Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 279
Filtrer
1.
Arq. ciências saúde UNIPAR ; 28(2): 63-81, 20240000.
Article de Portugais | LILACS-Express | LILACS | ID: biblio-1572322

RÉSUMÉ

O sistema imunológico é formado por um conjunto de células que protege o organismo contra patógenos e outros agentes estranhos. A imunidade pode atuar de maneira correta e eficaz, entretanto é necessário o consumo adequado de alimentos que têm como função fortalecer e regular o sistema imunológico. Dessa forma, questiona-se: qual o conhecimento dos estudantes universitários de uma faculdade em Sete Lagoas/MG acerca dos alimentos, fontes de vitaminas A, C, D, zinco, glutamina e ômega-3, como nutrientes reguladores na manutenção do sistema imune? Trata-se de um estudo de natureza descritiva e exploratória, por meio de uma pesquisa de campo, realizada com 50 acadêmicos matriculados em uma faculdade localizada em Sete Lagoas/MG. Dos entrevistados, a maioria reconheceu os grupos de alimentos que possuíam os nutrientes estudados: vitamina A (76%), vitamina C e D (70%), zinco (52%), glutamina e ômega-3 (76%). Os resultados evidenciaram que a maioria dos estudantes universitários (84%) apresentou conhecimento acerca da relação entre os nutrientes e suas ações regulatórias no sistema imune. Conclui-se que é importante a pesquisa de temáticas como esta, no sentido de informar e conscientizar os indivíduos sobre os benefícios da ingestão de vitaminas e minerais e sua relação com a manutenção do sistema imune, a fim de influenciar em melhores escolhas alimentares.


The immune system is made up of a set of cells that protect the body against pathogens and other foreign agents. Immunity can act correctly and effectively, however, adequate consumption of foods that have the function of strengthening and regulating the immune system is necessary. Thus, the question is: what is the knowledge of academics from a college in Minas Gerais about food, sources of vitamins A, C, D, zinc, glutamine and omega-3 as regulatory nutrients in the maintenance of the immune system? This is a descriptive and exploratory study, through field research, carried out with 50 academics enrolled in a college located in a municipality of Minas Gerais. Of the respondents, most recognized the food groups that had the nutrients studied: vitamin A (76%), vitamin C and D (70%), zinc (52%), glutamine and omega-3 (76%). The results showed that most academics (84%) had accurate knowledge of the relationship between nutrients and their regulatory actions in the immune system. It is concluded that it is important to research topics such as these, in order to inform and make individuals aware of the benefits of the intake of vitamins and minerals and their relationship with the maintenance of the immune system, in order to influence better food choices.


El sistema inmunológico está formado por un conjunto de células que protegen al organismo contra patógenos y otros agentes extraños. La inmunidad puede actuar de forma correcta y efectiva, sin embargo, es necesario consumir alimentos adecuados cuya función sea fortalecer y regular el sistema inmunológico. Por lo tanto, surge la pregunta: ¿qué conocimiento tienen los estudiantes universitarios de una facultad de Sete Lagoas/MG sobre alimentos, fuentes de vitaminas A, C, D, zinc, glutamina y omega-3, como nutrientes reguladores en el mantenimiento del sistema inmunológico? Se trata de un estudio descriptivo y exploratorio, a través de investigación de campo, realizado con 50 académicos matriculados en una facultad ubicada en Sete Lagoas/MG. De los entrevistados, la mayoría reconoció los grupos de alimentos que contenían los nutrientes estudiados: vitamina A (76%), vitamina C y D (70%), zinc (52%), glutamina y omega-3 (76%). Los resultados mostraron que la mayoría de los estudiantes universitarios (84%) tenía conocimiento sobre la relación entre los nutrientes y sus acciones reguladoras sobre el sistema inmunológico. Se concluye que es importante investigar temas como este, con el fin de informar y concientizar a los individuos sobre los beneficios de la ingesta de vitaminas y minerales y su relación con el mantenimiento del sistema inmunológico, para incidir en mejores elecciones alimentarias.

2.
Glia ; 2024 Aug 17.
Article de Anglais | MEDLINE | ID: mdl-39152717

RÉSUMÉ

The mechanisms underlying regeneration of the central nervous system (CNS) following lesions have been studied extensively in both vertebrate and invertebrate models. To shed light on regeneration, ascidians, a sister group of vertebrates and with remarkable ability to regenerate their brains, constitute an appropriate model system. Glial cells have been implicated in regeneration in vertebrates; however, their role in the adult ascidian CNS regeneration is unknown. A model of degeneration and regeneration using the neurotoxin 3-acetylpyridine (3AP) in the brain of the ascidian Styela plicata was used to identify astrocyte-like cells and investigate their role. We studied the CNS of control ascidians (injected with artificial sea water) and of ascidians whose CNS was regenerating (1 and 10 days after the injection with 3AP). Our results show that the mRNA of the ortholog of glutamine synthetase (GS), a glial-cell marker in vertebrates, is increased during the early stages of regeneration. Confirming the identity of GS, the protein was identified via immunostaining in a cell population during the same regeneration stage. Last, a single ortholog of GS (GSII) is present in ascidian and amphioxus genomes, while two types exist in fungi, some invertebrates, and vertebrates, suggesting that ascidians have lost the GSI type. Taken together, our findings revealed that a cell population expressing glial-cell markers may play a role in regeneration in adult ascidians. This is the first report of astrocyte-like cells in the adult ascidian CNS, and contributes to understanding of the evolution of glial cells among metazoans.

3.
Bioengineering (Basel) ; 11(3)2024 Feb 21.
Article de Anglais | MEDLINE | ID: mdl-38534475

RÉSUMÉ

Augmentation of glycoprotein synthesis requirements induces endoplasmic reticulum (ER) stress, activating the unfolded protein response (UPR) and triggering unconventional XBP1 splicing. As a result, XBP1s orchestrates the expression of essential genes to reduce stress and restore homeostasis. When this mechanism fails, chronic stress may lead to apoptosis, which is thought to be associated with exceeding a threshold in XBP1s levels. Glycoprotein assembly is also affected by glutamine (Gln) availability, limiting nucleotide sugars (NS), and preventing compliance with the increased demands. In contrast, increased Gln intake synthesizes ammonia as a by-product, potentially reaching toxic levels. IgA2m(1)-producer mouse myeloma cells (SP2/0) were used as the cellular mammalian model. We explored how IgA2m(1)-specific productivity (qIgA2m(1)) is affected by (i) overexpression of human XBP1s (h-XBP1s) levels and (ii) Gln availability, evaluating the kinetic behavior in batch cultures. The study revealed a two and a five-fold increase in qIgA2m(1) when lower and higher levels of XBP1s were expressed, respectively. High h-XBP1s overexpression mitigated not only ammonia but also lactate accumulation. Moreover, XBP1s overexpressor showed resilience to hydrodynamic stress in serum-free environments. These findings suggest a potential application of h-XBP1s overexpression as a feasible and cost-effective strategy for bioprocess scalability.

5.
Braz. j. biol ; 842024.
Article de Anglais | LILACS-Express | LILACS, VETINDEX | ID: biblio-1469257

RÉSUMÉ

Abstract This study was carried out to evaluate the effect of Glutamine, as a dipeptide or a free amino acid form, on the progression of burn injuries in rats. Thirty male Wistar rats were burned with a comb metal plate heated in boiling water (98 °C) for three minutes, creating four rectangular full-thickness burn areas separated by three unburned interspaces (zone of stasis) in both dorsum sides. The animals were randomized into three groups (n=10): saline solution (G1-Control) and treated groups that orally received Glutamine as dipeptide (G2-Dip) or free amino acid (G3-FreeAA). Two and seven days after burn injury, lesions were photographed for unburned interspaces necrosis evolution assessment. Seven days after injury, glutathione seric was measured and histopathological analysis was performed. By photographs, there was a significant reduction in necrosis progression in G3-Free-AA between days two and seven. Histopathological analysis at day 7 showed a significantly higher stasis zone without necrosis and a higher number of fibroblasts in G2-Dip and G3-FreeAA compared with G1-Control. Also, glutathione serum dosage was higher in G2-Dip. The plasmatic glutathione levels were higher in the G2-Dip than the G1-Control, and there was a trend to higher levels in G3-FreeAA. The reduction in histological lesions, greater production of fibroblasts, and greater amounts of glutathione may have benefited the evolution of burn necrosis, which showed greater preservation of interspaces.


Resumo Este estudo foi realizado para avaliar o efeito da Glutamina, como um dipeptídeo ou forma de aminoácido livre, na progressão de queimaduras em ratos. Trinta ratos Wistar machos foram queimados com um pente de metal aquecido em água fervente (98 °C) por três minutos, criando quatro áreas retangulares queimadas separadas por três interesespaços não queimados (zona de estase) em ambos os lados do dorso. Os animais foram randomizados em três grupos (n = 10): solução salina (G1-Controle) e grupos tratados que receberam glutamina via oral como dipeptídeo (G2-Dip) ou aminoácido livre (G3-FreeAA). Dois e sete dias após a queimadura, as lesões foram fotografadas para avaliação da evolução da necrose entre os espaços não queimados. Sete dias após a lesão, foi dosada a glutationa sérica e realizada análise histopatológica. Pelas fotografias, houve uma redução significativa na progressão da necrose no G3-Free-AA entre os dias dois e sete. A análise histopatológica no dia 7 mostrou uma zona de estase significativamente maior sem necrose e número mais elevado de fibroblastos em G2-Dip e G3-FreeAA em comparação com G1-Controle. Os níveis plasmáticos de glutationa foram maiores no G2-Dip em relação ao G1-Controle, e houve tendência a níveis mais elevados no G3-FreeAA. A redução das lesões histológicas, maior produção de fibroblastos, maior quantidade de glutationa podem ter beneficiado a evolução da necrose da queimadura, que mostrou maior preservação dos interespaços.

6.
Braz. j. biol ; 84: e250936, 2024. graf
Article de Anglais | LILACS, VETINDEX | ID: biblio-1345557

RÉSUMÉ

Abstract This study was carried out to evaluate the effect of Glutamine, as a dipeptide or a free amino acid form, on the progression of burn injuries in rats. Thirty male Wistar rats were burned with a comb metal plate heated in boiling water (98 °C) for three minutes, creating four rectangular full-thickness burn areas separated by three unburned interspaces (zone of stasis) in both dorsum sides. The animals were randomized into three groups (n=10): saline solution (G1-Control) and treated groups that orally received Glutamine as dipeptide (G2-Dip) or free amino acid (G3-FreeAA). Two and seven days after burn injury, lesions were photographed for unburned interspaces necrosis evolution assessment. Seven days after injury, glutathione seric was measured and histopathological analysis was performed. By photographs, there was a significant reduction in necrosis progression in G3-Free-AA between days two and seven. Histopathological analysis at day 7 showed a significantly higher stasis zone without necrosis and a higher number of fibroblasts in G2-Dip and G3-FreeAA compared with G1-Control. Also, glutathione serum dosage was higher in G2-Dip. The plasmatic glutathione levels were higher in the G2-Dip than the G1-Control, and there was a trend to higher levels in G3-FreeAA. The reduction in histological lesions, greater production of fibroblasts, and greater amounts of glutathione may have benefited the evolution of burn necrosis, which showed greater preservation of interspaces.


Resumo Este estudo foi realizado para avaliar o efeito da Glutamina, como um dipeptídeo ou forma de aminoácido livre, na progressão de queimaduras em ratos. Trinta ratos Wistar machos foram queimados com um pente de metal aquecido em água fervente (98 °C) por três minutos, criando quatro áreas retangulares queimadas separadas por três interesespaços não queimados (zona de estase) em ambos os lados do dorso. Os animais foram randomizados em três grupos (n = 10): solução salina (G1-Controle) e grupos tratados que receberam glutamina via oral como dipeptídeo (G2-Dip) ou aminoácido livre (G3-FreeAA). Dois e sete dias após a queimadura, as lesões foram fotografadas para avaliação da evolução da necrose entre os espaços não queimados. Sete dias após a lesão, foi dosada a glutationa sérica e realizada análise histopatológica. Pelas fotografias, houve uma redução significativa na progressão da necrose no G3-Free-AA entre os dias dois e sete. A análise histopatológica no dia 7 mostrou uma zona de estase significativamente maior sem necrose e número mais elevado de fibroblastos em G2-Dip e G3-FreeAA em comparação com G1-Controle. Os níveis plasmáticos de glutationa foram maiores no G2-Dip em relação ao G1-Controle, e houve tendência a níveis mais elevados no G3-FreeAA. A redução das lesões histológicas, maior produção de fibroblastos, maior quantidade de glutationa podem ter beneficiado a evolução da necrose da queimadura, que mostrou maior preservação dos interespaços.


Sujet(s)
Animaux , Mâle , Rats , Brûlures/traitement médicamenteux , Glutamine , Rat Wistar , Dipeptides , Modèles animaux de maladie humaine , Acides aminés
7.
Int J Mol Sci ; 24(24)2023 Dec 18.
Article de Anglais | MEDLINE | ID: mdl-38139462

RÉSUMÉ

Glioma cells exhibit genetic and metabolic alterations that affect the deregulation of several cellular signal transduction pathways, including those related to glucose metabolism. Moreover, oncogenic signaling pathways induce the expression of metabolic genes, increasing the metabolic enzyme activities and thus the critical biosynthetic pathways to generate nucleotides, amino acids, and fatty acids, which provide energy and metabolic intermediates that are essential to accomplish the biosynthetic needs of glioma cells. In this review, we aim to explore how dysregulated metabolic enzymes and their metabolites from primary metabolism pathways in glioblastoma (GBM) such as glycolysis and glutaminolysis modulate anabolic and catabolic metabolic pathways as well as pro-oncogenic signaling and contribute to the formation, survival, growth, and malignancy of glioma cells. Also, we discuss promising therapeutic strategies by targeting the key players in metabolic regulation. Therefore, the knowledge of metabolic reprogramming is necessary to fully understand the biology of malignant gliomas to improve patient survival significantly.


Sujet(s)
Glioblastome , Gliome , Humains , Glioblastome/génétique , Glioblastome/métabolisme , Glutamine/métabolisme , Metabolic Reprogramming , Glycolyse/physiologie , Gliome/anatomopathologie , Transduction du signal , Apoptose , Prolifération cellulaire/physiologie
8.
Article de Anglais | MEDLINE | ID: mdl-37441002

RÉSUMÉ

Background: Bungarus multicinctus is one of the most dangerous venomous snakes prone to cardiopulmonary damage with extremely high mortality. In our previous work, we found that glutamine (Gln) and glutamine synthetase (GS) in pig serum were significantly reduced after Bungarus multicinctus bite. In the present study, to explore whether there is a link between the pathogenesis of cardiopulmonary injury and Gln metabolic changes induced by Bungarus multicinctus venom. We investigated the effect of Gln supplementation on the lung and heart function after snakebite. Methods: We supplemented different concentrations of Gln to mice that were envenomated by Bungarus multicinctus to observe the biological behavior, survival rate, hematological and pathological changes. Gln was supplemented immediately or one hour after the venom injection, and then changes in Gln metabolism were analyzed. Subsequently, to further explore the protective mechanism of glutamine on tissue damage, we measured the expression of heat-shock protein70 (HSP70), NF-κB P65, P53/PUMA by western blotting and real-time polymerase in the lung and heart. Results: Gln supplementation delayed the envenoming symptoms, reduced mortality, and alleviated the histopathological changes in the heart and lung of mice bitten by Bungarus multicinctus. Additionally, Gln increased the activity of glutamine synthetase (GS), glutamate dehydrogenase (GDH) and glutaminase (GLS) in serum. It also balanced the transporter SLC7A11 expression in heart and lung tissues. Bungarus multicinctus venom induced the NF-κB nuclear translocation in the lung, while the HO-1 expression was suppressed. At the same time, venom activated the P53/PUMA signaling pathway and the BAX expression in the heart. Gln treatment reversed the above phenomenon and increased HSP70 expression. Conclusion: Gln alleviated the glutamine metabolism disorder and cardiopulmonary damage caused by Bungarus multicinctus venom. It may protect lungs and heart against venom by promoting the expression of HSP70, inhibiting the activation of NF-κB and P53/PUMA, thereby delaying the process of snake venom and reducing mortality. The present results indicate that Gln could be a potential treatment for Bungarus multicinctus bite.

9.
Neurochem Res ; 48(11): 3447-3456, 2023 Nov.
Article de Anglais | MEDLINE | ID: mdl-37464227

RÉSUMÉ

Evidence indicates that transcranial direct current stimulation (tDCS) provides therapeutic benefits in different situations, such as epilepsy, depression, inflammatory and neuropathic pain. Despite the increasing use of tDCS, its cellular and molecular basis remains unknown. Astrocytes display a close functional and structural relationship with neurons and have been identified as mediators of neuroprotection in tDCS. Considering the importance of hippocampal glutamatergic neurotransmission in nociceptive pathways, we decided to investigate short-term changes in the hippocampal astrocytes of rats subjected to tDCS, evaluating specific cellular markers (GFAP and S100B), as well as markers of astroglial activity; glutamate uptake, glutamine synthesis by glutamine synthetase (GS) and glutathione content. Data clearly show that a single session of tDCS increases the pain threshold elicited by mechanical and thermal stimuli, as evaluated by von Frey and hot plate tests, respectively. These changes involve inflammatory and astroglial neurochemical changes in the hippocampus, based on specific changes in cell markers, such as S100B and GS. Alterations in S100B were also observed in the cerebrospinal fluid of tDCS animals and, most importantly, specific functional changes (increased glutamate uptake and increased GS activity) were detected in hippocampal astrocytes. These findings contribute to a better understanding of tDCS as a therapeutic strategy for nervous disorders and reinforce the importance of astrocytes as therapeutic targets.


Sujet(s)
Épilepsie , Stimulation transcrânienne par courant continu , Rats , Animaux , Astrocytes/métabolisme , Hippocampe/métabolisme , Épilepsie/métabolisme , Acide glutamique/métabolisme , Glutamate-ammonia ligase/métabolisme
10.
Life (Basel) ; 13(7)2023 Jul 11.
Article de Anglais | MEDLINE | ID: mdl-37511913

RÉSUMÉ

Boron neutron capture therapy (BNCT) is based on the preferential uptake of 10B compounds by tumors, followed by neutron irradiation. The aim of this study was to assess, in an ectopic colon cancer model, the therapeutic efficacy, radiotoxicity, abscopal effect and systemic immune response associated with (BPA/Borophenylalanine+GB-10/Decahydrodecaborate)-BNCT (Comb-BNCT) alone or in combination with Oligo-Fucoidan (O-Fuco) or Glutamine (GLN), compared to the "standard" BPA-BNCT protocol usually employed in clinical trials. All treatments were carried out at the RA-3 nuclear reactor. Boron biodistribution studies showed therapeutic values above 20 ppm 10B in tumors. At 7 weeks post-treatment, the ratio of tumor volume post-/pre-BNCT was significantly smaller for all BNCT groups vs. SHAM (p < 0.05). The parameter "incidence of tumors that underwent a reduction to ≤50% of initial tumor volume" exhibited values of 62% for Comb-BNCT alone, 82% for Comb-BNCT+GLN, 73% for Comb-BNCT+O-Fuco and only 30% for BPA-BNCT. For BPA-BNCT, the incidence of severe dermatitis was 100%, whereas it was significantly below 70% (p ≤ 0.05) for Comb-BNCT, Comb-BNCT+O-Fuco and Comb-BNCT+GLN. Considering tumors outside the treatment area, 77% of Comb-BNCT animals had a tumor volume lower than 50 mm3 vs. 30% for SHAM (p ≤ 0.005), suggesting an abscopal effect of Comb-BNCT. Inhibition of metastatic spread to lymph nodes was observed in all Comb-BNCT groups. Considering systemic aspects, CD8+ was elevated for Comb-BNCT+GLN vs. SHAM (p ≤ 0.01), and NK was elevated for Comb-BNCT vs. SHAM (p ≤ 0.05). Comb-BNCT improved therapeutic efficacy and reduced radiotoxicity compared to BPA-BNCT and induced an immune response and an abscopal effect.

11.
Histochem Cell Biol ; 160(2): 135-146, 2023 Aug.
Article de Anglais | MEDLINE | ID: mdl-37179509

RÉSUMÉ

The aim of the current study was to investigate the effect of glutamine supplementation on the expression of HSP70 and the calcium-binding proteins from the S100 superfamily in the recovering extensor digitorum longus (EDL) muscle after injury. Two-month-old Wistar rats were subjected to cryolesion of the EDL muscle and then randomly divided into two groups (with or without glutamine supplementation). Starting immediately after the injury, the supplemented group received daily doses of glutamine (1 g/kg/day, via gavage) for 3 and 10 days orally. Then, muscles were subjected to histological, molecular, and functional analysis. Glutamine supplementation induced an increase in myofiber size of regenerating EDL muscles and prevented the decline in maximum tetanic strength of these muscles evaluated 10 days after injury. An accelerated upregulation of myogenin mRNA levels was detected in glutamine-supplemented injured muscles on day 3 post-cryolesion. The HSP70 expression increased only in the injured group supplemented with glutamine for 3 days. The increase in mRNA levels of NF-κB, the pro-inflammatory cytokines IL-1ß and TNF-α, and the calcium-binding proteins S100A8 and S100A9 on day 3 post-cryolesion in EDL muscles was attenuated by glutamine supplementation. In contrast, the decrease in S100A1 mRNA levels in the 3-day-injured EDL muscles was minimized by glutamine supplementation. Overall, our results suggest that glutamine supplementation accelerates the recovery of myofiber size and contractile function after injury by modulating the expression of myogenin, HSP70, NF-κB, pro-inflammatory cytokines, and S100 calcium-binding proteins.


Sujet(s)
Glutamine , Facteur de transcription NF-kappa B , Rats , Animaux , Glutamine/pharmacologie , Glutamine/métabolisme , Myogénine/métabolisme , Myogénine/pharmacologie , Facteur de transcription NF-kappa B/métabolisme , Rat Wistar , Muscles squelettiques/métabolisme , Contraction musculaire/physiologie , Cytokines/métabolisme , ARN messager/métabolisme , Compléments alimentaires , Protéines de liaison au calcium
12.
Clin Sci (Lond) ; 137(10): 807-821, 2023 05 31.
Article de Anglais | MEDLINE | ID: mdl-37219940

RÉSUMÉ

Lymphocytes act as regulatory and effector cells in inflammation and infection situations. A metabolic switch towards glycolytic metabolism predominance occurs during T lymphocyte differentiation to inflammatory phenotypes (Th1 and Th17 cells). Maturation of T regulatory cells, however, may require activation of oxidative pathways. Metabolic transitions also occur in different maturation stages and activation of B lymphocytes. Under activation, B lymphocytes undergo cell growth and proliferation, associated with increased macromolecule synthesis. The B lymphocyte response to an antigen challenge requires an increased adenosine triphosphate (ATP) supply derived mainly through glycolytic metabolism. After stimulation, B lymphocytes increase glucose uptake, but they do not accumulate glycolytic intermediates, probably due to an increase in various metabolic pathway 'end product' formation. Activated B lymphocytes are associated with increased utilization of pyrimidines and purines for RNA synthesis and fatty acid oxidation. The generation of plasmablasts and plasma cells from B lymphocytes is crucial for antibody production. Antibody production and secretion require increased glucose consumption since 90% of consumed glucose is needed for antibody glycosylation. This review describes critical aspects of lymphocyte metabolism and functional interplay during activation. We discuss the primary fuels for the metabolism of lymphocytes and the particularities of T and B cell metabolism, including the differentiation of lymphocytes, stages of development of B cells, and the production of antibodies.


Sujet(s)
Lymphocytes B , Métabolisme lipidique , Glycosylation , Transport biologique , Anticorps , Glucose
13.
ASN Neuro ; 15: 17590914231157974, 2023.
Article de Anglais | MEDLINE | ID: mdl-36815213

RÉSUMÉ

Aging is marked by complex and progressive physiological changes, including in the glutamatergic system, that lead to a decline of brain function. Increased content of senescent cells in the brain, such as glial cells, has been reported to impact cognition both in animal models and human tissue during normal aging and in the context of neurodegenerative disease. Changes in the glutamatergic synaptic activity rely on the glutamate-glutamine cycle, in which astrocytes handle glutamate taken up from synapses and provide glutamine for neurons, thus maintaining excitatory neurotransmission. However, the mechanisms of glutamate homeostasis in brain aging are still poorly understood. Herein, we showed that mouse senescent astrocytes in vitro undergo upregulation of GLT-1, GLAST, and glutamine synthetase (GS), along with the increased enzymatic activity of GS and [3H]-D-aspartate uptake. Furthermore, we observed higher levels of GS and increased [3H]-D-aspartate uptake in the hippocampus of aged mice, although the activity of GS was similar between young and old mice. Analysis of a previously available RNAseq dataset of mice at different ages revealed upregulation of GLAST and GS mRNA levels in hippocampal astrocytes during aging. Corroborating these rodent data, we showed an increased number of GS + cells, and GS and GLT-1 levels/intensity in the hippocampus of elderly humans. Our data suggest that aged astrocytes undergo molecular and functional changes that control glutamate-glutamine homeostasis upon brain aging.


Sujet(s)
Astrocytes , Maladies neurodégénératives , Animaux , Humains , Souris , Sujet âgé , Astrocytes/métabolisme , Glutamine/génétique , Glutamine/métabolisme , Glutamate-ammonia ligase/génétique , Glutamate-ammonia ligase/métabolisme , Régulation positive , Système X-AG de transport d'acides aminés/génétique , Système X-AG de transport d'acides aminés/métabolisme , Acide D-aspartique/génétique , Acide glutamique/métabolisme , Hippocampe/métabolisme
14.
J Biol Chem ; 299(3): 102941, 2023 03.
Article de Anglais | MEDLINE | ID: mdl-36702251

RÉSUMÉ

Glutamine synthetase (GS), which catalyzes the ATP-dependent synthesis of L-glutamine from L-glutamate and ammonia, is a ubiquitous and conserved enzyme that plays a pivotal role in nitrogen metabolism across all life domains. In vertebrates, GS is highly expressed in astrocytes, where its activity sustains the glutamate-glutamine cycle at glutamatergic synapses and is thus essential for maintaining brain homeostasis. In fact, decreased GS levels or activity have been associated with neurodegenerative diseases, with these alterations attributed to oxidative post-translational modifications of the protein, in particular tyrosine nitration. In this study, we expressed and purified human GS (HsGS) and performed an in-depth analysis of its oxidative inactivation by peroxynitrite (ONOO-) in vitro. We found that ONOO- exposure led to a dose-dependent loss of HsGS activity, the oxidation of cysteine, methionine, and tyrosine residues and also the nitration of tryptophan and tyrosine residues. Peptide mapping by LC-MS/MS through combined H216O/H218O trypsin digestion identified up to 10 tyrosine nitration sites and five types of dityrosine cross-links; these modifications were further scrutinized by structural analysis. Tyrosine residues 171, 185, 269, 283, and 336 were the main nitration targets; however, tyrosine-to-phenylalanine HsGS mutants revealed that their sole nitration was not responsible for enzyme inactivation. In addition, we observed that ONOO- induced HsGS aggregation and activity loss. Thiol oxidation was a key modification to elicit aggregation, as it was also induced by hydrogen peroxide treatment. Taken together, our results indicate that multiple oxidative events at various sites are responsible for the inactivation and aggregation of human GS.


Sujet(s)
Glutamate-ammonia ligase , Acide peroxynitreux , Maturation post-traductionnelle des protéines , Humains , Chromatographie en phase liquide , Glutamate-ammonia ligase/génétique , Glutamate-ammonia ligase/métabolisme , Acide peroxynitreux/composition chimique , Acide peroxynitreux/pharmacologie , Spectrométrie de masse en tandem , Tyrosine/métabolisme , Activation enzymatique/effets des médicaments et des substances chimiques , Oxydoréduction , Mutation , Agrégation pathologique de protéines/induit chimiquement
15.
Clin Sci, v. 137, n. 10, 807–821, mai. 2023
Article de Anglais | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4936

RÉSUMÉ

Lymphocytes act as regulatory and effector cells in inflammation and infection situations. A metabolic switch towards glycolytic metabolism predominance occurs during T lymphocyte differentiation to inflammatory phenotypes (Th1 and Th17 cells). Maturation of T regulatory cells, however, may require activation of oxidative pathways. Metabolic transitions also occur in different maturation stages and activation of B lymphocytes. Under activation, B lymphocytes undergo cell growth and proliferation, associated with increased macromolecule synthesis. The B lymphocyte response to an antigen challenge requires an increased adenosine triphosphate (ATP) supply derived mainly through glycolytic metabolism. After stimulation, B lymphocytes increase glucose uptake, but they do not accumulate glycolytic intermediates, probably due to an increase in various metabolic pathway ‘end product’ formation. Activated B lymphocytes are associated with increased utilization of pyrimidines and purines for RNA synthesis and fatty acid oxidation. The generation of plasmablasts and plasma cells from B lymphocytes is crucial for antibody production. Antibody production and secretion require increased glucose consumption since 90% of consumed glucose is needed for antibody glycosylation. This review describes critical aspects of lymphocyte metabolism and functional interplay during activation. We discuss the primary fuels for the metabolism of lymphocytes and the particularities of T and B cell metabolism, including the differentiation of lymphocytes, stages of development of B cells, and the production of antibodies.

16.
Acta cir. bras ; Acta cir. bras;38: e383923, 2023. graf, ilus
Article de Anglais | LILACS, VETINDEX | ID: biblio-1513538

RÉSUMÉ

Purpose: To evaluate the effects of the experimental subcutaneous Walker-256 tumor and L-glutamine supplementation, an antioxidant, on the glomerular morphology of rats. Methods: Twenty Wistar rats were distributed into four groups (n = 5): control (C); control treated with 2% L-glutamine (CG); rats with Walker-256 tumor (WT); and rats with Walker-256 tumor treated with 2% L-glutamine (WTG). Renal histological samples were submitted to periodic acid-Schiff and Masson's Trichrome staining to analyze glomerular density, morphometry of glomerular components and glomerulosclerosis; and to immunohistochemistry for fibroblast growth factor-2 (FGF-2). Results: WT showed 50% reduction in body mass gain and cachexia index > 10%, while WTG demonstrated reduction in cachexia (p < 0.05). WT revealed reduction of glomerular density, increase in the glomerular tuft area, mesangial area, matrix in the glomerular tuft, decrease in the urinary space and synechia, and consequently higher glomerulosclerosis (p < 0.05). L-glutamine supplementation in the WTG improved glomerular density, and reduced glomerular tuft area, urinary space, mesangial area, and glomerulosclerosis compared to WT(p < 0.05). WT showed higher collagen area and FGF-2 expression compared to C (p < 0.05). WTG presented lower collagen fibers and FGF-2 expression compared to WT (p < 0.05). Conclusions: L-glutamine supplementation reduced cachexia and was beneficial for glomerular morphology of the rats, as well as it reduced kidney damage and improved the remaining glomeruli morphology.


Sujet(s)
Animaux , Rats , Carcinosarcome Walker 256 , Rat Wistar , Glutamine , Glomérule rénal , Antioxydants
17.
J. venom. anim. toxins incl. trop. dis ; 29: e20220080, 2023. tab, graf, ilus
Article de Anglais | VETINDEX | ID: biblio-1448597

RÉSUMÉ

Background: Bungarus multicinctus is one of the most dangerous venomous snakes prone to cardiopulmonary damage with extremely high mortality. In our previous work, we found that glutamine (Gln) and glutamine synthetase (GS) in pig serum were significantly reduced after Bungarus multicinctus bite. In the present study, to explore whether there is a link between the pathogenesis of cardiopulmonary injury and Gln metabolic changes induced by Bungarus multicinctus venom. We investigated the effect of Gln supplementation on the lung and heart function after snakebite. Methods: We supplemented different concentrations of Gln to mice that were envenomated by Bungarus multicinctus to observe the biological behavior, survival rate, hematological and pathological changes. Gln was supplemented immediately or one hour after the venom injection, and then changes in Gln metabolism were analyzed. Subsequently, to further explore the protective mechanism of glutamine on tissue damage, we measured the expression of heat-shock protein70 (HSP70), NF-κB P65, P53/PUMA by western blotting and real-time polymerase in the lung and heart. Results: Gln supplementation delayed the envenoming symptoms, reduced mortality, and alleviated the histopathological changes in the heart and lung of mice bitten by Bungarus multicinctus. Additionally, Gln increased the activity of glutamine synthetase (GS), glutamate dehydrogenase (GDH) and glutaminase (GLS) in serum. It also balanced the transporter SLC7A11 expression in heart and lung tissues. Bungarus multicinctus venom induced the NF-κB nuclear translocation in the lung, while the HO-1 expression was suppressed. At the same time, venom activated the P53/PUMA signaling pathway and the BAX expression in the heart. Gln treatment reversed the above phenomenon and increased HSP70 expression. Conclusion: Gln alleviated the glutamine metabolism disorder and cardiopulmonary damage caused by Bungarus multicinctus venom. It may protect lungs and heart against venom by promoting the expression of HSP70, inhibiting the activation of NF-κB and P53/PUMA, thereby delaying the process of snake venom and reducing mortality. The present results indicate that Gln could be a potential treatment for Bungarus multicinctus bite.


Sujet(s)
Bungarus , Venins des élapidés , Lésion pulmonaire/thérapie , Glutamine/usage thérapeutique
18.
Toxicon ; 217: 46-55, 2022 Oct 15.
Article de Anglais | MEDLINE | ID: mdl-35981665

RÉSUMÉ

Crotoxin (CTX), the major toxin of Crotalus durissus terrificus snake venom, induces an inhibitory effect on tumor development and modulates the functions of macrophages (MØs), which play a key role as a defense mechanism against tumor growth. In early tumor progression stage, MØs are avidly phagocytic (inflammatory cell), releasing reactive nitrogen intermediates-RNI/ROI and cytokines TNF-α, IL-1ß, and IL-6. However, when the tumor has been developed, tumor-associated MØ (angiogenic cell) presents a decrease in the mentioned activities. We reported that CTX stimulates H2O2 release, NO production and secretion of cytokines by peritoneal MØs obtained from non-tumor-bearing rats. Considering that the mentioned mediators control tumor growth, it is mandatory to investigate whether CTX stimulates the production of these mediators by MØs obtained from tumor-bearing animals. The aim of this work was then to evaluate the CTX effect on metabolism and functions of peritoneal MØs obtained from Walker 256 tumor-bearing rats. For this purpose, male Wistar rats were subcutaneously inoculated in the right flank with 1 mL sterile suspension of 2 × 107 Walker 256 tumor cells. CTX (18 µg per animal) was subcutaneously administered in two protocols: a) on the 1st day of tumor cell injection and b) on the 4th day of tumor cell inoculation. In both protocols, MØs were obtaining on the 14th day of tumor cell inoculation to evaluate the release of H2O2, NO, and pro-inflammatory cytokines (IL-1ß, TNFα, and IL-6); maximal activity of hexokinase, glucose-6-phosphate dehydrogenase, citrate synthase, and 14CO2 production from [U-14C]-glucose and [U-14C]-glutamine. The treatment with CTX stimulated the release of NO, H2O2, and cytokines, and glucose and glutamine metabolism. Metabolic and functional changes induced by CTX were accompanied by a decrease of tumor growth as indicated by tumor fresh weight and diameter. These results indicate CTX not only as a scientific tool to investigate changes in metabolism and functions of peritoneal MØs but also for a better understanding of the mechanisms involved in tumor growth.


Sujet(s)
Crotoxine , Animaux , Crotalus/métabolisme , Crotoxine/pharmacologie , Cytokines/métabolisme , Glucose , Glutamine , Peroxyde d'hydrogène/métabolisme , Interleukine-6 , Macrophages péritonéaux/métabolisme , Mâle , Rats , Rat Wistar , Facteur de nécrose tumorale alpha
19.
Front Cell Neurosci ; 16: 983577, 2022.
Article de Anglais | MEDLINE | ID: mdl-36003140

RÉSUMÉ

Anorexia is a loss of appetite or an inability to eat and is often associated with eating disorders. However, animal anorexia is physiologically regulated as a part of the life cycle; for instance, during hibernation, migration or incubation. Anorexia nervosa (AN), on the other hand, is a common eating disorder among adolescent females that experience an intense fear of gaining weight due to body image distortion that results in voluntary avoidance of food intake and, thus, severe weight loss. It has been shown that the neurobiology of feeding extends beyond the hypothalamus. The prefrontal cortex (PFC) is involved in food choice and body image perception, both relevant in AN. However, little is known about the neurobiology of AN, and the lack of effective treatments justifies the use of animal models. Glial cells, the dominant population of nerve cells in the central nervous system, are key in maintaining brain homeostasis. Accordingly, recent studies suggest that glial function may be compromised by anorexia. In this review, we summarize recent findings about anorexia and glial cells.

20.
J Neurochem ; 163(2): 113-132, 2022 10.
Article de Anglais | MEDLINE | ID: mdl-35880385

RÉSUMÉ

COVID-19 causes more than million deaths worldwide. Although much is understood about the immunopathogenesis of the lung disease, a lot remains to be known on the neurological impact of COVID-19. Here, we evaluated immunometabolic changes using astrocytes in vitro and dissected brain areas of SARS-CoV-2 infected Syrian hamsters. We show that SARS-CoV-2 alters proteins of carbon metabolism, glycolysis, and synaptic transmission, many of which are altered in neurological diseases. Real-time respirometry evidenced hyperactivation of glycolysis, further confirmed by metabolomics, with intense consumption of glucose, pyruvate, glutamine, and alpha ketoglutarate. Consistent with glutamine reduction, the blockade of glutaminolysis impaired viral replication and inflammatory response in vitro. SARS-CoV-2 was detected in vivo in hippocampus, cortex, and olfactory bulb of intranasally infected animals. Our data evidence an imbalance in important metabolic molecules and neurotransmitters in infected astrocytes. We suggest this may correlate with the neurological impairment observed during COVID-19, as memory loss, confusion, and cognitive impairment.


Sujet(s)
COVID-19 , Animaux , Astrocytes , Carbone , Cricetinae , Modèles animaux de maladie humaine , Glucose , Glutamine , Acides cétoglutariques , Mesocricetus , Pyruvates , SARS-CoV-2
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE