducted according to the protocol of the RunMei kit. Sequencing was performed by using the illumina COVIDSeq protocol. Nine COVID-19 RDTs without nasopharyngeal swabs were in addition tested. RESULT: Among the 130 COVID-19 RDTs, forty-seven were macroscopically positive, whereas seventy-two were positive according to PCR using RDT strip, while among the 121 VTM swabs, sixty-four were positive. Among eighty-three negative COVID-19 RDTs, twenty-seven were positive by PCR using RDT strip with a geometric mean Ct value of 32.49 cycles. Compared to those of PCR using VTM, the sensitivity and specificity of PCR using RDT strip were estimated to be 100% and 85.96%, respectively, with 93.39% test accuracy. Among the fifteen COVID-19 RDT extracts eligible for sequencing, eleven had sequences identical to those obtained via the standard method, with coverage between 75 and 99.6%. CONCLUSION: These results show that COVID-19 RDTs can be used as biological material for the genomic surveillance of SARS-CoV-2.


Sujet(s)
Détection de l'acide nucléique du virus de la COVID-19 , COVID-19 , ARN viral , SARS-CoV-2 , Adulte , Femelle , Humains , Mâle , Adulte d'âge moyen , COVID-19/diagnostic , COVID-19/virologie , Détection de l'acide nucléique du virus de la COVID-19/méthodes , Études transversales , Tests diagnostiques courants/méthodes , Génome viral/génétique , Partie nasale du pharynx/virologie , Études prospectives , Tests de diagnostic rapide/instrumentation , Bandelettes réactives , ARN viral/génétique , ARN viral/isolement et purification , SARS-CoV-2/génétique , SARS-CoV-2/isolement et purification , Sensibilité et spécificité
16.
J Med Microbiol ; 73(8)2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-39212029

RÉSUMÉ

Introduction. Commensal Neisseria spp. are highly prevalent in the oropharynx as part of the healthy microbiome. N. meningitidis can colonise the oropharynx too from where it can cause invasive meningococcal disease. To identify N. meningitidis, clinical microbiology laboratories often rely on Matrix Assisted Laser Desorption/Ionisation Time of Flight Mass Spectrometry (MALDI-TOF MS).Hypothesis/Gap statement. N. meningitidis may be misidentified by MALDI-TOF MS.Aim. To conduct genomic surveillance of oropharyngeal Neisseria spp. in order to: (i) verify MALDI-TOF MS species identification, and (ii) characterize commensal Neisseria spp. genomes.Methodology. We analysed whole genome sequence (WGS) data from 119 Neisseria spp. isolates from a surveillance programme for oropharyngeal Neisseria spp. in Belgium. Different species identification methods were compared: (i) MALDI-TOF MS, (ii) Ribosomal Multilocus Sequence Typing (rMLST) and (iii) rplF gene species identification. WGS data were used to further characterize Neisseria species found with supplementary analyses of Neisseria cinerea genomes.Results. Based on genomic species identification, isolates from the oropharyngeal Neisseria surveilence study were composed of the following species: N. meningitidis (n=23), N. subflava (n=61), N. mucosa (n=15), N. oralis (n=8), N. cinerea (n=5), N. elongata (n=3), N. lactamica (n=2), N. bacilliformis (n=1) and N. polysaccharea (n=1). Of these 119 isolates, four isolates identified as N. meningitidis (n=3) and N. subflava (n=1) by MALDI-TOF MS, were determined to be N. polysaccharea (n=1), N. cinerea (n=2) and N. mucosa (n=1) by rMLST. Phylogenetic analyses revealed that N. cinerea isolates from the general population (n=3, cluster one) were distinct from those obtained from men who have sex with men (MSM, n=2, cluster two). The latter contained genomes misidentified as N. meningitidis using MALDI-TOF MS. These two N. cinerea clusters persisted after the inclusion of published N. cinerea WGS (n=42). Both N. cinerea clusters were further defined through pangenome and Average Nucleotide Identity (ANI) analyses.Conclusion. This study provides insights into the importance of genomic genus-wide Neisseria surveillance studies to improve the characterization and identification of the Neisseria genus.


Sujet(s)
Génome bactérien , Typage par séquençage multilocus , Partie orale du pharynx , Spectrométrie de masse MALDI , Séquençage du génome entier , Spectrométrie de masse MALDI/méthodes , Partie orale du pharynx/microbiologie , Humains , Typage par séquençage multilocus/méthodes , Neisseria cinerea/génétique , Phylogenèse , Neisseria/classification , Neisseria/génétique , Neisseria/isolement et purification , Belgique , Neisseria meningitidis/génétique , Neisseria meningitidis/classification , Neisseria meningitidis/isolement et purification , Infections à Neisseriaceae/microbiologie , Infections à Neisseriaceae/diagnostic
17.
Environ Pollut ; 359: 124752, 2024 Oct 15.
Article de Anglais | MEDLINE | ID: mdl-39154883

RÉSUMÉ

The COVID-19 pandemic underscored the significance of omics technology and Wastewater-Based Epidemiology for epidemic preparedness. This study investigates the virosphere in wastewater samples from Natal (Brazil), aiming to understand its structure, relationships, and potential. Metaviromic analysis was used on DNA and RNA from weekly samples collected over a year (June/2021 to May/2022) from three wastewater treatment plants. The virosphere showed stability, particularly in viruses infecting microorganisms and plants. However, an alternation of representatives of viruses that infect animals has been observed. Among the most abundant viruses infecting microorganisms are genera associated with the bacterial genera Escherichia, Pseudomonas, and Caulobacte. Regarding the viruses infecting plants, Sobemovirus and Tobamovirus are the most abundant genera. Odontoglossum ringspot virus was identified as a possible RNA virus biomarker. Among DNA viruses infecting animals, genera Bocaparvovirus and Mastadenovirus are the most prevalent. Intriguingly, some Poxviridae family members were observed in the samples. Co-occurrence network analysis identified potential biomarkers like Volepox virus, Anatid herpesvirus 1, and Caviid herpesvirus 2. Among RNA viruses affecting animals, Mamastrovirus, Rotavirus, and Norovirus genera were the most abundant pathogens. Furthermore, members of the Coronaviridae family exhibited a high degree of centrality values in the co-occurrence network, even connecting with unclassified viruses. The study emphasizes the importance of research in understanding the roles of unclassified viruses. In addition, we observed an association between Coronaviridae reads, rainfall, and the number of reported COVID-19 cases. Our study highlights the diversity and complexity of the viral community in wastewater and the need for research to understand better the ecological roles unclassified viruses play. Such advances will significantly contribute to our preparedness and response to future viral threats. Furthermore, our study contributes to knowledge of virosphere dynamics, offering insights that can contribute to the direction of future public health policies and interventions.


Sujet(s)
Eaux usées , Brésil , Eaux usées/virologie , Virus/génétique , Virus/isolement et purification , Virus à ARN/génétique , Virome , COVID-19/virologie
18.
Genes (Basel) ; 15(8)2024 Aug 08.
Article de Anglais | MEDLINE | ID: mdl-39202406

RÉSUMÉ

Aedes aegypti and Aedes albopictus are responsible for transmitting major human arboviruses such as Dengue, Zika, and Chikungunya, posing a global threat to public health. The lack of etiological treatments and efficient vaccines makes vector control strategies essential for reducing vector population density and interrupting the pathogen transmission cycle. This study evaluated the impact of long-term pyriproxyfen exposure on the genetic structure and diversity of Ae. aegypti and Ae. albopictus mosquito populations. The study was conducted in Manaus, Amazonas, Brazil, where pyriproxyfen dissemination stations have been monitored since 2014 up to the present day. Double digest restriction-site associated DNA sequencing was performed, revealing that despite significant local population reductions by dissemination stations with pyriproxyfen in various locations in Brazil, focal intervention has no significant impact on the population stratification of these vectors in urban scenarios. The genetic structuring level of Ae. aegypti suggests it is more stratified and directly affected by pyriproxyfen intervention, while for Ae. albopictus exhibits a more homogeneous and less structured population. The results suggest that although slight differences are observed among mosquito subpopulations, intervention focused on neighborhoods in a capital city is not efficient in terms of genetic structuring, indicating that larger-scale pyriproxyfen interventions should be considered for more effective urban mosquito control.


Sujet(s)
Aedes , Vecteurs moustiques , Pyridines , Aedes/génétique , Aedes/effets des médicaments et des substances chimiques , Animaux , Pyridines/pharmacologie , Brésil , Vecteurs moustiques/génétique , Vecteurs moustiques/effets des médicaments et des substances chimiques , Lutte contre les moustiques/méthodes , Insecticides/pharmacologie , Variation génétique , Humains
19.
Viruses ; 16(8)2024 Jul 27.
Article de Anglais | MEDLINE | ID: mdl-39205183

RÉSUMÉ

The detection, characterization, and monitoring of SARS-CoV-2 recombinant variants constitute a challenge for public health authorities worldwide. Recombinant variants, composed of two or more SARS-CoV-2 lineages, often have unknown impacts on transmission, immune escape, and virulence in the early stages of emergence. We examined 4213 SARS-CoV-2 recombinant SARS-CoV-2 genomes collected between 2020 and 2022 in California to describe regional and statewide trends in prevalence. Many of these recombinant genomes, such as those belonging to the XZ lineage or novel recombinant lineages, likely originated within the state of California. We discuss the challenges and limitations surrounding Pango lineage assignments, the use of publicly available sequence data, and adequate sample sizes for epidemiologic analyses. Although these challenges will continue as SARS-CoV-2 sequencing volumes decrease globally, this study enhances our understanding of SARS-CoV-2 recombinant genomes to date while providing a foundation for future insights into emerging recombinant lineages.


Sujet(s)
COVID-19 , Génome viral , Phylogenèse , SARS-CoV-2 , SARS-CoV-2/génétique , SARS-CoV-2/classification , COVID-19/virologie , COVID-19/épidémiologie , Californie/épidémiologie , Humains , Recombinaison génétique
20.
Euro Surveill ; 29(35)2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-39212058

RÉSUMÉ

The East African Community (EAC) is experiencing an unprecedented, emerging mpox outbreak since July 2024 in five of eight partner states. We highlight rapid regional response measures, initiated August 2024 coordinated by EAC: field deployment of six mobile laboratories in Burundi, Rwanda, Uganda, Tanzania, Kenya, South Sudan to high-risk areas, donation of one mobile laboratory to Democratic Republic of the Congo and genomic monkeypox virus (MPXV) surveillance support. These interventions aim to limit local mpox spread and support international containment.


Sujet(s)
Épidémies de maladies , Virus de la variole simienne , Orthopoxvirose simienne , Humains , Épidémies de maladies/prévention et contrôle , Orthopoxvirose simienne/épidémiologie , Orthopoxvirose simienne/virologie , Virus de la variole simienne/génétique , Virus de la variole simienne/isolement et purification , Afrique de l'Est/épidémiologie , Unités sanitaires mobiles , Surveillance de la population , Africains de l'Est
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE