Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 7 de 7
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Ann Bot ; 131(6): 1011-1023, 2023 07 10.
Article de Anglais | MEDLINE | ID: mdl-37209108

RÉSUMÉ

BACKGROUND AND AIMS: Grasses of the Festuca genus have complex phylogenetic relations due to morphological similarities among species and interspecific hybridization processes. Within Patagonian fescues, information concerning phylogenetic relationships is very scarce. In Festuca pallescens, a widely distributed species, the high phenotypic variability and the occurrence of interspecific hybridization preclude a clear identification of the populations. Given the relevance of natural rangelands for livestock production and their high degradation due to climate change, conservation actions are needed and knowledge about genetic variation is required. METHODS: To unravel the intraspecific phylogenetic relations and to detect genetic differences, we studied 21 populations of the species along its natural geographical distribution by coupling both molecular [internal transcribed spacer (ITS) and trnL-F markers] and morpho-anatomical analyses. Bayesian inference, maximum likelihood and maximum parsimony methods were applied to assemble a phylogenetic tree, including other native species. The morphological data set was analysed by discriminant and cluster analyses. KEY RESULTS: The combined information of the Bayesian tree (ITS marker), the geographical distribution of haplotype variants (trnL-F marker) and the morpho-anatomical traits, distinguished populations located at the margins of the distribution. Some of the variants detected were shared with other sympatric species of fescues. CONCLUSIONS: These results suggest the occurrence of hybridization processes between species of the genus at peripheral sites characterized by suboptimal conditions, which might be key to the survival of these populations.


Sujet(s)
Festuca , Phylogenèse , Festuca/génétique , Théorème de Bayes , Variation génétique , Poaceae/génétique , Analyse de séquence d'ADN
2.
Mol Ecol ; 31(5): 1389-1402, 2022 03.
Article de Anglais | MEDLINE | ID: mdl-34995392

RÉSUMÉ

Genetic differentiation depends on ecological and evolutionary processes that operate at different spatial and temporal scales. While the geographical context is likely to determine large-scale genetic variation patterns, habitat disturbance events will probably influence small-scale genetic diversity and gene flow patterns. Therefore, the genetic diversity patterns that we observe today result from the combination of both processes, but they are rarely assessed simultaneously. We determined the population structure and genetic diversity of a hemiparasitic mistletoe (Tristerix corymbosus) from the temperate rainforests of southern Chile to determine the effects of geographical context and habitat disturbance at a regional scale and if it is affected by the abundance and occurrence of its seed disperser mutualist (the arboreal marsupial Dromiciops gliroides). We genotyped 359 individuals from 12 populations using single nucleotide polymorphisms, across three different geographical contexts and four disturbance conditions. We also used camera traps to estimate the abundance and occurrence of the seed disperser. Our results suggest that genetic differences among populations are related more to geographical context than to habitat disturbance. However, as disturbance increased, D. gliroides abundance and occurrence decreased, and mistletoe inbreeding index (FIS ) increased. We also found highly uneven gene flow among study sites. Despite the high levels of disturbance that these temperate rainforests are facing, our results suggest that mistletoe genetic differentiation at a regional scale was more influenced by historical events. However, habitat disturbance can indirectly affect mistletoe population genetic differentiation via the seed dispersal process, which may increase levels of inbreeding.


Sujet(s)
Gui , Dispersion des graines , Écosystème , Flux des gènes , Variation génétique/génétique , Génétique des populations , Gui/génétique , Arbres
3.
PeerJ ; 9: e12181, 2021.
Article de Anglais | MEDLINE | ID: mdl-34692249

RÉSUMÉ

The Tropical Montane Cloud Forest (TMCF) is a highly dynamic ecosystem that has undergone frequent spatial changes in response to the interglacial-glacial cycles of the Pleistocene. These climatic fluctuations between cold and warm cycles have led to species range shifts and contractions-expansions, resulting in complex patterns of genetic structure and lineage divergence in forest tree species. In this study, we sequenced four regions of the chloroplast DNA (trnT-trnL, trnK5-matk, rpl32-trnL, trnS-trnG) for 20 populations and 96 individuals to evaluate the phylogeography, historical demography, and paleodistributions of vulnerable endemic TMCF trees in Mexico: Magnolia pedrazae (north-region), M. schiedeana (central-region), and M. schiedeana population Oaxaca (south-region). Our data recovered 49 haplotypes that showed a significant phylogeographic structure in three regions: north, central, and south. Bayesian Phylogeographic and Ecological Clustering (BPEC) analysis also supported the divergence in three lineages and highlighted the role of environmental factors (temperature and precipitation) in genetic differentiation. Our historical demography analyses revealed demographic expansions predating the Last Interglacial (LIG, ~125,000 years ago), while Approximate Bayesian Computation (ABC) simulations equally supported two contrasting demographic scenarios. The BPEC and haplotype network analyses suggested that ancestral haplotypes were geographically found in central Veracruz. Our paleodistributions modeling showed evidence of range shifts and expansions-contractions from the LIG to the present, which suggested the complex evolutionary dynamics associated to the climatic oscillations of the Pleistocene. Habitat management of remnant forest fragments where large and genetically diverse populations occur in the three TMCF regions analyzed would be key for the conservation of these magnolia populations.

4.
PeerJ ; 8: e9980, 2020.
Article de Anglais | MEDLINE | ID: mdl-33083116

RÉSUMÉ

BACKGROUND: The evolutionary history of southern South American organisms has been strongly influenced by Pleistocene climate oscillations. Amphibians are good models to evaluate hypotheses about the influence of these climate cycles on population structure and diversification of the biota, because they are sensitive to environmental changes and have restricted dispersal capabilities. We test hypotheses regarding putative forest refugia and expansion events associated with past climatic changes in the wood frog Batrachyla leptopus distributed along ∼1,000 km of length including glaciated and non-glaciated areas in southwestern Patagonia. METHODS: Using three mitochondrial regions (D-loop, cyt b, and coI) and two nuclear loci (pomc and crybA1), we conducted multilocus phylogeographic analyses and species distribution modelling to gain insights of the evolutionary history of this species. Intraspecific genealogy was explored with maximum likelihood, Bayesian, and phylogenetic network approaches. Diversification time was assessed using molecular clock models in a Bayesian framework, and demographic scenarios were evaluated using approximate Bayesian computation (ABC) and extended Bayesian skyline plot (EBSP). Species distribution models (SDM) were reconstructed using climatic and geographic data. RESULTS: Population structure and genealogical analyses support the existence of four lineages distributed north to south, with moderate to high phylogenetic support (Bootstrap > 70%; BPP > 0.92). The diversification time of B. leptopus' populations began at ∼0.107 mya. The divergence between A and B lineages would have occurred by the late Pleistocene, approximately 0.068 mya, and divergence between C and D lineages was approximately 0.065 mya. The ABC simulations indicate that lineages coalesced at two different time periods, suggesting the presence of at least two glacial refugia and a postglacial colonization route that may have generated two southern lineages (p = 0.93, type I error: <0.094, type II error: 0.134). EBSP, mismatch distribution and neutrality indexes suggest sudden population expansion at ∼0.02 mya for all lineages. SDM infers fragmented distributions of B. leptopus associated with Pleistocene glaciations. Although the present populations of B. leptopus are found in zones affected by the last glacial maximum (∼0.023 mya), our analyses recover an older history of interglacial diversification (0.107-0.019 mya). In addition, we hypothesize two glacial refugia and three interglacial colonization routes, one of which gave rise to two expanding lineages in the south.

5.
Ecol Evol ; 4(22): 4270-86, 2014 Nov.
Article de Anglais | MEDLINE | ID: mdl-25540689

RÉSUMÉ

The Patagonian steppe is an immense, cold, arid region, yet phylogeographically understudied. Nassauvia subgen. Strongyloma is a characteristic element of the steppe, exhibiting a continuum of morphological variation. This taxon provides a relevant phylogeographical model not only to understand how past environmental changes shaped the genetic structure of its populations, but also to explore phylogeographical scenarios at the large geographical scale of the Patagonian steppe. Here, we (1) assess demographic processes and historical events that shaped current geographic patterns of haplotypic diversity; (2) analyze hypotheses of isolation in refugia, fragmentation of populations, and/or colonization of available areas during Pleistocene glaciations; and (3) model extant and palaeoclimatic distributions to support inferred phylogeographical patterns. Chloroplast intergenic spacers, rpl32-trnL and trnQ-5'rps16, were sequenced for 372 individuals from 63 populations. Nested clade analysis, analyses of molecular variance, and neutrality tests were performed to assess genetic structure and range expansion. The present potential distribution was modelled and projected onto a last glacial maximum (LGM) model. Of 41 haplotypes observed, ten were shared among populations associated with different morphological variants. Populations with highest haplotype diversity and private haplotypes were found in central-western and south-eastern Patagonia, consistent with long-term persistence in refugia during Pleistocene. Palaeomodelling suggested a shift toward the palaeoseashore during LGM; new available areas over the exposed Atlantic submarine platform were colonized during glaciations with postglacial retraction of populations. A scenario of fragmentation and posterior range expansion may explain the observed patterns in the center of the steppe, which is supported by palaeomodelling. Northern Patagonian populations were isolated from southern populations by the Chubut and the Deseado river basins during glaciations. Pleistocene glaciations indirectly impacted the distribution, demography, and diversification of subgen. Strongyloma through decreased winter temperatures and water availability in different areas of its range.

6.
Mol Ecol ; 22(20): 5221-36, 2013 Oct.
Article de Anglais | MEDLINE | ID: mdl-24102937

RÉSUMÉ

Quaternary glaciations in Antarctica drastically modified geographical ranges and population sizes of marine benthic invertebrates and thus affected the amount and distribution of intraspecific genetic variation. Here, we present new genetic information in the Antarctic limpet Nacella concinna, a dominant Antarctic benthic species along shallow ice-free rocky ecosystems. We examined the patterns of genetic diversity and structure in this broadcast spawner along maritime Antarctica and from the peri-Antarctic island of South Georgia. Genetic analyses showed that N. concinna represents a single panmictic unit in maritime Antarctic. Low levels of genetic diversity characterized this population; its median-joining haplotype network revealed a typical star-like topology with a short genealogy and a dominant haplotype broadly distributed. As previously reported with nuclear markers, we detected significant genetic differentiation between South Georgia Island and maritime Antarctica populations. Higher levels of genetic diversity, a more expanded genealogy and the presence of more private haplotypes support the hypothesis of glacial persistence in this peri-Antarctic island. Bayesian Skyline plot and mismatch distribution analyses recognized an older demographic history in South Georgia. Approximate Bayesian computations did not support the persistence of N. concinna along maritime Antarctica during the last glacial period, but indicated the resilience of the species in peri-Antarctic refugia (South Georgia Island). We proposed a model of Quaternary Biogeography for Antarctic marine benthic invertebrates with shallow and narrow bathymetric ranges including (i) extinction of maritime Antarctic populations during glacial periods; (ii) persistence of populations in peri-Antarctic refugia; and (iii) recolonization of maritime Antarctica following the deglaciation process.


Sujet(s)
Gastropoda/génétique , Variation génétique , Génétique des populations , Animaux , Régions antarctiques , Théorème de Bayes , Changement climatique , ADN mitochondrial/génétique , Extinction biologique , Haplotypes , Données de séquences moléculaires , Dynamique des populations , Analyse de séquence d'ADN
7.
Genet Mol Biol ; 36(4): 598-607, 2013 Dec.
Article de Anglais | MEDLINE | ID: mdl-24385864

RÉSUMÉ

Nothotsuga longibracteata, a relic and endangered conifer species endemic to subtropical China, was studied for examining the spatial-temporal population genetic variation and structure to understand the historical biogeographical processes underlying the present geographical distribution. Ten populations were sampled over the entire natural range of the species for spatial analysis, while three key populations with large population sizes and varied age structure were selected for temporal analyses using both nuclear microsatellites (nSSR) and chloroplast microsatellites (cpSSR). A recent bottleneck was detected in the natural populations of N. longibracteata. The spatial genetic analysis showed significant population genetic differentiation across its total geographical range. Notwithstanding, the temporal genetic analysis revealed that the level of genetic diversity between different age class subpopulations remained constant over time. Eleven refugia of the Last Glacial Maximum were identified, which deserve particular attention for conservation management.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE