Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 3.018
Filtrer
1.
Adv Sci (Weinh) ; : e2403197, 2024 Jul 01.
Article de Anglais | MEDLINE | ID: mdl-38946671

RÉSUMÉ

Modifying the coordination or local environments of single-, di-, tri-, and multi-metal atom (SMA/DMA/TMA/MMA)-based materials is one of the best strategies for increasing the catalytic activities, selectivity, and long-term durability of these materials. Advanced sheet materials supported by metal atom-based materials have become a critical topic in the fields of renewable energy conversion systems, storage devices, sensors, and biomedicine owing to the maximum atom utilization efficiency, precisely located metal centers, specific electron configurations, unique reactivity, and precise chemical tunability. Several sheet materials offer excellent support for metal atom-based materials and are attractive for applications in energy, sensors, and medical research, such as in oxygen reduction, oxygen production, hydrogen generation, fuel production, selective chemical detection, and enzymatic reactions. The strong metal-metal and metal-carbon with metal-heteroatom (i.e., N, S, P, B, and O) bonds stabilize and optimize the electronic structures of the metal atoms due to strong interfacial interactions, yielding excellent catalytic activities. These materials provide excellent models for understanding the fundamental problems with multistep chemical reactions. This review summarizes the substrate structure-activity relationship of metal atom-based materials with different active sites based on experimental and theoretical data. Additionally, the new synthesis procedures, physicochemical characterizations, and energy and biomedical applications are discussed. Finally, the remaining challenges in developing efficient SMA/DMA/TMA/MMA-based materials are presented.

2.
Adv Sci (Weinh) ; : e2404397, 2024 Jul 01.
Article de Anglais | MEDLINE | ID: mdl-38946685

RÉSUMÉ

Extraction of U(VI) in water is of great significance in energy and environmental fields. However, the traditional methods usually fail due to the indispensable extra addition of catalyst, adsorbent, precipitant, or sacrificial agents, which may lead to enhanced extraction costs and secondary pollution. Here, a new efficient uranium extraction strategy is proposed based on triboelectricity without adding a catalyst or other additives. It is found only under the friction between the microbubbles (generated under ultrasonication) and the water flow, that reactive oxygen species (ROS) can largely be generated, which thus contributes to the solidification of U(VI) from water. In addition, the magnetic field can affect the phase of the product. Under mechanical stirring, the product contains (UO2)O2·2H2O, while which contains UO2(OH)2 and (UO2)O2·4H2O under the magnetic stirring. Quenching experiments are also carried out to explore the influence of environmental factors. Most importantly, it shows great potential in the extraction of U(VI) from seawater. This work proposes a catalyst-free and light-free strategy toward the solidification of U(VI) from water, which avoids the secondary pollution of the catalyst to the environment and is low-cost, and has great potential in the real application.

3.
Front Microbiol ; 15: 1387643, 2024.
Article de Anglais | MEDLINE | ID: mdl-38962136

RÉSUMÉ

Pleurotus ostreatus is one of the most consumed mushroom species, as it serves as a high-quality food, favors a rich secondary metabolism, and has remarkable adaptability to the environment and predators. In this study, we investigated the function of two key reactive oxygen species producing enzyme NADPH oxidase (PoNoxA and PoNoxB) in P. ostreatus hyphae growth, metabolite production, signaling pathway activation, and immune responses to different stresses. Characterization of the Nox mutants showed that PoNoxB played an important role in the hyphal formation of the multicellular structure, while PoNoxA regulated apical dominance. The ability of P. ostreatus to tolerate a series of abiotic stress conditions (e.g., osmotic, oxidative, membrane, and cell-wall stresses) and mechanical damage repair was enhanced with PoNoxA over-expression. PoNoxB had a greater responsibility in regulating the polysaccharide composition of the cell wall and methyl jasmonate and gibberellin GA1 biosynthesis, and improved mushroom resistance against Tyrophagus putrescentiae. Moreover, mutants were involved in the jasmonate and GA signaling pathway, and toxic protein defense metabolite production. Our findings shed light on how the oyster mushroom senses stress signals and responds to adverse environments by the complex regulators of Noxs.

4.
J Colloid Interface Sci ; 674: 702-712, 2024 Jun 26.
Article de Anglais | MEDLINE | ID: mdl-38950469

RÉSUMÉ

The diffusion and adsorption properties of the O2/H2O corpuscles at active sites play a crucial role in the fast photo-electrocatalytic reaction of hydrogen peroxide (H2O2) production. Herein, SnS2 nanosheets with abundant interfacial boundaries and large specific areas are encapsulated into hollow mesoporous carbon spheres (CSs) with flexibility, producing a yolk-shell SnS2@CSs Z-scheme photocatalyst. The nanoconfined microenvironment of SnS2@CSs could enrich O2/H2O in catalyst cavities, which allows sufficient internal O2 transfer, improving the surface chemistry of catalytic O2 to O2- conversion and increasing reaction kinetics. By shaping the mixture of SnS2@CSs and polytetrafluoroethylene (PTFE) on carbon felt (CF) using the vacuum filtration method, the natural air-breathing gas diffusion photoelectrode (AGPE) was prepared, and it can achieve an accumulated concentration of H2O2 about 12 mM after a 10 h stability test from pure water at natural pH without using electrolyte and sacrificial agents. The H2O2 product is upgraded through one downstream route of conversion of H2O2 to sodium perborate. The improved H2O2 production performance could be ascribed to the combination of the confinement effect of SnS2@CSs and the rich triple phase interfaces with the continuous hydrophobic layer and hydrophilic layer to synergistically modulate the photoelectron catalytic microenvironment, which enhanced the transfer of O2 mass and offered a stronger affinity to oxygen bubbles. The strategy of combining the confined material with the air-breathing gas diffusion electrode equips a wide practical range of applications for the synthesis of high-yield hydrogen peroxide.

5.
Angew Chem Int Ed Engl ; : e202410179, 2024 Jul 02.
Article de Anglais | MEDLINE | ID: mdl-38953224

RÉSUMÉ

Photocatalytic synthesis of H2O2 is an advantageous and ecologically sustainable alternative to the conventional anthraquinone process. However, achieving high conversion efficiency without sacrificial agents remains a challenge. In this study, two covalent organic frameworks (COF-O and COF-C) were prepared with identical skeletal structures but with their pore walls anchored to different alkyl chains. They were used to investigate the effect of the chemical microenvironment of pores on photocatalytic H2O2 production. Experimental results reveal a change of hydrophilicity in COF-O, leading to suppressed charge recombination, diminished charge transfer resistance, and accelerated interfacial electron transfer. An apparent quantum yield as high as 10.3% (λ = 420 nm) can be achieved with H2O and O2 through oxygen reduction reaction. This is among the highest ever reported for polymer photocatalysts. This study may provide a novel avenue for optimizing photocatalytic activity and selectivity in H2O2 generation.

6.
J Environ Manage ; 365: 121610, 2024 Jul 01.
Article de Anglais | MEDLINE | ID: mdl-38955048

RÉSUMÉ

Effective elimination of heavy metals from complex wastewater is of great significance for industrial wastewater treatment. Herein, bimetallic adsorbent Fe3O4-CeO2 was prepared, and H2O2 was added to enhance Sb(V) adsorption by Fe3O4-CeO2 in complex wastewater of Sb(V) and aniline aerofloat (AAF) for the first time. Fe3O4-CeO2 showed good adsorption performance and could be rapidly separated by external magnetic field. After five adsorption/desorption cycles, Fe3O4-CeO2 still maintained good stability. The maximum adsorption capacities of Fe3O4-CeO2 in single Sb(V), AAF + Sb(V), and H2O2+AAF + Sb(V) systems were 77.33, 70.14, and 80.59 mg/g, respectively. Coexisting AAF inhibited Sb(V) adsorption. Conversely, additional H2O2 promoted Sb(V) removal in AAF + Sb(V) binary system, and made the adsorption capacity of Fe3O4-CeO2 increase by 14.90%. H2O2 could not only accelerate the reaction rate, but also reduce the optimal amount of adsorbent from 2.0 g/L to 1.2 g/L. Meanwhile, coexisting anions had little effect on Sb(V) removal by Fe3O4-CeO2+H2O2 process. The adsorption behaviors of Sb(V) in three systems were better depicted by pseudo-second-order kinetics, implying that the chemisorption was dominant. The complexation of AAF with Sb(V) hindered the adsorption of Sb(V) by Fe3O4-CeO2. The complex Sb(V) was oxidized and decomposed into free state by hydroxyl radicals produced in Fe3O4-CeO2+H2O2 process. Then the free Sb(V) was adsorbed by Fe3O4-CeO2 mostly through outer-sphere complexation. This work provides a new tactic for the treatment of heavy metal-organics complex wastewater.

7.
Sci Total Environ ; 946: 174391, 2024 Jun 30.
Article de Anglais | MEDLINE | ID: mdl-38955272

RÉSUMÉ

Atmospheric hydrogen peroxide (H2O2), as an important oxidant, plays a key role in atmospheric chemistry. To reveal its characteristics in polluted areas, comprehensive observations were conducted in Zhengzhou, China from February 22 to March 4, 2019, including heavy pollution days (HP) and light pollution days (LP). High NO concentrations (18 ± 26 ppbv) were recorded in HP, preventing the recombination reaction of two HO2• radicals. Surprisingly, higher concentrations of H2O2 were observed in HP (1.5 ± 0.6 ppbv) than those in LP (1.2 ± 0.6 ppbv). In addition to low wind speed and relative humidity, the elevated H2O2 in HP could be mainly attributed to intensified particle-phase photoreactions and biomass burning. In terms of sulfate formation, transition-metal ions (TMI)-catalyzed oxidation emerged as the predominant oxidant pathway in both HP and LP. Note that the average H2O2 oxidation rate increased from 3.6 × 10-2 in LP to 1.1 × 10-1 µg m-3 h-1 in HP. Moreover, the oxidation by H2O2 might exceed that of TMI catalysis under specific conditions, emerging as the primary driver of sulfate formation.

8.
Angew Chem Int Ed Engl ; : e202409328, 2024 Jul 03.
Article de Anglais | MEDLINE | ID: mdl-38958874

RÉSUMÉ

Proton supply is as critical as O2 activation for artificial photosynthesis of H2O2 via two-electron oxygen reduction reaction (2e- ORR). However, proton release via water dissociation is frequently hindered because of the sluggish water oxidation reaction (WOR), extremely limiting the efficiency of photocatalytic H2O2 production. To tackle this challenge, carboxyl-enriched supramolecular polymer (perylene tetracarboxylic acid - PTCA) is elaborately prepared by molecular self-assembly for overall photosynthesis of H2O2. Interestingly, the interconversion between carboxyl as Brønsted acid and its conjugated base realizes rapid proton circulation. Through this efficient tandem proton transfer process, the spatial effect of photocatalytic reduction and oxidation reaction is greatly enhanced with reduced reaction barrier. This significantly facilitates 2e- photocatalytic ORR to synthesize H2O2 and in the meanwhile promotes 4e- photocatalytic WOR to evolve O2. Consequently, the as-developed PTCA exhibits a remarkable H2O2 yield of 185.6 µM h-1 in pure water and air atmosphere under visible light illumination. More impressively, an appreciable H2O2 yield of 78.6 µM h-1 can be well maintained in an anaerobic system owing to in-situ O2 generation by 4e- photocatalytic WOR. Our study presents a novel concept for artificial photosynthesis of H2O2 via constructing efficient proton transfer pathway to enable rapid proton circulation.

9.
Article de Anglais | MEDLINE | ID: mdl-38995339

RÉSUMÉ

The principle of Fenton reagent is to produce ·OH by mixing H2O2 and Fe2+ to realize the oxidation of organic pollutants, although Fenton reagent has the advantages of non-toxicity and short reaction time, but there are its related defects. The Fenton-like technology has been widely studied because of its various forms and better results than the traditional Fenton technology in terms of pollutant degradation efficiency. This paper reviews the electro-Fenton technology among the Fenton-like technologies and provides an overview of the homogeneous electro-Fenton. It also focuses on summarizing the effects of factors such as H2O2, reactant concentration, reactor volume and electrode quality, reaction time and voltage (potential) on the efficiency of electro-Fenton process. It is shown that appropriate enhancement of H2O2 concentration, voltage (potential) and reaction volume can help to improve the process efficiency; the process efficiency also can be improved by increasing the reaction time and electrode quality. Feeding modes of H2O2 have different effects on process efficiency. Finally, a considerable number of experimental studies have shown that the combination of electro-Fenton with ultrasound, anodic oxidation and electrocoagulation technologies is superior to the single electro-Fenton process in terms of pollutant degradation.

10.
Article de Anglais | MEDLINE | ID: mdl-38984982

RÉSUMÉ

Single-crystalline BiOCl nanosheets with coexposed {001} and {110} facets, as well as oxygen vacancies, were synthesized using a simple method. These nanosheets have the ability to activate molecular oxygen, producing reactive superoxide radicals (77.8%) and singlet oxygen (22.2%) when exposed to solar light. The BiOCl demonstrated excellent photocatalytic efficiency in producing H2O2 under simulated solar light and in oxidatively hydroxylating phenylboronic acid under blue LED light. Our research highlights the significance of constructing coexposed {001} and {110} facets, as well as oxygen vacancies, in enhancing photocatalytic performance. The BiOCl nanosheets have the capability to produce H2O2 with a solar-to-chemical energy conversion efficiency of 0.11%.

11.
Neurochem Res ; 2024 Jun 12.
Article de Anglais | MEDLINE | ID: mdl-38862726

RÉSUMÉ

Idebenone, an antioxidant used in treating oxidative damage-related diseases, has unclear neuroprotective mechanisms. Oxidative stress affects cell and mitochondrial membranes, altering Adp-ribosyl cyclase (CD38) and Silent message regulator 3 (SIRT3) protein expression and possibly impacting SIRT3's ability to deacetylate Tumor protein p53 (P53). This study explores the relationship between CD38, SIRT3, and P53 in H2O2-injured HT22 cells treated with Idebenone. Apoptosis was detected using flow cytometry and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining after determining appropriate H2O2 and Idebenone concentrations.In this study, Idebenone was found to reduce apoptosis and decrease P53 and Caspase3 expression in H2O2-injured HT22 cells by detecting apoptosis-related protein expression. Through bioinformatics methods, CD38 was identified as the target of Idebenone, and it further demonstrated that Idebenone decreased the expression of CD38 and increased the level of SIRT3. An increased NAD+/NADH ratio was detected, suggesting Idebenone induces SIRT3 expression and protects HT22 cells by decreasing apoptosis-related proteins. Knocking down SIRT3 downregulated acetylated P53 (P53Ac), indicating SIRT3's importance in P53 deacetylation.These results supported that CD38 was used as a target of Idebenone to up-regulate SIRT3 to deacetylate activated P53, thereby protecting HT22 cells from oxidative stress injury. Thus, Idebenone is a drug that may show great potential in protecting against reactive oxygen species (ROS) induced diseases such as Parkinson's disease, and Alzheimer's disease. And it might be able to compensate for some of the defects associated with CD38-related diseases.

12.
Angew Chem Int Ed Engl ; : e202407163, 2024 Jun 12.
Article de Anglais | MEDLINE | ID: mdl-38864252

RÉSUMÉ

Electrosynthesis of hydrogen peroxide (H2O2) based on proton exchange membrane (PEM) reactor represents a promising approach to industrial-level H2O2 production, while it is hampered by the lack of high-efficiency electrocatalysts in acidic medium. Herein, we present a strategy for the specific oxygen functional group (OFG) regulation to promote the H2O2 selectivity up to 92% in acid on cobalt-porphyrin molecular assembled with reduced graphene oxide. In-situ X-ray adsorption spectroscopy, in-situ Raman spectroscopy and Kelvin probe force microscopy combined with theoretical calculation unravel that different OFGs exert distinctive regulation effects on the electronic structure of Co center through either remote (carboxyl and epoxy) or vicinal (hydroxyl) interaction manners, thus leading to the opposite influences on the promotion in 2e- ORR selectivity. As a consequence, the PEM electrolyzer integrated with the optimized catalyst can continuously and stably produce the high-concentration of ca. 7 wt% pure H2O2 aqueous solution at 400 mA cm-2 over 200 h with a cell voltage as low as ca. 2.1 V, suggesting the application potential in industrial-scale H2O2 electrosynthesis.

13.
Chemistry ; : e202400496, 2024 Jun 12.
Article de Anglais | MEDLINE | ID: mdl-38864360

RÉSUMÉ

The prodigious employment of fossil fuels to conquer the global energy demand is becoming a dreadful threat to the human society. This predicament is appealing for a potent photocatalyst that can generate alternate energy sources via solar to chemical energy conversion. With this interest, we have fabricated a ternary heterostructure of Ti3C2 nanosheet modified g-C3N4/Bi2O3 (MCNRBO) Z-scheme photocatalyst through self-assembly process. The morphological analysis clearly evidenced the close interfacial interaction between g-C3N4 nanorod, Bi2O3 and Ti3C2 nanosheets. The oxygen vacancy created on Bi2O3 surface, as suggested by XPS and EPR analysis, supported the Z-scheme heterojunction formation between g-C3N4 nanorod and Bi2O3 nanosheets. The collaborative effect of Z-scheme and Schottky junction significantly reduced charge transfer resistance promoting separation efficiency of excitons as indicated from PL and EIS analysis. The potential of MCNRBO towards photocatalytic application was investigated by H2O2 and H2 evolution reaction. A superior photocatalytic H2O2 and H2 production rate for MCNRBO is observed, which are respectively around 5 and 18 folds higher as compared to pristine CNR nanorod. The present work encourages for the development of a noble, eco-benign and immensely efficient dual heterojunction based photocatalyst, which can acts as saviour of human society from energy crisis.

14.
Water Res ; 260: 121904, 2024 Jun 06.
Article de Anglais | MEDLINE | ID: mdl-38878317

RÉSUMÉ

Anaerobic ammonium oxidation (anammox), an energy-efficient deamination biotechnology, faces operational challenges in low-temperature environments. Enhancing the metabolic activity of anammox bacteria (AnAOB) is pivotal for advancing its application in mainstream municipal wastewater treatment. Inspired by the metabolic adaptability of AnAOB and based on our previous findings, this work investigated the enhancement of intracellular ATP and NADH synthesis through the exogenous supply of reduced humic acid (HAred) and H2O2 redox couple, aiming to augment AnAOB activity under low-temperature conditions. Our experimental setup involved continuous dosing of 0.0067 µmol g-1 volatile suspended solid of H2O2 and 10 mg g-1 volatile suspended solid of HAred into a mainstream anammox reactor operated at 15 °C with an influent TN content of 60 mg/L. The results showed that HAred / H2O2 couple succeeded in maintaining the effluent TN at 10.72 ± 0.91 mg l-1. The specific anammox activity, ATP and NADH synthesis levels of sludge increased by 1.34, 2.33 and 6.50 folds, respectively, over the control setup devoid of the redox couple. High-throughput sequencing analysis revealed that the relative abundance of Candidatus Kuenenia after adding HAred / H2O2 couple reached 3.65 % at the end of operation, which was 5.14 folds higher than that of the control group. Further metabolomics analysis underscored an activation in the metabolism of amino acids, nucleotides, and phospholipids, which collectively enhanced the availability of ATP and NADH for the respiratory processes. These findings may provide guidance on strategy development for improving the electron transfer efficiency of AnAOB and underscore the potential of using redox couples to promote the mainstream application of anammox technology.

15.
Water Res ; 260: 121905, 2024 Jun 09.
Article de Anglais | MEDLINE | ID: mdl-38878308

RÉSUMÉ

Phosphorous not only needs to be removed to prevent eutrophication of wastewater effluent receiving surface water bodies, but it also has to be recovered as a scarce finite reserve. Phosphorus chemical precipitation as NH4MgPO4·6H2O, Ca3(PO4)2, or Fe3(PO4)2 ·8H2O is the most common method of phosphorus recovery from phosphorus-rich streams. These minerals ideally form under neutral to alkaline pH conditions, making acidic streams problematic for their formation due to the need for pH adjustments. This study proposes FePO4 .2H2O (strengite-like compounds) recovery from acidic streams due to its simplicity and high efficiency, while also avoiding the need for pH-adjusting chemicals. The effect of initial pH, temperature, Fe (III) dosing rates, and Fe (II) dosage under different oxidation conditions (pO2 = 0.2, 1, 1.5 bar, different H2O2 dosing rates) on phosphorus recovery percentage and product settleability were evaluated in this study. The precipitates formed were analyzed using optical microscopy, SEM, XRD, SQUID, Raman, and ICP. Experiments showed that Fe (III) dosing achieved phosphorus recovery of over 95 % at an initial pH of 3 or higher, and the product exhibited poor settleability in all initial pH (1.5-5), and temperature (20-80 °C) tests. On the other hand, Fe (II) dosage instead of Fe (III) resulted in good product settleability but varying phosphorus recovery percentages depending on the oxidation conditions. The novelty of the study lies in revealing that the Fe (II) oxidation rate serves as a crucial process-design parameter, significantly enhancing product settleability without the requirement of carrier materials or crystallizers. The study proposes a novel strategy with controlled Fe2+-H2O2 dosing, identifying an Fe (II) oxidation rate of 4.7 × 10-4 mol/l/min as the optimal rate for achieving over 95 % total phosphorus recovery, along with excellent settleability with a volumetric index equal to only 8 ml/gP.

16.
J Colloid Interface Sci ; 673: 434-443, 2024 Jun 06.
Article de Anglais | MEDLINE | ID: mdl-38878377

RÉSUMÉ

Electro-Fenton is an effective process for degrading hard-to-degrade organic pollutants, such as tetracycline (TC). However, the degradation efficiency of this process is limited by the activity and stability of the cathode catalyst. Herein, a temperature gradient pyrolysis strategy and oxidation treatment is proposed to modulate the coordination environment to prepare oxygen-doped cobalt monoatomic electrocatalysts (CoNOC). The CoNOC catalysts can achieve the selectivity of 93 % for H2O2 with an electron transfer number close to 2. In the H-cell, the prepared electrocatalysts can achieve more than 100 h of H2O2 production with good stability and the yield of 1.41 mol gcatalyst-1 h-1 with an average Faraday efficiency (FE) of more than 88 %. The calculations indicate that the epoxy groups play a crucial role in modulating the oxygen reduction pathway. The O doping and unique N coordination of Co single-atom active sites (CoN(Pd)3N(Po)1O1) can effectively weaken the O2/OOH* interaction, thereby promoting the production of H2O2. Finally, the electro-Fenton system could achieve a TC degradation rate of 94.9 % for 120 min with a mineralization efficiency of 87.8 % for 180 min, which provides a reliable option for antibiotic treatment. The significant involvement of OH in the electro-Fenton process was confirmed, and the plausible mineralization pathway for TC was proposed.

17.
Fundam Res ; 4(1): 178-187, 2024 Jan.
Article de Anglais | MEDLINE | ID: mdl-38933846

RÉSUMÉ

Theranostic agents that can be sensitively and specifically activated by the tumor microenvironment (TME) have recently attracted considerable attention. In this study, TME-activatable 3,3',5,5'-tetramethylbenzidine (TMB)-copper peroxide (CuO2)@poly(lactic-co-glycolic acid) (PLGA)@red blood cell membrane (RBCM) (TCPR) nanoparticles (NPs) for second near-infrared photoacoustic imaging-guided tumor-specific photothermal therapy were developed by co-loading CuO2 NPs and TMB into PLGA camouflaged by RBCMs. As an efficient H2O2 supplier, once exposed to a proton-rich TME, CuO2 NPs can generate H2O2 and Cu2+, which are further reduced to Cu+ by endogenous glutathione. Subsequently, the Cu+-mediated Fenton-like reaction produces cytotoxic ·OH to kill the cancer cells and induce TMB-mediated photoacoustic and photothermal effects. Combined with the RBCM modification-prolonged blood circulation, TCPR NPs display excellent specificity and efficiency in suppressing tumor growth, paving the way for more accurate, safe, and efficient cancer theranostics.

18.
Adv Mater ; : e2406957, 2024 Jun 24.
Article de Anglais | MEDLINE | ID: mdl-38923059

RÉSUMÉ

Single-atom catalysts (SACs) are flourishing in various fields because of their 100% atomic utilization. However, their uncontrollable selectivity, poor stability and vulnerable inactivation remain critical challenges. According to theoretical predictions and experiments, a heteronuclear CoZn dual-single-atom confined in N/O-doped hollow carbon nanotube reactors (CoZnSA@CNTs) was synthesized via a spatial confinement growth strategy. CoZnSA@CNTs exhibited superior performance for H2O2 electrosynthesis over the entire pH range due to dual-confinement of the atomic sites and O2 molecule. CoZnSA@CNTs was favorable for H2O2 production mainly because the synergy of adjacent atomic sites, defect-rich feature and nanotube reactor promoted O2 enrichment and enhanced H2O2 reactivity/selectivity. The H2O2 selectivity reached nearly 100% in a range of 0.2 ∼ 0.65 V versus RHE and the yield achieved 7.50 M gcat -1 with CoZnSA@CNTs/carbon fiber felt, which exceeded most of the reported SACs in H-type cells. The obtained H2O2 was converted directly to sodium percarbonate and sodium perborate in a safe way for H2O2 storage/transportation. The sequential dual-cathode electron-Fenton process promoted the formation of reactive oxygen species (•OH, 1O2 and •O2 -) by activating the in-situ generated H2O2, enabling accelerated degradation of various pollutants and Cr(VI) detoxification in actual wastewater. This work proposes a promising confinement strategy for catalyst design and selectivity regulation of complex reactions. This article is protected by copyright. All rights reserved.

19.
Angew Chem Int Ed Engl ; : e202406543, 2024 Jun 24.
Article de Anglais | MEDLINE | ID: mdl-38923335

RÉSUMÉ

For the anodic H2O2 generation, it has been shown that the electrolyte composition can steer the reaction pathway toward increased H2O2 generation. Previous efforts made on composition optimization found that the impact of the molar fraction of carbonate species varies for different anodes, and therefore, controversies remain concerning the reaction pathways as well as the species involved in H2O2 formation. Considering that water oxidation results in the liberation of protons within the anode microenvironment, the corresponding acidification would cause an equilibrium shift between carbonate species, which in turn may modulate the reaction pathway. We determined the changes in the fraction of carbonate species in the vicinity of an anode by performing local pH measurements using a Au nanoelectrode positioned in close proximity to an operating anode by shear-force scanning electrochemical microscopy (SECM). It could be confirmed that the main anionic species at the interface is HCO3-, at potentials where H2O2 is preferentially formed, regardless of the pH value in the bulk. The simultaneous use of a Au-Pt double barrel microelectrode in generator-collector SECM measurements demon-strates that the local HCO3- concentration is collectively determined by the oxidation current, buffer capacity, and bulk pH of the electrolyte.

20.
Chemistry ; : e202401847, 2024 Jun 25.
Article de Anglais | MEDLINE | ID: mdl-38924258

RÉSUMÉ

Graphitic-carbon nitride (g-C3N4), a metal-free two-dimensional layered semiconductor material, holds great potential for energy conversion, environmental remediation, and sensing. However, the limited solubility of g-C3N4 in conventional solvents hinders its widespread application. Improving the dissolution of g-C3N4 in the liquid phase is highly desired but challenging. Herein, we report an innovative approach to dissolve g-C3N4 using ZnCl2 molten salt hydrates. The solubility of g-C3N4 in the solution reaches up to 200 mg mL-1. Density functional theory (DFT) results suggest that ZnCl+H2O is the key species that leads to charge redistribution on g-C3N4 surface and promotes the dissolution of carbon nitride in the solution. Furthermore, through dilution, the dissolved carbon nitride can be effectively recovered while maintaining its intrinsic chemical structure. The resultant regenerated C3N4 (r-C3N4) exhibits  nanobelt morphology and demonstrates a substantially improved photocatalytic activity in H2O2 production. The rate of H2O2 production over the r- C3N4 reaches 20,228 µmol g-1 h-1, which is 6.2 times higher than that of pristine g-C3N4. This green and efficient dissolution route of g-C3N4 offers an effective approach for its diverse applications.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...