Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 274
Filtrer
1.
EMBO Rep ; 2024 Aug 01.
Article de Anglais | MEDLINE | ID: mdl-39090319

RÉSUMÉ

The tandem Tudor-like domain-containing protein Spindlin1 (SPIN1) is a transcriptional coactivator with critical functions in embryonic development and emerging roles in cancer. However, the involvement of SPIN1 in DNA damage repair has remained unclear. Our study shows that SPIN1 is recruited to DNA lesions through its N-terminal disordered region that binds to Poly-ADP-ribose (PAR), and facilitates homologous recombination (HR)-mediated DNA damage repair. SPIN1 promotes H3K9me3 accumulation at DNA damage sites and enhances the interaction between H3K9me3 and Tip60, thereby promoting the activation of ATM and HR repair. We also show that SPIN1 increases chemoresistance. These findings reveal a novel role for SPIN1 in the activation of H3K9me3-dependent DNA repair pathways, and suggest that SPIN1 may contribute to cancer chemoresistance by modulating the efficiency of double-strand break (DSB) repair.

2.
Mol Cell ; 2024 Jul 26.
Article de Anglais | MEDLINE | ID: mdl-39096900

RÉSUMÉ

Heterochromatin enforces transcriptional gene silencing and can be epigenetically inherited, but the underlying mechanisms remain unclear. Here, we show that histone deacetylation, a conserved feature of heterochromatin domains, blocks SWI/SNF subfamily remodelers involved in chromatin unraveling, thereby stabilizing modified nucleosomes that preserve gene silencing. Histone hyperacetylation, resulting from either the loss of histone deacetylase (HDAC) activity or the direct targeting of a histone acetyltransferase to heterochromatin, permits remodeler access, leading to silencing defects. The requirement for HDAC in heterochromatin silencing can be bypassed by impeding SWI/SNF activity. Highlighting the crucial role of remodelers, merely targeting SWI/SNF to heterochromatin, even in cells with functional HDAC, increases nucleosome turnover, causing defective gene silencing and compromised epigenetic inheritance. This study elucidates a fundamental mechanism whereby histone hypoacetylation, maintained by high HDAC levels in heterochromatic regions, ensures stable gene silencing and epigenetic inheritance, providing insights into genome regulatory mechanisms relevant to human diseases.

3.
bioRxiv ; 2024 Jul 24.
Article de Anglais | MEDLINE | ID: mdl-39091811

RÉSUMÉ

Aging is the major risk factor for most human diseases and represents a major socio-economical challenge for modern societies. Despite its importance, the process of aging remains poorly understood. Epigenetic dysregulation has been proposed as a key driver of the aging process. Modifications in transcriptional networks and chromatin structure might be central to age-related functional decline. A prevalent feature described during aging is the overall reduction in heterochromatin, specifically marked by the loss of repressive histone modification, Histone 3 lysine 9 trimethylation (H3K9me3). However, the role of H3K9me3 in aging, especially in mammals, remains unclear. Here we show using a novel mouse strain, (TKOc), carrying a triple knockout of three methyltransferases responsible for H3K9me3 deposition, that the inducible loss of H3K9me3 in adulthood results in premature aging. TKOc mice exhibit reduced lifespan, lower body weight, increased frailty index, multi-organ degeneration, transcriptional changes with significant upregulation of transposable elements, and accelerated epigenetic age. Our data strongly supports the concept that the loss of epigenetic information directly drives the aging process. These findings reveal the importance of epigenetic regulation in aging and suggest that interventions targeting epigenetic modifications could potentially slow down or reverse age-related decline. Understanding the molecular mechanisms underlying the process of aging will be crucial for developing novel therapeutic strategies that can delay the onset of age-associated diseases and preserve human health at old age specially in rapidly aging societies.

4.
Genome Biol ; 25(1): 175, 2024 Jul 03.
Article de Anglais | MEDLINE | ID: mdl-38961490

RÉSUMÉ

BACKGROUND: Transposable elements play a critical role in maintaining genome architecture during neurodevelopment. Short Interspersed Nuclear Elements (SINEs), a major subtype of transposable elements, are known to harbor binding sites for the CCCTC-binding factor (CTCF) and pivotal in orchestrating chromatin organization. However, the regulatory mechanisms controlling the activity of SINEs in the developing brain remains elusive. RESULTS: In our study, we conduct a comprehensive genome-wide epigenetic analysis in mouse neural precursor cells using ATAC-seq, ChIP-seq, whole genome bisulfite sequencing, in situ Hi-C, and RNA-seq. Our findings reveal that the SET domain bifurcated histone lysine methyltransferase 1 (SETDB1)-mediated H3K9me3, in conjunction with DNA methylation, restricts chromatin accessibility on a selective subset of SINEs in neural precursor cells. Mechanistically, loss of Setdb1 increases CTCF access to these SINE elements and contributes to chromatin loop reorganization. Moreover, de novo loop formation contributes to differential gene expression, including the dysregulation of genes enriched in mitotic pathways. This leads to the disruptions of cell proliferation in the embryonic brain after genetic ablation of Setdb1 both in vitro and in vivo. CONCLUSIONS: In summary, our study sheds light on the epigenetic regulation of SINEs in mouse neural precursor cells, suggesting their role in maintaining chromatin organization and cell proliferation during neurodevelopment.


Sujet(s)
Chromatine , Histone-lysine N-methyltransferase , Cellules souches neurales , Éléments SINE , Animaux , Histone-lysine N-methyltransferase/génétique , Histone-lysine N-methyltransferase/métabolisme , Cellules souches neurales/métabolisme , Cellules souches neurales/cytologie , Souris , Chromatine/métabolisme , Méthylation de l'ADN , Facteur de liaison à la séquence CCCTC/métabolisme , Facteur de liaison à la séquence CCCTC/génétique , Épigenèse génétique , Histone/métabolisme , Encéphale/métabolisme , Encéphale/cytologie
5.
Int J Fertil Steril ; 18(3): 256-262, 2024 Jun 09.
Article de Anglais | MEDLINE | ID: mdl-38973279

RÉSUMÉ

BACKGROUND: Spermatogenic maturation arrest is thought to be caused by epigenetic defects, specifically in chromatin remodeling and histone modification. This study evaluated the status of chromatin remodeling chromodomain helicase DNA binding protein 5 (CHD5) and histone modifications histone 4 lys-12 acetylation (H4K12ac) and histone 3 lys-9 trimethylation (H3K9me3) in human testicular biopsies, based on maturation arrest type. MATERIALS AND METHODS: The cross-sectional study utilized 18 Bouin-fixed paraffin-embedded (BFPE) specimens prepared from residual tissue from routine laboratory tests of infertile patients. The expression of CHD5, H4K12ac, and H3K9me3 was examined through immunohistochemistry (IHC). The intensity was measured using ImageJ with IHC Profiler and StarDist plugins. Statistical analysis was performed using Python with Scipy.Stats module. The data were tested with Shapiro- Wilk for normality and Levene test for homogeneity. The differences in the intensity of spermatogenic cells were assessed using Kruskal-Wallis and Mann-Whitney tests. A difference was considered statistically significant if P<0.05. RESULTS: We found three types of maturation arrest, including Sertoli cell only (n=5), spermatocyte arrest (n=4), and spermatid arrest (n=9). CHD5 was positive in spermatogonia and round spermatids but absent in spermatocytes. The mean grey value (MGV) of CHD5 in spermatogonia was generally weak in spermatocyte arrest (157.4 ± 16.6) and spermatid arrest (155.3 ± 16.8), and there was no significant difference between them [P=0.49, 95% confidence interval (CI): (-4.3, 6), effect size (r): 0.02]. Although there was a significant difference in the expression of H3K9me3 and H4K12ac (P<0.001), both histone modifications were found in all observed spermatogenic cells. CONCLUSION: The expressions of CHD5, H3K9me3, and H4K12ac in different spermatogenic cell types produce similar results, indicating that they cannot be used as markers to determine the type of spermatogenic maturation arrest in humans. The significant finding in this research is the expression of CHD5 in human spermatogonia cells, which requires further study for elaboration.

6.
Biomaterials ; 311: 122679, 2024 Dec.
Article de Anglais | MEDLINE | ID: mdl-38943823

RÉSUMÉ

The widespread application of nanoparticles (NPs) in various fields has raised health concerns, especially in reproductive health. Our research has shown zinc oxide nanoparticles (ZnONPs) exhibit the most significant toxicity to pre-implantation embryos in mice compared to other common NPs. In patients undergoing assisted reproduction technology (ART), a significant negative correlation was observed between Zn concentration and clinical outcomes. Therefore, this study explores the impact of ZnONPs exposure on pre-implantation embryonic development and its underlying mechanisms. We revealed that both in vivo and in vitro exposure to ZnONPs impairs pre-implantation embryonic development. Moreover, ZnONPs were found to reduce the pluripotency of mouse embryonic stem cells (mESCs), as evidenced by teratoma and diploid chimera assays. Employing multi-omics approaches, including RNA-Seq, CUT&Tag, and ATAC-seq, the embryotoxicity mechanisms of ZnONPs were elucidated. The findings indicate that ZnONPs elevate H3K9me3 levels, leading to increased heterochromatin and consequent inhibition of gene expression related to development and pluripotency. Notably, Chaetocin, a H3K9me3 inhibitor, sucessfully reversed the embryotoxicity effects induced by ZnONPs. Additionally, the direct interaction between ZnONPs and H3K9me3 was verified through pull-down and immunoprecipitation assays. Collectively, these findings offer new insights into the epigenetic mechanisms of ZnONPs toxicity, enhancing our understanding of their impact on human reproductive health.


Sujet(s)
Développement embryonnaire , Histone , Oxyde de zinc , Animaux , Oxyde de zinc/composition chimique , Oxyde de zinc/toxicité , Souris , Histone/métabolisme , Développement embryonnaire/effets des médicaments et des substances chimiques , Femelle , Cellules souches embryonnaires de souris/effets des médicaments et des substances chimiques , Cellules souches embryonnaires de souris/métabolisme , Cellules souches embryonnaires de souris/cytologie , Nanoparticules/composition chimique , Nanoparticules/toxicité , Nanoparticules métalliques/composition chimique , Nanoparticules métalliques/toxicité
7.
Front Mol Neurosci ; 17: 1389100, 2024.
Article de Anglais | MEDLINE | ID: mdl-38840776

RÉSUMÉ

Introduction: Binge drinking in adolescence can disrupt myelination and cause brain structural changes that persist into adulthood. Alcohol consumption at a younger age increases the susceptibility of these changes. Animal models to understand ethanol's actions on myelin and white matter show that adolescent binge ethanol can alter the developmental trajectory of oligodendrocytes, myelin structure, and myelin fiber density. Oligodendrocyte differentiation is epigenetically regulated by H3K9 trimethylation (H3K9me3). Prior studies have shown that adolescent binge ethanol dysregulates H3K9 methylation and decreases H3K9-related gene expression in the PFC. Methods: Here, we assessed ethanol-induced changes to H3K9me3 occupancy at genomic loci in the developing adolescent PFC. We further assessed ethanol-induced changes at the transcription level with qPCR time course approaches in oligodendrocyte-enriched cells to assess changes in oligodendrocyte progenitor and oligodendrocytes specifically. Results: Adolescent binge ethanol altered H3K9me3 regulation of synaptic-related genes and genes specific for glutamate and potassium channels in a sex-specific manner. In PFC tissue, we found an early change in gene expression in transcription factors associated with oligodendrocyte differentiation that may lead to the later significant decrease in myelin-related gene expression. This effect appeared stronger in males. Conclusion: Further exploration in oligodendrocyte cell enrichment time course and dose response studies could suggest lasting dysregulation of oligodendrocyte maturation at the transcriptional level. Overall, these studies suggest that binge ethanol may impede oligodendrocyte differentiation required for ongoing myelin development in the PFC by altering H3K9me3 occupancy at synaptic-related genes. We identify potential genes that may be contributing to adolescent binge ethanol-related myelin loss.

8.
Stem Cell Reports ; 19(6): 906-921, 2024 Jun 11.
Article de Anglais | MEDLINE | ID: mdl-38729154

RÉSUMÉ

Removal of somatic histone H3 lysine 9 trimethylation (H3K9me3) from the embryonic genome can improve the efficiency of mammalian cloning using somatic cell nuclear transfer (SCNT). However, this strategy involves the injection of histone demethylase mRNA into embryos, which is limiting because of its invasive and labor-consuming nature. Here, we report that treatment with an inhibitor of G9a (G9ai), the major histone methyltransferase that introduces H3K9me1/2 in mammals, greatly improved the development of mouse SCNT embryos. Intriguingly, G9ai caused an immediate reduction of H3K9me1/2, a secondary loss of H3K9me3 in SCNT embryos, and increased the birth rate of cloned pups about 5-fold (up to 3.9%). G9ai combined with the histone deacetylase inhibitor trichostatin A further improved this rate to 14.5%. Mechanistically, G9ai and TSA synergistically enhanced H3K9me3 demethylation and boosted zygotic genome activation. Thus, we established an easy, highly effective SCNT protocol that would enhance future cloning research and applications.


Sujet(s)
Histone-lysine N-methyltransferase , Histone , Techniques de transfert nucléaire , Animaux , Histone/métabolisme , Souris , Histone-lysine N-methyltransferase/métabolisme , Histone-lysine N-methyltransferase/génétique , Histone-lysine N-methyltransferase/antagonistes et inhibiteurs , Méthylation , Clonage d'organisme/méthodes , Embryon de mammifère/métabolisme , Développement embryonnaire/effets des médicaments et des substances chimiques , Développement embryonnaire/génétique , Acides hydroxamiques/pharmacologie , Femelle , Inhibiteurs de désacétylase d'histone/pharmacologie
9.
Environ Toxicol ; 39(8): 4207-4220, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-38727079

RÉSUMÉ

The discovery of ferroptosis has unveiled new perspectives for cervical cancer (CC) management. We elucidated the functional mechanism of hypoxia-like conditions in CC cell ferroptosis resistance. CC cells were subjected to normoxia or hypoxia-like conditions, followed by erastin treatment to induce ferroptosis. The assessment of cell viability/ferroptosis resistance was performed by MTT assay/Fe2+, MDA, and glutathione measurement by colorimetry. KDM4A/SUMO1/Ubc9/SENP1 protein levels were determined by Western blot. Interaction and binding sites between KDM4A and SUMO1 were analyzed and predicted by immunofluorescence/co-immunoprecipitation and GPS-SUMO 1.0 software, with the target relationship verified by mutation experiment. SLC7A11/GPX4/H3K9me3 protein levels, and H3K9me3 level in the SLC7A11 gene promoter region were determined by RT-qPCR and Western blot/chromatin immunoprecipitation. H3H9me3/SLC7A11/GPX4 level alterations, and ferroptosis resistance after KDM4A silencing or KDM4A K471 mutation were assessed. Hypoxia-like conditions increased CC cell ferroptosis resistance and KDM4A, SUMO1, and Ubc9 protein levels, while it decreased SENP1 protein level. KDM4A and SUMO1 were co-localized in the nucleus, and hypoxia-like conditions promoted their interaction. Specifically, the K471 locus of KDM4A was the main locus for SUMO1ylation. Hypoxia-like conditions up-regulated SLC7A11 and GPX4 expression levels and decreased H3K9me3 protein level and H3K9me3 abundance in the SLC7A11 promoter region. KDM4A silencing or K471 locus mutation resulted in weakened interaction between KDM4A and SUMO1, elevated H3K9me3 levels, decreased SLC7A11 expression, ultimately, a reduced CC cell ferroptosis resistance. CoCl2-stimulated hypoxia-like conditions enhanced SUMO1 modification of KDM4A at the K471 locus specifically, repressed H3K9me3 levels, and up-regulated SLC7A11/GPX4 to enhance CC cell ferroptosis resistance.


Sujet(s)
Système y+ de transport d'acides aminés , Ferroptose , Phospholipid hydroperoxide glutathione peroxidase , Sumoylation , Tumeurs du col de l'utérus , Humains , Ferroptose/effets des médicaments et des substances chimiques , Tumeurs du col de l'utérus/génétique , Tumeurs du col de l'utérus/anatomopathologie , Sumoylation/effets des médicaments et des substances chimiques , Phospholipid hydroperoxide glutathione peroxidase/métabolisme , Phospholipid hydroperoxide glutathione peroxidase/génétique , Femelle , Système y+ de transport d'acides aminés/génétique , Système y+ de transport d'acides aminés/métabolisme , Jumonji Domain-Containing Histone Demethylases/métabolisme , Jumonji Domain-Containing Histone Demethylases/génétique , Lignée cellulaire tumorale , Hypoxie cellulaire , Protéine SUMO-1/métabolisme , Protéine SUMO-1/génétique
10.
Epigenetics Chromatin ; 17(1): 11, 2024 Apr 26.
Article de Anglais | MEDLINE | ID: mdl-38671530

RÉSUMÉ

BACKGROUND: In mammals, primordial germ cells (PGCs), the embryonic precursors of the germline, arise from embryonic or extra-embryonic cells upon induction by the surrounding tissues during gastrulation, according to mechanisms which are elucidated in mice but remain controversial in primates. They undergo genome-wide epigenetic reprogramming, consisting of extensive DNA demethylation and histone post-translational modification (PTM) changes, toward a basal, euchromatinized state. In contrast, chicken PGCs are specified by preformation before gastrulation based on maternally-inherited factors. They can be isolated from the bloodstream during their migration to the genital ridges. Our prior research highlighted differences in the global epigenetic profile of cultured chicken PGCs compared with chicken somatic cells and mammalian PGCs. This study investigates the acquisition and evolution of this profile during development. RESULTS: Quantitative analysis of global DNA methylation and histone PTMs, including their distribution, during key stages of chicken early development revealed divergent PGC epigenetic changes compared with mammals. Unlike mammalian PGCs, chicken PGCs do not undergo genome-wide DNA demethylation or exhibit a decrease in histone H3 lysine 9 dimethylation. However, chicken PGCs show 5­hydroxymethylcytosine loss, macroH2A redistribution, and chromatin decompaction, mirroring mammalian processes. Chicken PGCs initiate their epigenetic signature during migration, progressively accumulating high global levels of H3K9me3, with preferential enrichment in inactive genome regions. Despite apparent global chromatin decompaction, abundant heterochromatin marks, including repressive histone PTMs, HP1 variants, and DNA methylation, persists in chicken PGCs, contrasting with mammalian PGCs. CONCLUSIONS: Chicken PGCs' epigenetic signature does not align with the basal chromatin state observed in mammals, suggesting a departure from extensive epigenetic reprogramming. Despite disparities in early PGC development, the persistence of several epigenetic features shared with mammals implies their involvement in chromatin-regulated germ cell properties, with the distinctive elevation of chicken-specific H3K9me3 potentially participating in these processes.


Sujet(s)
Poulets , Méthylation de l'ADN , Épigenèse génétique , Cellules germinales , Histone , Animaux , Histone/métabolisme , Cellules germinales/métabolisme , Embryon de poulet , Maturation post-traductionnelle des protéines , Mammifères/génétique , Souris , Code histone
11.
bioRxiv ; 2024 May 09.
Article de Anglais | MEDLINE | ID: mdl-38496550

RÉSUMÉ

The structural organization of eukaryotic genomes is contingent upon the fractionation of DNA into transcriptionally permissive euchromatin and repressive heterochromatin. However, we have a limited understanding of how these distinct states are first established during animal embryogenesis. Histone 3 lysine 9 trimethylation (H3K9me3) is critical to heterochromatin formation and bulk establishment of this mark is thought to help drive large-scale remodeling of an initially naive chromatin state during animal embryogenesis. However, a detailed understanding of this process is lacking. Here, we leverage CUT&RUN to define the emerging H3K9me3 landscape of the zebrafish embryo with high sensitivity and temporal resolution. Despite the prevalence of DNA transposons in the zebrafish genome, we found that LTR transposons are preferentially targeted for embryonic H3K9me3 deposition, with different families exhibiting distinct establishment timelines. High signal-to-noise ratios afforded by CUT&RUN revealed new, emerging sites of low-amplitude H3K9me3 that initiated before the major wave of zygotic genome activation (ZGA). Early sites of establishment predominated at specific subsets of transposons and were particularly enriched for transposon sequences with maternal piRNAs and pericentromeric localization. Notably, the number of H3K9me3 enriched sites increased linearly across blastula development, while quantitative comparison revealed a >10-fold genome-wide increase in H3K9me3 signal at established sites over just 30 minutes at the onset of ZGA. Continued maturation of the H3K9me3 landscape was observed beyond the initial wave of bulk establishment.

12.
Epigenomes ; 8(1)2024 Mar 18.
Article de Anglais | MEDLINE | ID: mdl-38534795

RÉSUMÉ

Temporal and spatial epigenetic modifications in the brain occur during ontogenetic development, pathophysiological disorders, and aging. When epigenetic marks, such as histone methylations, in brain autopsies or biopsy samples are studied, it is critical to understand their postmortem/surgical stability. For this study, the frontal cortex and hippocampus of adult rats were removed immediately (controls) or after a postmortem delay of 15, 30, 60, 90, 120, or 150 min. The patterns of unmodified H3 and its trimethylated form H3K9me3 were analyzed in frozen samples for Western blot analysis and in formalin-fixed tissues embedded in paraffin for confocal microscopy. We found that both the unmodified H3 and H3K9me3 showed time-dependent but opposite changes and were altered differently in the frontal cortex and hippocampus with respect to postmortem delay. In the frontal cortex, the H3K9me3 marks increased approximately 450% with a slow parallel 20% decrease in the unmodified H3 histones after 150 min. In the hippocampus, the change was opposite, since H3K9me3 marks decreased steadily by approximately 65% after 150 min with a concomitant rapid increase of 20-25% in H3 histones at the same time. Confocal microscopy located H3K9me3 marks in the heterochromatic regions of the nuclei of all major cell types in the control brains: oligodendrocytes, astrocytes, neurons, and microglia. Therefore, epigenetic marks could be affected differently by postmortem delay in different parts of the brain.

13.
Front Microbiol ; 15: 1339576, 2024.
Article de Anglais | MEDLINE | ID: mdl-38500582

RÉSUMÉ

Abscisic acid (ABA) is a conserved and important "sesquiterpene signaling molecule" widely distributed in different organisms with unique biological functions. ABA coordinates reciprocity and competition between microorganisms and their hosts. In addition, ABA also regulates immune and stress responses in plants and animals. Therefore, ABA has a wide range of applications in agriculture, medicine and related fields. The plant pathogenic ascomycete B. cinerea has been extensively studied as a model strain for ABA production. Nevertheless, there is a relative dearth of research regarding the regulatory mechanism governing ABA biosynthesis in B. cinerea. Here, we discovered that H3K9 methyltransferase BcDIM5 is physically associated with the H3K14 deacetylase BcHda1. Deletion of Bcdim5 and Bchda1 in the high ABA-producing B. cinerea TB-31 led to severe impairment of ABA synthesis. The combined analysis of RNA-seq and ChIP-seq has revealed that the absence of BcDIM5 and BcHda1 has resulted in significant global deficiencies in the normal distribution and level of H3K9me3 modification. In addition, we found that the cause of the decreased ABA production in the ΔBcdim5 and ΔBchda1 mutants was due to cluster gene repression caused by the emergence of hyper-H3K9me3 in the ABA gene cluster. We concluded that the ABA gene cluster is co-regulated by BcDIM5 and BcHda1, which are essential for the normal distribution of the B. cinerea TB-31 ABA gene cluster H3K9me3. This work expands our understanding of the complex regulatory network of ABA biosynthesis and provides a theoretical basis for genetic improvement of high-yielding ABA strains.

14.
BMC Genomics ; 25(1): 301, 2024 Mar 21.
Article de Anglais | MEDLINE | ID: mdl-38515015

RÉSUMÉ

BACKGROUND: Iron deficiency (ID) during the fetal-neonatal period results in long-term neurodevelopmental impairments associated with pervasive hippocampal gene dysregulation. Prenatal choline supplementation partially normalizes these effects, suggesting an interaction between iron and choline in hippocampal transcriptome regulation. To understand the regulatory mechanisms, we investigated epigenetic marks of genes with altered chromatin accessibility (ATAC-seq) or poised to be repressed (H3K9me3 ChIP-seq) in iron-repleted adult rats having experienced fetal-neonatal ID exposure with or without prenatal choline supplementation. RESULTS: Fetal-neonatal ID was induced by limiting maternal iron intake from gestational day (G) 2 through postnatal day (P) 7. Half of the pregnant dams were given supplemental choline (5.0 g/kg) from G11-18. This resulted in 4 groups at P65 (Iron-sufficient [IS], Formerly Iron-deficient [FID], IS with choline [ISch], and FID with choline [FIDch]). Hippocampi were collected from P65 iron-repleted male offspring and analyzed for chromatin accessibility and H3K9me3 enrichment. 22% and 24% of differentially transcribed genes in FID- and FIDch-groups, respectively, exhibited significant differences in chromatin accessibility, whereas 1.7% and 13% exhibited significant differences in H3K9me3 enrichment. These changes mapped onto gene networks regulating synaptic plasticity, neuroinflammation, and reward circuits. Motif analysis of differentially modified genomic sites revealed significantly stronger choline effects than early-life ID and identified multiple epigenetically modified transcription factor binding sites. CONCLUSIONS: This study reveals genome-wide, stable epigenetic changes and epigenetically modifiable gene networks associated with specific chromatin marks in the hippocampus, and lays a foundation to further elucidate iron-dependent epigenetic mechanisms that underlie the long-term effects of fetal-neonatal ID, choline, and their interactions.


Sujet(s)
Carences en fer , Fer , Grossesse , Femelle , Animaux , Rats , Mâle , Fer/métabolisme , Chromatine/génétique , Chromatine/métabolisme , Animaux nouveau-nés , Rat Sprague-Dawley , Épigenèse génétique , Choline/pharmacologie , Choline/métabolisme , Hippocampe
15.
Genes Cells ; 29(5): 361-379, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38403935

RÉSUMÉ

Constitutive heterochromatin is transcriptionally repressed and densely packed chromatin, typically harboring histone H3 Lys9 trimethylation (H3K9me3) and heterochromatin protein 1 (HP1). SUV420H2, a histone H4 Lys20 methyltransferase, is recruited to heterochromatin by binding to HP1 through its Heterochromatic Targeting Module (HTM). Here, we have identified three HP1 binding motifs within the HTM. Both the full-length HTM and its N-terminal region (HTM-N), which contains the first and second motifs, stabilized HP1 on heterochromatin. The intervening region between the first and second HP1 binding motifs in HTM-N was also crucial for HP1 binding. In contrast, the C-terminal region of HTM (HTM-C), containing the third motif, destabilized HP1 on chromatin. An HTM V374D mutant, featuring a Val374 to Asp substitution in the second HP1 binding motif, localizes to heterochromatin without affecting HP1 stability. These data suggest that the second HP1 binding motif in the SUV420H2 HTM is critical for locking HP1 on H3K9me3-enriched heterochromatin. HTM V374D, tagged with a fluorescent protein, can serve as a live-cell probe to visualize HP1-bound heterochromatin.


Sujet(s)
Homologue-5 de la protéine chromobox , Protéines chromosomiques nonhistones , Hétérochromatine , Histone-lysine N-methyltransferase , Liaison aux protéines , Hétérochromatine/métabolisme , Protéines chromosomiques nonhistones/métabolisme , Homologue-5 de la protéine chromobox/métabolisme , Humains , Histone-lysine N-methyltransferase/métabolisme , Histone-lysine N-methyltransferase/génétique , Histone/métabolisme , Motifs d'acides aminés , Cellules HeLa , Sites de fixation
16.
Genome Biol ; 25(1): 52, 2024 02 20.
Article de Anglais | MEDLINE | ID: mdl-38378611

RÉSUMÉ

BACKGROUND: Centromeres are essential for faithful chromosome segregation during mitosis and meiosis. However, the organization of satellite DNA and chromatin at mouse centromeres and pericentromeres is poorly understood due to the challenges of assembling repetitive genomic regions. RESULTS: Using recently available PacBio long-read sequencing data from the C57BL/6 strain, we find that contrary to the previous reports of their homogeneous nature, both centromeric minor satellites and pericentromeric major satellites exhibit a high degree of variation in sequence and organization within and between arrays. While most arrays are continuous, a significant fraction is interspersed with non-satellite sequences, including transposable elements. Using chromatin immunoprecipitation sequencing (ChIP-seq), we find that the occupancy of CENP-A and H3K9me3 chromatin at centromeric and pericentric regions, respectively, is associated with increased sequence enrichment and homogeneity at these regions. The transposable elements at centromeric regions are not part of functional centromeres as they lack significant CENP-A enrichment. Furthermore, both CENP-A and H3K9me3 nucleosomes occupy minor and major satellites spanning centromeric-pericentric junctions and a low yet significant amount of CENP-A spreads locally at centromere junctions on both pericentric and telocentric sides. Finally, while H3K9me3 nucleosomes display a well-phased organization on major satellite arrays, CENP-A nucleosomes on minor satellite arrays are poorly phased. Interestingly, the homogeneous class of major satellites also phase CENP-A and H3K27me3 nucleosomes, indicating that the nucleosome phasing is an inherent property of homogeneous major satellites. CONCLUSIONS: Our findings reveal that mouse centromeres and pericentromeres display a high diversity in satellite sequence, organization, and chromatin structure.


Sujet(s)
Éléments transposables d'ADN , Nucléosomes , Souris , Animaux , Protéine A du centromère/génétique , Souris de lignée C57BL , Centromère , Chromatine , ADN satellite , Autoantigènes
17.
Genes Dev ; 38(3-4): 115-130, 2024 03 22.
Article de Anglais | MEDLINE | ID: mdl-38383062

RÉSUMÉ

H3K9 trimethylation (H3K9me3) plays emerging roles in gene regulation, beyond its accumulation on pericentric constitutive heterochromatin. It remains a mystery why and how H3K9me3 undergoes dynamic regulation in male meiosis. Here, we identify a novel, critical regulator of H3K9 methylation and spermatogenic heterochromatin organization: the germline-specific protein ATF7IP2 (MCAF2). We show that in male meiosis, ATF7IP2 amasses on autosomal and X-pericentric heterochromatin, spreads through the entirety of the sex chromosomes, and accumulates on thousands of autosomal promoters and retrotransposon loci. On the sex chromosomes, which undergo meiotic sex chromosome inactivation (MSCI), the DNA damage response pathway recruits ATF7IP2 to X-pericentric heterochromatin, where it facilitates the recruitment of SETDB1, a histone methyltransferase that catalyzes H3K9me3. In the absence of ATF7IP2, male germ cells are arrested in meiotic prophase I. Analyses of ATF7IP2-deficient meiosis reveal the protein's essential roles in the maintenance of MSCI, suppression of retrotransposons, and global up-regulation of autosomal genes. We propose that ATF7IP2 is a downstream effector of the DDR pathway in meiosis that coordinates the organization of heterochromatin and gene regulation through the spatial regulation of SETDB1-mediated H3K9me3 deposition.


Sujet(s)
Hétérochromatine , Histone , Mâle , Cellules germinales/métabolisme , Hétérochromatine/génétique , Hétérochromatine/métabolisme , Histone/métabolisme , Méiose/génétique , Méthylation , Animaux , Souris
18.
Int Dent J ; 74(4): 769-776, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-38326164

RÉSUMÉ

BACKGROUND: Oral carcinogenesis is complex and influenced by both genetic and epigenetic changes. Altered histone modification is the epigenetic event that plays a role in cancer development and progression. Distinct modification patterns of histones have been shown to affect patient prognosis in selected cancers. This study aimed to evaluate the profiles of histone H3 modification in oral epithelial dysplasia (OED) and oral squamous cell carcinoma (OSCC) in association with the clinical-pathologic characteristics. METHODS: One hundred patients were divided into 4 groups: low-grade OED, high-grade OED, OSCC, and normal oral mucosa (NOM). The levels of 3 types of histone modification-the H3K18ac, H3K9me3, and H3K9ac-were analysed immunohistochemically. Their expression profiles were compared and correlated with prognostically relevant clinical and pathologic features. RESULTS: The H3K18ac and H3K9me3 were upregulated in OSCC, compared with OED and NOM. In contrast, the H3K9ac was downregulated in low-grade OED but increased in high-grade OED and OSCC. The hyperacetylations of H3K18 and H3K9 significantly correlated with advanced cancer depth of invasion and high T stage, respectively. CONCLUSIONS: Histone H3 acetylation and methylation at lysine residues are differentially involved in the multistep oral carcinogenesis and impact aggressive cancer phenotypes. The effect of H3K9ac appears early in OED development, whilst the increased H3K18ac and H3K9me3 may be vital in the emergence of OSCC.


Sujet(s)
Carcinome épidermoïde , Histone , Muqueuse de la bouche , Tumeurs de la bouche , Humains , Tumeurs de la bouche/anatomopathologie , Tumeurs de la bouche/génétique , Histone/métabolisme , Mâle , Femelle , Adulte d'âge moyen , Carcinome épidermoïde/anatomopathologie , Carcinome épidermoïde/génétique , Muqueuse de la bouche/anatomopathologie , Muqueuse de la bouche/métabolisme , Acétylation , Adulte , Sujet âgé , Méthylation , États précancéreux/anatomopathologie , États précancéreux/génétique , Immunohistochimie , Pronostic
19.
Gene ; 901: 148199, 2024 Apr 05.
Article de Anglais | MEDLINE | ID: mdl-38253299

RÉSUMÉ

SET (SuVar3-9, Enhancer of Zeste, Trithorax) domain bifurcated histone lysine methyltransferase 1, setdb1, is the predominant histone lysine methyltransferase catalyzing H3K9me3. Prior studies have illustrated that setdb1 and H3K9me3 critically regulate sex differentiation and gametogenesis. However, the molecular details by which setdb1 is involved in these processes in fish have been poorly reported. Here, we cloned and characterized the setdb1 ORF (open reading frame) sequence from Chinese tongue sole (Cynoglossus semilaevis). The setdb1 ORF sequence was 3,669 bp, encoding a 1,222-amino-acid protein. Phylogenetic analysis showed that setdb1 was structurally conserved. qRT-PCR revealed that setdb1 had a high expression level in the testes at 12 mpf (months post fertilization). Single-cell RNA-seq data at 24 mpf indicated that setdb1 was generally expressed in spermatogenic cells at each stage except for sperm and was centrally expressed in oogonia. H3K9me3 modification was observed in gonads with the immunofluorescence technique. Furthermore, the overexpression experiment suggested that sox5 was a candidate target of setdb1. sox5 was abundantly expressed in male and pseudomale gonads at 24 mpf. Single-cell RNA-seq data showed that sox5 was mainly expressed in spermatogonia and its expression gradually declined with differentiation. Taken together, our findings imply that setdb1 regulates sox5 transcription in gonads, which provides molecular clues into histone modification-mediated orchestration of sex differentiation and gametogenesis.


Sujet(s)
Protéines de poisson , Pleuronectidae , Code histone , Histone-lysine N-methyltransferase , Facteurs de transcription SOX-D , Animaux , Mâle , Pleuronectidae/génétique , Gonades/métabolisme , Histone-lysine N-methyltransferase/génétique , Histone-lysine N-methyltransferase/métabolisme , Phylogenèse , Sperme/métabolisme , Facteurs de transcription SOX-D/métabolisme , Protéines de poisson/métabolisme
20.
Biol Reprod ; 110(1): 48-62, 2024 Jan 13.
Article de Anglais | MEDLINE | ID: mdl-37812443

RÉSUMÉ

Genomic integrity is critical for sexual reproduction, ensuring correct transmission of parental genetic information to the descendant. To preserve genomic integrity, germ cells have evolved multiple DNA repair mechanisms, together termed as DNA damage response. The RNA N6-methyladenosine is the most abundant mRNA modification in eukaryotic cells, which plays important roles in DNA damage response, and YTH N6-methyladenosine RNA binding protein 2 (YTHDF2) is a well-acknowledged N6-methyladenosine reader protein regulating the mRNA decay and stress response. Despite this, the correlation between YTHDF2 and DNA damage response in germ cells, if any, remains enigmatic. Here, by employing a Ythdf2-conditional knockout mouse model as well as a Ythdf2-null GC-1 mouse spermatogonial cell line, we explored the role and the underlying mechanism for YTHDF2 in spermatogonial DNA damage response. We identified that, despite no evident testicular morphological abnormalities under the normal circumstance, conditional mutation of Ythdf2 in adult male mice sensitized germ cells, including spermatogonia, to etoposide-induced DNA damage. Consistently, Ythdf2-KO GC-1 cells displayed increased sensitivity and apoptosis in response to DNA damage, accompanied by the decreased SET domain bifurcated 1 (SETDB1, a histone methyltransferase) and H3K9me3 levels. The Setdb1 knockdown in GC-1 cells generated a similar phenotype, but its overexpression in Ythdf2-null GC-1 cells alleviated the sensitivity and apoptosis in response to DNA damage. Taken together, these results demonstrate that the N6-methyladenosine reader YTHDF2 promotes DNA damage repair by positively regulating the histone methyltransferase SETDB1 in spermatogonia, which provides novel insights into the mechanisms underlying spermatogonial genome integrity maintenance and therefore contributes to safe reproduction.


Sujet(s)
Acétates , Phénols , Protéines de liaison à l'ARN , Spermatogonies , Animaux , Mâle , Souris , Altération de l'ADN , Réparation de l'ADN , Histone méthyltransférases/génétique , Histone méthyltransférases/métabolisme , Histone-lysine N-methyltransferase/génétique , Histone-lysine N-methyltransferase/métabolisme , Protéines de liaison à l'ARN/génétique , Protéines de liaison à l'ARN/métabolisme , Spermatogonies/métabolisme , Facteurs de transcription/génétique
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE