Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 37
Filtrer
1.
Development ; 150(21)2023 11 01.
Article de Anglais | MEDLINE | ID: mdl-37756602

RÉSUMÉ

T-box transcription factor 20 (Tbx20) plays a multifaceted role in cardiac morphogenesis and controls a broad gene regulatory network. However, the mechanism by which Tbx20 activates and represses target genes in a tissue-specific and temporal manner remains unclear. Studies show that Tbx20 directly interacts with the Transducin-like Enhancer of Split (TLE) family of proteins to mediate transcriptional repression. However, a function for the Tbx20-TLE transcriptional repression complex during heart development has yet to be established. We created a mouse model with a two amino acid substitution in the Tbx20 EH1 domain, thereby disrupting the Tbx20-TLE interaction. Disruption of this interaction impaired crucial morphogenic events, including cardiac looping and chamber formation. Transcriptional profiling of Tbx20EH1Mut hearts and analysis of putative direct targets revealed misexpression of the retinoic acid pathway and cardiac progenitor genes. Further, we show that altered cardiac progenitor development and function contribute to the severe cardiac defects in our model. Our studies indicate that TLE-mediated repression is a primary mechanism by which Tbx20 controls gene expression.


Sujet(s)
Protéines à domaine boîte-T , Transducine , Animaux , Souris , Transducine/génétique , Transducine/métabolisme , Protéines à domaine boîte-T/génétique , Protéines à domaine boîte-T/métabolisme , Régulation de l'expression des gènes au cours du développement , Coeur , Séquences d'acides nucléiques régulatrices
2.
Development ; 150(11)2023 06 01.
Article de Anglais | MEDLINE | ID: mdl-37260146

RÉSUMÉ

The cell cycle depends on a sequence of steps that are triggered and terminated via the synthesis and degradation of phase-specific transcripts and proteins. Although much is known about how stage-specific transcription is activated, less is understood about how inappropriate gene expression is suppressed. Here, we demonstrate that Groucho, the Drosophila orthologue of TLE1 and other related human transcriptional corepressors, regulates normal cell cycle progression in vivo. We show that, although Groucho is expressed throughout the cell cycle, its activity is selectively inactivated by phosphorylation, except in S phase when it negatively regulates E2F1. Constitutive Groucho activity, as well as its depletion and the consequent derepression of e2f1, cause cell cycle phenotypes. Our results suggest that Cdk1 contributes to phase-specific phosphorylation of Groucho in vivo. We propose that Groucho and its orthologues play a role in the metazoan cell cycle that may explain the links between TLE corepressors and several types of human cancer.


Sujet(s)
Facteurs de transcription à motif basique hélice-boucle-hélice , Protéines de Drosophila , Facteur de transcription E2F1 , Protéines de répression , Animaux , Facteurs de transcription à motif basique hélice-boucle-hélice/génétique , Facteurs de transcription à motif basique hélice-boucle-hélice/métabolisme , Cycle cellulaire/génétique , Protéines corépressives/génétique , Protéines corépressives/métabolisme , Drosophila/métabolisme , Facteur de transcription E2F1/génétique , Facteur de transcription E2F1/métabolisme , Phase G2 , Protéines de répression/génétique , Protéines de répression/métabolisme , Phase S , Protéines de Drosophila/génétique , Protéines de Drosophila/métabolisme
3.
Cell Rep ; 36(12): 109725, 2021 09 21.
Article de Anglais | MEDLINE | ID: mdl-34551306

RÉSUMÉ

Despite absent expression in normal hematopoiesis, the Forkhead factor FOXC1, a critical mesenchymal differentiation regulator, is highly expressed in ∼30% of HOXAhigh acute myeloid leukemia (AML) cases to confer blocked monocyte/macrophage differentiation. Through integrated proteomics and bioinformatics, we find that FOXC1 and RUNX1 interact through Forkhead and Runt domains, respectively, and co-occupy primed and active enhancers distributed close to differentiation genes. FOXC1 stabilizes association of RUNX1, HDAC1, and Groucho repressor TLE3 to limit enhancer activity: FOXC1 knockdown induces loss of repressor proteins, gain of CEBPA binding, enhancer acetylation, and upregulation of nearby genes, including KLF2. Furthermore, it triggers genome-wide redistribution of RUNX1, TLE3, and HDAC1 from enhancers to promoters, leading to repression of self-renewal genes, including MYC and MYB. Our studies highlight RUNX1 and CEBPA transcription factor swapping as a feature of leukemia cell differentiation and reveal that FOXC1 prevents this by stabilizing enhancer binding of a RUNX1/HDAC1/TLE3 transcription repressor complex to oncogenic effect.


Sujet(s)
Différenciation cellulaire , Protéines corépressives/métabolisme , Sous-unité alpha 2 du facteur CBF/métabolisme , Facteurs de transcription Forkhead/métabolisme , Protéines liant les séquences stimulatrices de type CCAAT/génétique , Protéines liant les séquences stimulatrices de type CCAAT/métabolisme , Lignée cellulaire tumorale , Chromatine/métabolisme , Protéines corépressives/génétique , Sous-unité alpha 2 du facteur CBF/composition chimique , Sous-unité alpha 2 du facteur CBF/génétique , Éléments activateurs (génétique) , Facteurs de transcription Forkhead/antagonistes et inhibiteurs , Facteurs de transcription Forkhead/déficit , Facteurs de transcription Forkhead/génétique , Histone Deacetylase 1/génétique , Histone Deacetylase 1/métabolisme , Humains , Facteurs de transcription Krüppel-like/génétique , Facteurs de transcription Krüppel-like/métabolisme , Leucémie aigüe myéloïde/métabolisme , Leucémie aigüe myéloïde/anatomopathologie , Monocytes/cytologie , Monocytes/métabolisme , Régions promotrices (génétique) , Liaison aux protéines , Domaines protéiques , Protéines proto-oncogènes c-myc/métabolisme , Interférence par ARN , Petit ARN interférent/métabolisme , Régulation positive
4.
Development ; 148(6)2021 03 24.
Article de Anglais | MEDLINE | ID: mdl-33658226

RÉSUMÉ

Groucho-related genes (GRGs) are transcriptional co-repressors that are crucial for many developmental processes. Several essential pancreatic transcription factors are capable of interacting with GRGs; however, the in vivo role of GRG-mediated transcriptional repression in pancreas development is still not well understood. In this study, we used complex mouse genetics and transcriptomic analyses to determine that GRG3 is essential for ß cell development, and in the absence of Grg3 there is compensatory upregulation of Grg4Grg3/4 double mutant mice have severe dysregulation of the pancreas gene program with ectopic expression of canonical liver genes and Foxa1, a master regulator of the liver program. Neurod1, an essential ß cell transcription factor and predicted target of Foxa1, becomes downregulated in Grg3/4 mutants, resulting in reduced ß cell proliferation, hyperglycemia, and early lethality. These findings uncover novel functions of GRG-mediated repression during pancreas development.


Sujet(s)
Facteurs de transcription à motif basique hélice-boucle-hélice/génétique , Protéines corépressives/génétique , Facteur nucléaire hépatocytaire HNF-3 alpha/génétique , Pancréas/croissance et développement , Protéines de répression/génétique , Animaux , Différenciation cellulaire/génétique , Prolifération cellulaire/génétique , Régulation de l'expression des gènes au cours du développement/génétique , Cellules à insuline/métabolisme , Foie/croissance et développement , Foie/métabolisme , Souris , Mutation/génétique , Organogenèse/génétique , Pancréas/métabolisme
5.
Mol Cell Oncol ; 8(6): 2003161, 2021.
Article de Anglais | MEDLINE | ID: mdl-35419467

RÉSUMÉ

Tissue-inappropriate expression of FOXC1 (Forkhead Box C1) in acute myeloid leukemia confers a monocyte/macrophage lineage differentiation block. We discovered that FOXC1 interacts with RUNX1 (Runt-Related Transcription Factor 1) to stabilize a RUNX1, HDAC1 (Histone Deacetylase 1) and TLE3 (Transducin-like enhancer protein 3) repressor complex at enhancers controlling myeloid differentiation genes.

6.
Genes (Basel) ; 11(10)2020 09 28.
Article de Anglais | MEDLINE | ID: mdl-32998295

RÉSUMÉ

Cell fate is determined by the coordinated activity of different pathways, including the conserved Notch pathway. Activation of Notch results in the transcription of Notch targets that are otherwise silenced by repressor complexes. In Drosophila, the repressor complex comprises the transcription factor Suppressor of Hairless (Su(H)) bound to the Notch antagonist Hairless (H) and the general co-repressors Groucho (Gro) and C-terminal binding protein (CtBP). The latter two are shared by different repressors from numerous pathways, raising the possibility that they are rate-limiting. We noted that the overexpression during wing development of H mutants HdNT and HLD compromised in Su(H)-binding induced ectopic veins. On the basis of the role of H as Notch antagonist, overexpression of Su(H)-binding defective H isoforms should be without consequence, implying different mechanisms but repression of Notch signaling activity. Perhaps excess H protein curbs general co-repressor availability. Supporting this model, nearly normal wings developed upon overexpression of H mutant isoforms that bound neither Su(H) nor co-repressor Gro and CtBP. Excessive H protein appeared to sequester general co-repressors, resulting in specific vein defects, indicating their limited availability during wing vein development. In conclusion, interpretation of overexpression phenotypes requires careful consideration of possible dominant negative effects from interception of limiting factors.


Sujet(s)
Protéines corépressives/métabolisme , Protéines de Drosophila/métabolisme , Drosophila melanogaster/croissance et développement , Régulation de l'expression des gènes au cours du développement , Ailes d'animaux/croissance et développement , Animaux , Animal génétiquement modifié , Protéines corépressives/génétique , Protéines de Drosophila/génétique , Drosophila melanogaster/anatomie et histologie , Drosophila melanogaster/génétique , Drosophila melanogaster/métabolisme , Femelle , Phénotype , Récepteurs Notch/génétique , Récepteurs Notch/métabolisme , Protéines de répression/génétique , Protéines de répression/métabolisme , Ailes d'animaux/anatomie et histologie , Ailes d'animaux/métabolisme
7.
Development ; 146(10)2019 05 22.
Article de Anglais | MEDLINE | ID: mdl-31036545

RÉSUMÉ

A hallmark of Wnt/ß-Catenin signaling is the extreme diversity of its transcriptional response, which varies depending on the cell and developmental context. What controls this diversity is poorly understood. In all cases, the switch from transcriptional repression to activation depends on a nuclear increase in ß-Catenin, which detaches the transcription factor T cell factor 7 like 1 (Tcf7l1) bound to Groucho (Gro) transcriptional co-repressors from its DNA-binding sites and transiently converts Tcf7/Lymphoid enhancer binding factor 1 (Lef1) into a transcriptional activator. One of the earliest and evolutionarily conserved functions of Wnt/ß-Catenin signaling is the induction of the blastopore lip organizer. Here, we demonstrate that the evolutionarily conserved BarH-like homeobox-2 (Barhl2) protein stabilizes the Tcf7l1-Gro complex and maintains the repressed expression of Tcf target genes by a mechanism that depends on histone deacetylase 1 (Hdac-1) activity. In this way, Barhl2 switches off the Wnt/ß-Catenin-dependent early transcriptional response, thereby limiting the formation of the organizer in time and/or space. This study reveals a novel nuclear inhibitory mechanism of Wnt/Tcf signaling that switches off organizer fate determination.


Sujet(s)
Protéines à homéodomaine/métabolisme , Protéines de tissu nerveux/métabolisme , Organisateurs embryonnaires/métabolisme , Facteurs de transcription TCF/métabolisme , bêta-Caténine/métabolisme , Animaux , Femelle , Protéines à homéodomaine/génétique , Immunoprécipitation , Hybridation in situ , Luciférases des lucioles/génétique , Luciférases des lucioles/métabolisme , Mâle , Protéines de tissu nerveux/génétique , Plasmides/génétique , Facteurs de transcription TCF/génétique , Xenopus laevis , bêta-Caténine/génétique
8.
Stem Cell Reports ; 12(5): 1007-1023, 2019 05 14.
Article de Anglais | MEDLINE | ID: mdl-30982741

RÉSUMÉ

Intestinal stem cell (ISC) differentiation in the Drosophila midgut requires Delta/Notch-mediated lateral inhibition, which separates the fate of ISCs from differentiating enteroblasts (EBs). Although a canonical Notch signaling cascade is involved in the lateral inhibition, its regulation at the transcriptional level is still unclear. Here we show that the establishment of lateral inhibition between ISC-EB requires two evolutionarily conserved transcriptional co-repressors Groucho (Gro) and C-terminal binding protein (CtBP) that act differently. Gro functions in EBs with E(spl)-C proteins to suppress Delta expression, inhibit cell-cycle re-entry, and promote cell differentiation, whereas CtBP functions specifically in ISCs to mediate transcriptional repression of Su(H) targets and maintain ISC fate. Interestingly, several E(spl)-C genes are also expressed in ISCs that cooperate with Gro to inhibit cell proliferation. Collectively, our study demonstrates separable and cell-type-specific functions of Gro and CtBP in a lateral inhibition process that controls the proliferation and differentiation of tissue stem cells.


Sujet(s)
Alcohol oxidoreductases/génétique , Facteurs de transcription à motif basique hélice-boucle-hélice/génétique , Différenciation cellulaire/génétique , Protéines de liaison à l'ADN/génétique , Drosophila melanogaster/génétique , Récepteurs Notch/génétique , Protéines de répression/génétique , Cellules souches/métabolisme , Alcohol oxidoreductases/métabolisme , Animaux , Animal génétiquement modifié , Facteurs de transcription à motif basique hélice-boucle-hélice/métabolisme , Division cellulaire/génétique , Prolifération cellulaire/génétique , Protéines de liaison à l'ADN/métabolisme , Drosophila melanogaster/cytologie , Drosophila melanogaster/métabolisme , Régulation de l'expression des gènes au cours du développement , Intestins/cytologie , Interférence par ARN , Récepteurs Notch/métabolisme , Protéines de répression/métabolisme , Transduction du signal/génétique , Cellules souches/cytologie
9.
Proc Natl Acad Sci U S A ; 115(8): 1807-1812, 2018 02 20.
Article de Anglais | MEDLINE | ID: mdl-29432195

RÉSUMÉ

The HMG-box protein Capicua (Cic) is a conserved transcriptional repressor that functions downstream of receptor tyrosine kinase (RTK) signaling pathways in a relatively simple switch: In the absence of signaling, Cic represses RTK-responsive genes by binding to nearly invariant sites in DNA, whereas activation of RTK signaling down-regulates Cic activity, leading to derepression of its targets. This mechanism controls gene expression in both Drosophila and mammals, but whether Cic can also function via other regulatory mechanisms remains unknown. Here, we characterize an RTK-independent role of Cic in regulating spatially restricted expression of Toll/IL-1 signaling targets in Drosophila embryogenesis. We show that Cic represses those targets by binding to suboptimal DNA sites of lower affinity than its known consensus sites. This binding depends on Dorsal/NF-κB, which translocates into the nucleus upon Toll activation and binds next to the Cic sites. As a result, Cic binds to and represses Toll targets only in regions with nuclear Dorsal. These results reveal a mode of Cic regulation unrelated to the well-established RTK/Cic depression axis and implicate cooperative binding in conjunction with low-affinity binding sites as an important mechanism of enhancer regulation. Given that Cic plays a role in many developmental and pathological processes in mammals, our results raise the possibility that some of these Cic functions are independent of RTK regulation and may depend on cofactor-assisted DNA binding.


Sujet(s)
Protéines de Drosophila/métabolisme , Drosophila/génétique , Protéines HMGB/métabolisme , Récepteurs à activité tyrosine kinase/métabolisme , Protéines de répression/métabolisme , Transduction du signal , Récepteurs de type Toll/métabolisme , Animaux , Facteurs de transcription à motif basique hélice-boucle-hélice/génétique , Facteurs de transcription à motif basique hélice-boucle-hélice/métabolisme , Noyau de la cellule/génétique , Noyau de la cellule/métabolisme , Drosophila/embryologie , Drosophila/enzymologie , Drosophila/métabolisme , Protéines de Drosophila/génétique , Femelle , Régulation de l'expression des gènes au cours du développement , Protéines HMGB/génétique , Mâle , Protéines nucléaires/génétique , Protéines nucléaires/métabolisme , Phosphoprotéines/génétique , Phosphoprotéines/métabolisme , Régions promotrices (génétique) , Récepteurs à activité tyrosine kinase/génétique , Protéines de répression/génétique , Récepteurs de type Toll/génétique , Facteurs de transcription/génétique , Facteurs de transcription/métabolisme
10.
Mol Oncol ; 12(6): 775-787, 2018 06.
Article de Anglais | MEDLINE | ID: mdl-29316219

RÉSUMÉ

Glioblastoma (GBM) is the most common and deadly malignant brain cancer of glial cell origin, with a median patient survival of less than 20 months. Transcription factors FOXG1 and TLE1 promote GBM propagation by supporting maintenance of brain tumour-initiating cells (BTICs) with stem-like properties. Here, we characterize FOXG1 and TLE1 target genes in GBM patient-derived BTICs using ChIP-Seq and RNA-Seq approaches. These studies identify 150 direct FOXG1 targets, several of which are also TLE1 targets, involved in cell proliferation, differentiation, survival, chemotaxis and angiogenesis. Negative regulators of NOTCH signalling, including CHAC1, are among the transcriptional repression targets of FOXG1:TLE1 complexes, suggesting a crosstalk between FOXG1:TLE1 and NOTCH-mediated pathways in GBM. These results provide previously unavailable insight into the transcriptional programs underlying the tumour-promoting functions of FOXG1:TLE1 in GBM.


Sujet(s)
Facteurs de transcription Forkhead/génétique , Réseaux de régulation génique , Glioblastome/génétique , Glioblastome/anatomopathologie , Cellules souches tumorales/métabolisme , Cellules souches tumorales/anatomopathologie , Protéines de tissu nerveux/génétique , Protéines de répression/génétique , Sites de fixation , Tumeurs du cerveau/génétique , Tumeurs du cerveau/anatomopathologie , Lignée cellulaire tumorale , Protéines corépressives , Facteurs de transcription Forkhead/métabolisme , Régulation de l'expression des gènes tumoraux , Génome humain , Facteur nucléaire hépatocytaire HNF-3 alpha/métabolisme , Humains , Protéines de tissu nerveux/métabolisme , Liaison aux protéines , ARN messager/génétique , ARN messager/métabolisme , Protéines de répression/métabolisme , Reproductibilité des résultats , Gamma-glutamylcyclotransferase/métabolisme
11.
BMC Biotechnol ; 18(1): 1, 2018 01 09.
Article de Anglais | MEDLINE | ID: mdl-29316906

RÉSUMÉ

BACKGROUND: The application of antisense molecules, such as morpholino oligonucleotides, is an efficient method of gene inactivation in vivo. We recently introduced phosphonic ester modified peptide nucleic acids (PNA) for in vivo loss-of-function experiments in medaka embryos. Here we tested novel modifications of the PNA backbone to knockdown the medaka tcf3 gene. RESULTS: A single tcf3 gene exists in the medaka genome and its inactivation strongly affected eye development of the embryos, leading to size reduction and anophthalmia in severe cases. The function of Tcf3 strongly depends on co-repressor interactions. We found interactions with Groucho/Tle proteins to be most important for eye development. Using a dominant negative approach for combined inactivation of all groucho/tle genes also resulted in eye phenotypes, as did interference with three individual tle genes. CONCLUSIONS: Our results show that side chain modified PNAs come close to the knockdown efficiency of morpholino oligonucleotides in vivo. A single medaka tcf3 gene combines the function of the two zebrafish paralogs hdl and tcf3b. In combination with Groucho/Tle corepressor proteins Tcf3 acts in anterior development and is critical for eye formation.


Sujet(s)
Oeil/embryologie , Protéines de poisson/génétique , Protéines de poisson/métabolisme , Techniques de knock-down de gènes/méthodes , Oryzias/embryologie , Animaux , Animal génétiquement modifié , Anophtalmie/génétique , Embryon non mammalien/physiologie , Malformations oculaires/génétique , Régulation de l'expression des gènes au cours du développement , Morpholinos/génétique , Oryzias/génétique , Acides nucléiques peptidiques/génétique , Protéines de répression/génétique , Protéines de répression/métabolisme , Facteurs de transcription/génétique , Facteurs de transcription/métabolisme
12.
Bioessays ; 40(2)2018 02.
Article de Anglais | MEDLINE | ID: mdl-29250807

RÉSUMÉ

Many targets of the Wnt/ß-catenin signaling pathway are regulated by TCF transcription factors, which play important roles in animal development, stem cell biology, and oncogenesis. TCFs can regulate Wnt targets through a "transcriptional switch," repressing gene expression in unstimulated cells and promoting transcription upon Wnt signaling. However, it is not clear whether this switch mechanism is a general feature of Wnt gene regulation or limited to a subset of Wnt targets. Co-repressors of the TLE family are known to contribute to the repression of Wnt targets in the absence of signaling, but how they are inactivated or displaced by Wnt signaling is poorly understood. In this mini-review, we discuss several recent reports that address the prevalence and molecular mechanisms of the Wnt transcription switch, including the finding of Wnt-dependent ubiquitination/inactivation of TLEs. Together, these findings highlight the growing complexity of the regulation of gene expression by the Wnt pathway.


Sujet(s)
Régulation de l'expression des gènes , Facteurs de transcription TCF/génétique , Voie de signalisation Wnt/génétique , bêta-Caténine/génétique , Animaux , Humains , Protéines de répression/génétique , Activation de la transcription , Ubiquitination
13.
Mol Cell ; 67(2): 181-193.e5, 2017 Jul 20.
Article de Anglais | MEDLINE | ID: mdl-28689657

RÉSUMÉ

Extracellular signals are transduced to the cell nucleus by effectors that bind to enhancer complexes to operate transcriptional switches. For example, the Wnt enhanceosome is a multiprotein complex associated with Wnt-responsive enhancers through T cell factors (TCF) and kept silent by Groucho/TLE co-repressors. Wnt-activated ß-catenin binds to TCF to overcome this repression, but how it achieves this is unknown. Here, we discover that this process depends on the HECT E3 ubiquitin ligase Hyd/UBR5, which is required for Wnt signal responses in Drosophila and human cell lines downstream of activated Armadillo/ß-catenin. We identify Groucho/TLE as a functionally relevant substrate, whose ubiquitylation by UBR5 is induced by Wnt signaling and conferred by ß-catenin. Inactivation of TLE by UBR5-dependent ubiquitylation also involves VCP/p97, an AAA ATPase regulating the folding of various cellular substrates including ubiquitylated chromatin proteins. Thus, Groucho/TLE ubiquitylation by Hyd/UBR5 is a key prerequisite that enables Armadillo/ß-catenin to activate transcription.


Sujet(s)
Facteurs de transcription à motif basique hélice-boucle-hélice/métabolisme , Protéines corépressives/métabolisme , Protéines de Drosophila/métabolisme , Drosophila melanogaster/enzymologie , Protéines de répression/métabolisme , Transcription génétique , Ubiquitin-protein ligases/métabolisme , Voie de signalisation Wnt , Adenosine triphosphatases/génétique , Adenosine triphosphatases/métabolisme , Animaux , Animal génétiquement modifié , Protéines à domaine armadillo/génétique , Protéines à domaine armadillo/métabolisme , Facteurs de transcription à motif basique hélice-boucle-hélice/génétique , Systèmes CRISPR-Cas , Protéines du cycle cellulaire/génétique , Protéines du cycle cellulaire/métabolisme , Protéines corépressives/génétique , Protéines de Drosophila/génétique , Drosophila melanogaster/génétique , Techniques de knock-down de gènes , Cellules HCT116 , Cellules HEK293 , Cellules HeLa , Humains , Liaison aux protéines , Motifs et domaines d'intéraction protéique , Stabilité protéique , Protéolyse , Protéines de répression/génétique , Facteurs de transcription/génétique , Facteurs de transcription/métabolisme , Activation de la transcription , Transfection , Ubiquitin-protein ligases/génétique , Ubiquitination , Protéine contenant la valosine , bêta-Caténine/génétique , bêta-Caténine/métabolisme
14.
Sci Adv ; 3(6): e1601217, 2017 06.
Article de Anglais | MEDLINE | ID: mdl-28630893

RÉSUMÉ

TOPLESS are tetrameric plant corepressors of the conserved Tup1/Groucho/TLE (transducin-like enhancer of split) family. We show that they interact through their TOPLESS domains (TPDs) with two functionally important ethylene response factor-associated amphiphilic repression (EAR) motifs of the rice strigolactone signaling repressor D53: the universally conserved EAR-3 and the monocot-specific EAR-2. We present the crystal structure of the monocot-specific EAR-2 peptide in complex with the TOPLESS-related protein 2 (TPR2) TPD, in which the EAR-2 motif binds the same TPD groove as jasmonate and auxin signaling repressors but makes additional contacts with a second TPD site to mediate TPD tetramer-tetramer interaction. We validated the functional relevance of the two TPD binding sites in reporter gene assays and in transgenic rice and demonstrate that EAR-2 binding induces TPD oligomerization. Moreover, we demonstrate that the TPD directly binds nucleosomes and the tails of histones H3 and H4. Higher-order assembly of TPD complexes induced by EAR-2 binding markedly stabilizes the nucleosome-TPD interaction. These results establish a new TPD-repressor binding mode that promotes TPD oligomerization and TPD-nucleosome interaction, thus illustrating the initial assembly of a repressor-corepressor-nucleosome complex.


Sujet(s)
Motifs d'acides aminés , Protéines corépressives/composition chimique , Protéines corépressives/métabolisme , Nucléosomes/métabolisme , Multimérisation de protéines , Protéines de répression/composition chimique , Protéines de répression/métabolisme , Séquence d'acides aminés , Histone/composition chimique , Histone/métabolisme , Humains , Structures macromoléculaires , Modèles biologiques , Modèles moléculaires , Mutation , Peptides/composition chimique , Peptides/métabolisme , Phénotype , Protéines végétales/composition chimique , Protéines végétales/métabolisme , Liaison aux protéines , Conformation des protéines , Transduction du signal , Relation structure-activité
15.
BMC Genomics ; 18(1): 215, 2017 02 28.
Article de Anglais | MEDLINE | ID: mdl-28245789

RÉSUMÉ

BACKGROUND: The transcriptional corepressor Groucho (Gro) is required for the function of many developmentally regulated DNA binding repressors, thus helping to define the gene expression profile of each cell during development. The ability of Gro to repress transcription at a distance together with its ability to oligomerize and bind to histones has led to the suggestion that Gro may spread along chromatin. However, much is unknown about the mechanism of Gro-mediated repression and about the dynamics of Gro targeting. RESULTS: Our chromatin immunoprecipitation sequencing analysis of temporally staged Drosophila embryos shows that Gro binds in a highly dynamic manner primarily to clusters of discrete (<1 kb) segments. Consistent with the idea that Gro may facilitate communication between silencers and promoters, Gro binding is enriched at both cis-regulatory modules, as well as within the promotors of potential target genes. While this Gro-recruitment is required for repression, our data show that it is not sufficient for repression. Integration of Gro binding data with transcriptomic analysis suggests that, contrary to what has been observed for another Gro family member, Drosophila Gro is probably a dedicated repressor. This analysis also allows us to define a set of high confidence Gro repression targets. Using publically available data regarding the physical and genetic interactions between these targets, we are able to place them in the regulatory network controlling development. Through analysis of chromatin associated pre-mRNA levels at these targets, we find that genes regulated by Gro in the embryo are enriched for characteristics of promoter proximal paused RNA polymerase II. CONCLUSIONS: Our findings are inconsistent with a one-dimensional spreading model for long-range repression and suggest that Gro-mediated repression must be regulated at a post-recruitment step. They also show that Gro is likely a dedicated repressor that sits at a prominent highly interconnected regulatory hub in the developmental network. Furthermore, our findings suggest a role for RNA polymerase II pausing in Gro-mediated repression.


Sujet(s)
Facteurs de transcription à motif basique hélice-boucle-hélice/métabolisme , Régulation de l'expression des gènes au cours du développement , Génomique , Protéines de répression/métabolisme , Animaux , Chromatine/métabolisme , Drosophila melanogaster/embryologie , Drosophila melanogaster/génétique , Drosophila melanogaster/métabolisme , Embryon non mammalien/métabolisme , Liaison aux protéines
16.
Dev Cell ; 40(6): 595-607.e4, 2017 03 27.
Article de Anglais | MEDLINE | ID: mdl-28325473

RÉSUMÉ

The interplay between transcription factors and chromatin dictates gene regulatory network activity. Germ layer specification is tightly coupled with zygotic gene activation and, in most metazoans, is dependent upon maternal factors. We explore the dynamic genome-wide interactions of Foxh1, a maternal transcription factor that mediates Nodal/TGF-ß signaling, with cis-regulatory modules (CRMs) during mesendodermal specification. Foxh1 marks CRMs during cleavage stages and recruits the co-repressor Tle/Groucho in the early blastula. We highlight a population of CRMs that are continuously occupied by Foxh1 and show that they are marked by H3K4me1, Ep300, and Fox/Sox/Smad motifs, suggesting interplay between these factors in gene regulation. We also propose a molecular "hand-off" between maternal Foxh1 and zygotic Foxa at these CRMs to maintain enhancer activation. Our findings suggest that Foxh1 functions at the top of a hierarchy of interactions by marking developmental genes for activation, beginning with the onset of zygotic gene expression.


Sujet(s)
Endoderme/métabolisme , Facteurs de transcription Forkhead/métabolisme , Régulation de l'expression des gènes au cours du développement , Mésoderme/métabolisme , Facteurs de transcription/métabolisme , Protéines de Xénope/métabolisme , Xenopus/embryologie , Xenopus/génétique , Animaux , Blastula/métabolisme , Stade de la segmentation de l'oeuf/métabolisme , Protéines corépressives/métabolisme , Embryon non mammalien/métabolisme , Endoderme/embryologie , Éléments activateurs (génétique)/génétique , Facteurs de transcription Forkhead/génétique , Génome , Histone/métabolisme , Lysine/métabolisme , Mésoderme/embryologie , Méthylation , Protéine Nodal/métabolisme , Liaison aux protéines/génétique , RNA polymerase II/métabolisme , ARN messager/génétique , ARN messager/métabolisme , Séquences d'acides nucléiques régulatrices/génétique , Analyse de séquence d'ARN , Transduction du signal/génétique , Transcription génétique , Xenopus/métabolisme , Protéines de Xénope/génétique
17.
Elife ; 62017 03 15.
Article de Anglais | MEDLINE | ID: mdl-28296634

RÉSUMÉ

Wnt/ß-catenin signaling elicits context-dependent transcription switches that determine normal development and oncogenesis. These are mediated by the Wnt enhanceosome, a multiprotein complex binding to the Pygo chromatin reader and acting through TCF/LEF-responsive enhancers. Pygo renders this complex Wnt-responsive, by capturing ß-catenin via the Legless/BCL9 adaptor. We used CRISPR/Cas9 genome engineering of Drosophila legless (lgs) and human BCL9 and B9L to show that the C-terminus downstream of their adaptor elements is crucial for Wnt responses. BioID proximity labeling revealed that BCL9 and B9L, like PYGO2, are constitutive components of the Wnt enhanceosome. Wnt-dependent docking of ß-catenin to the enhanceosome apparently causes a rearrangement that apposes the BCL9/B9L C-terminus to TCF. This C-terminus binds to the Groucho/TLE co-repressor, and also to the Chip/LDB1-SSDP enhanceosome core complex via an evolutionary conserved element. An unexpected link between BCL9/B9L, PYGO2 and nuclear co-receptor complexes suggests that these ß-catenin co-factors may coordinate Wnt and nuclear hormone responses.


Sujet(s)
Protéines de Drosophila/métabolisme , Protéines tumorales/métabolisme , Animaux , Drosophila , Protéines de Drosophila/génétique , Édition de gène , Humains , Complexes multiprotéiques/métabolisme , Protéines tumorales/génétique , Recombinaison génétique , Facteurs de transcription , Voie de signalisation Wnt
18.
Adv Exp Med Biol ; 963: 249-257, 2017.
Article de Anglais | MEDLINE | ID: mdl-28197917

RÉSUMÉ

The ubiquitin -like protein SUMO is conjugated covalently to hundreds of target proteins in organisms throughout the eukaryotic domain. Genetic and biochemical studies using the model organism Drosophila melanogaster are beginning to reveal many essential functions for SUMO in cell biology and development. For example, SUMO regulates multiple signaling pathways such as the Ras/MAPK, Dpp, and JNK pathways. In addition, SUMO regulates transcription through conjugation to many transcriptional regulatory proteins, including Bicoid, Spalt , Scm, and Groucho. In some cases, conjugation of SUMO to a target protein inhibits its normal activity, while in other cases SUMO conjugation stimulates target protein activity. SUMO often modulates a biological process by altering the subcellular localization of a target protein. The ability of SUMO and other ubiquitin-like proteins to diversify protein function may be critical to the evolution of developmental complexity.


Sujet(s)
Protéines de Drosophila/métabolisme , Drosophila melanogaster/métabolisme , Transduction du signal , Petites protéines modificatrices apparentées à l'ubiquitine/métabolisme , Sumoylation , Ubiquitin-protein ligases/métabolisme , Animaux , Drosophila melanogaster/croissance et développement
19.
Curr Top Dev Biol ; 122: 27-54, 2017.
Article de Anglais | MEDLINE | ID: mdl-28057267

RÉSUMÉ

The nematode Caenorhabditis elegans is a simple metazoan animal that is widely used as a model to understand the genetic control of development. The completely sequenced C. elegans genome contains 22 T-box genes, and they encode factors that show remarkable diversity in sequence, DNA-binding specificity, and function. Only three of the C. elegans T-box factors can be grouped into the conserved subfamilies found in other organisms, while the remaining factors are significantly diverged and unlike those in most other animals. While some of the C. elegans factors can bind canonical T-box binding elements, others bind and regulate target gene expression through distinct sequences. The nine genetically characterized T-box factors have varied functions in development and morphogenesis of muscle, hypodermal tissues, and neurons, as well as in early blastomere fate specification, cell migration, apoptosis, and sex determination, but the functions of most of the C. elegans T-box factors have not yet been extensively characterized. Like T-box factors in other animals, interaction with a Groucho-family corepressor and posttranslational SUMOylation have been shown to affect C. elegans T-box factor activity, and it is likely that additional mechanisms affecting T-box factor activity will be discovered using the effective genetic approaches in this organism.


Sujet(s)
Protéines de Caenorhabditis elegans/métabolisme , Caenorhabditis elegans/métabolisme , Protéines à domaine boîte-T/métabolisme , Séquence d'acides aminés , Animaux , Caenorhabditis elegans/génétique , Protéines de Caenorhabditis elegans/composition chimique , Protéines de Caenorhabditis elegans/génétique , ADN/métabolisme , Liaison aux protéines , Maturation post-traductionnelle des protéines , Protéines à domaine boîte-T/composition chimique , Protéines à domaine boîte-T/génétique
20.
Development ; 143(24): 4631-4642, 2016 12 15.
Article de Anglais | MEDLINE | ID: mdl-27836963

RÉSUMÉ

In the epithelial follicle stem cells (FSCs) of the Drosophila ovary, Epidermal Growth Factor Receptor (EGFR) signaling promotes self-renewal, whereas Notch signaling promotes differentiation of the prefollicle cell (pFC) daughters. We have identified two proteins, Six4 and Groucho (Gro), that link the activity of these two pathways to regulate the earliest cell fate decision in the FSC lineage. Our data indicate that Six4 and Gro promote differentiation towards the polar cell fate by promoting Notch pathway activity. This activity of Gro is antagonized by EGFR signaling, which inhibits Gro-dependent repression via p-ERK mediated phosphorylation. We have found that the phosphorylated form of Gro persists in newly formed pFCs, which may delay differentiation and provide these cells with a temporary memory of the EGFR signal. Collectively, these findings demonstrate that phosphorylated Gro labels a transition state in the FSC lineage and describe the interplay between Notch and EGFR signaling that governs the differentiation processes during this period.


Sujet(s)
Facteurs de transcription à motif basique hélice-boucle-hélice/génétique , Protéines de Drosophila/génétique , Protéines de Drosophila/métabolisme , Drosophila melanogaster/embryologie , Récepteurs ErbB/métabolisme , Protéines à homéodomaine/génétique , Protéines de tissu nerveux/génétique , Follicule ovarique/embryologie , Récepteur peptidique invertébrés/métabolisme , Récepteurs Notch/métabolisme , Protéines de répression/génétique , Facteurs de transcription/génétique , Animaux , Différenciation cellulaire/génétique , Cellules épithéliales/cytologie , Femelle , Protéines à homéodomaine/métabolisme , Protéines de tissu nerveux/métabolisme , Follicule ovarique/cytologie , Phosphorylation , Interférence par ARN , Petit ARN interférent/génétique , Transduction du signal/génétique , Cellules souches/cytologie , Facteurs de transcription/métabolisme
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE