Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 192
Filtrer
1.
Int J Pharm ; 661: 124465, 2024 Aug 15.
Article de Anglais | MEDLINE | ID: mdl-39004290

RÉSUMÉ

Liposomes are one of the most important drug delivery vectors, nowadays used in clinics. In general, polyethylene glycol (PEG) is used to ensure the stealth properties of the liposomes. Here, we have employed hydrophilic, biocompatible and highly non-fouling N-(2-hydroxypropyl) methacrylamide (HPMA)-based copolymers containing hydrophobic cholesterol anchors for the surface modification of liposomes, which were prepared by the method of lipid film hydration and extrusion through 100 nm polycarbonate filters. Efficient surface modification of liposomes was confirmed by transmission electron microscopy, atomic force microscopy, and gradient ultracentrifugation. The ability of long-term circulation in the vascular bed was demonstrated in rabbits after i.v. application of fluorescently labelled liposomes. Compared to PEGylated liposomes, HPMA-based copolymer-modified liposomes did not induce specific antibody formation and did not activate murine and human complement. Compared with PEGylated liposomes, HPMA-based copolymer-modified liposomes showed a better long-circulating effect after repeated administration. HPMA-based copolymer-modified liposomes thus represent suitable new candidates for a generation of safer and improved liposomal drug delivery platforms.


Sujet(s)
Interactions hydrophobes et hydrophiles , Liposomes , Polyéthylène glycols , Propriétés de surface , Animaux , Lapins , Souris , Polyéthylène glycols/composition chimique , Humains , Activation du complément/effets des médicaments et des substances chimiques , Acrylamides/composition chimique , Cholestérol/composition chimique , Cholestérol/sang , Systèmes de délivrance de médicaments , Mâle , Polymères/composition chimique
2.
ACS Sens ; 9(7): 3720-3729, 2024 Jul 26.
Article de Anglais | MEDLINE | ID: mdl-38941307

RÉSUMÉ

Fluorescence-based contrast agents enable real-time detection of solid tumors and their neovasculature, making them ideal for use in image-guided surgery. Several agents have entered late-stage clinical trials or secured FDA approval, suggesting they are likely to become the standard of care in cancer surgeries. One of the key parameters to optimize in contrast agents is molecular size, which dictates much of the pharmacokinetic and pharmacodynamic properties of the agent. Here, we describe the development of a class of protease-activated quenched fluorescent probes in which a N-(2-hydroxypropyl)methacrylamide copolymer is used as the primary scaffold. This copolymer core provides a high degree of probe modularity to generate structures that cannot be achieved with small molecules and peptide probes. We used a previously validated cathepsin substrate and evaluated the effects of length and type of linker, as well as the positioning of the fluorophore/quencher pair on the polymer core. We found that the polymeric probes could be optimized to achieve increased overall signal and tumor-to-background ratios compared to the reference small molecule probe. Our results also revealed multiple structure-activity relationship trends that can be used to design and optimize future optical imaging probes. Furthermore, they confirm that a hydrophilic polymer is an ideal scaffold for use in optical imaging contrast probes, allowing a highly modular design that enables efficient optimization to maximize probe accumulation and overall biodistribution properties.


Sujet(s)
Colorants fluorescents , Tumeurs , Colorants fluorescents/composition chimique , Colorants fluorescents/synthèse chimique , Animaux , Tumeurs/imagerie diagnostique , Humains , Souris , Imagerie optique/méthodes , Peptide hydrolases/métabolisme , Polymères/composition chimique , Lignée cellulaire tumorale , Acrylamides/composition chimique
3.
Comput Biol Med ; 177: 108584, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38788371

RÉSUMÉ

Accurate pest classification plays a pivotal role in modern agriculture for effective pest management, ensuring crop health and productivity. While Convolutional Neural Networks (CNNs) have been widely used for classification, their limited ability to capture both local and global information hinders precise pest identification. In contrast, vision transformers have shown promise in capturing global dependencies and enhancing classification performance. However, the traditional attention mechanism employed in vision transformers, which uses the same query (Q), key (K), and value (V), overlooks spatial relationships between patches, limiting the model's capacity to capture fine-grained details and long-range dependencies in the image. To address these limitations, this study presents a novel approach, termed Hybrid Pooled Multihead Attention (HPMA), for superior pest classification that outperforms both CNN models and vision transformers. The HPMA model integrates hybrid pooling techniques and modifies the attention mechanism to effectively capture local and global features within images. By emphasizing discriminative features and suppressing irrelevant information, the HPMA model achieves heightened robustness and generalization capabilities. The model is trained and tested on a newly built dataset consisting of 10 pest classes, achieving a remarkable accuracy of 98 %. Furthermore, the proposed HPMA model is validated on two benchmark datasets and achieves accuracies of 98 % and 95 %, demonstrating its effectiveness across diverse pest datasets. The results and ablation study of the proposed model contribute to exceptional performance in accurate pest classification. This tackles agricultural pest challenges and enables prompt pest control to reduce crop losses.


Sujet(s)
Agriculture , , Traitement d'image par ordinateur/méthodes , Lutte contre les nuisibles , Animaux , Produits agricoles
4.
Nanomedicine ; 55: 102716, 2024 Jan.
Article de Anglais | MEDLINE | ID: mdl-38738529

RÉSUMÉ

Rheumatoid arthritis is a chronic inflammatory autoimmune disease caused by alteration of the immune system. Current therapies have several limitations and the use of nanomedicines represents a promising strategy to overcome them. By employing a mouse model of adjuvant induced arthritis, we aimed to evaluate the biodistribution and therapeutic effects of glucocorticoid dexamethasone conjugated to a nanocarrier based on biocompatible N-(2-hydroxypropyl) methacrylamide copolymers. We observed an increased accumulation of dexamethasone polymer nanomedicines in the arthritic mouse paw using non-invasive fluorescent in vivo imaging and confirmed it by the analysis of tissue homogenates. The dexamethasone conjugate exhibited a dose-dependent healing effect on arthritis and an improved therapeutic outcome compared to free dexamethasone. Particularly, significant reduction of accumulation of RA mediator RANKL was observed. Overall, our data suggest that the conjugation of dexamethasone to a polymer nanocarrier by means of stimuli-sensitive spacer is suitable strategy for improving rheumatoid arthritis therapy.


Sujet(s)
Polyarthrite rhumatoïde , Dexaméthasone , Polymères , Animaux , Dexaméthasone/composition chimique , Dexaméthasone/pharmacocinétique , Dexaméthasone/administration et posologie , Dexaméthasone/pharmacologie , Dexaméthasone/usage thérapeutique , Polyarthrite rhumatoïde/traitement médicamenteux , Polyarthrite rhumatoïde/anatomopathologie , Souris , Distribution tissulaire , Polymères/composition chimique , Polymères/pharmacocinétique , Arthrite expérimentale/traitement médicamenteux , Arthrite expérimentale/anatomopathologie , Nanoparticules/composition chimique , Vecteurs de médicaments/composition chimique , Vecteurs de médicaments/pharmacocinétique
5.
J Control Release ; 373: 1-22, 2024 May 17.
Article de Anglais | MEDLINE | ID: mdl-38734315

RÉSUMÉ

This "Magnum Opus" accentuates my lifelong belief that the future of science is in the interdisciplinary approach to hypotheses formulation and problem solving. Inspired by the invention of hydrogels and soft contact lenses by my mentors, my six decades of research have continuously proceeded from the synthesis of biocompatible hydrogels to the development of polymer-drug conjugates, then generation of drug-free macromolecular therapeutics (DFMT) and finally to multi-antigen T cell hybridizers (MATCH). This interdisciplinary journey was inspiring; the lifetime feeling that one is a beginner in some aspects of the research is a driving force that keeps the enthusiasm high. Also, I wanted to illustrate that systematic research in one wide area can be a life-time effort without the need to jump to areas that are temporarily en-vogue. In addition to generating general scientific knowledge, hydrogels from my laboratory have been transferred to the clinic, polymer-drug conjugates to clinical trials, and drug-free macromolecular systems have an excellent potential for personalizing patient therapies. There is a limit to life but no limit to imagination. I anticipate that systematic basic research will contribute to the expansion of our knowledge and create a foundation for the design of new paradigms based on the comprehension of mechanisms of physiological processes. The emerging novel platform technologies in biomaterial-based devices and implants as well as in personalized nanomedicines will ultimately impact clinical practice.

6.
bioRxiv ; 2024 May 09.
Article de Anglais | MEDLINE | ID: mdl-38766164

RÉSUMÉ

Fluorescence-based contrast agents enable real-time detection of solid tumors and their neovasculature, making them ideal for use in image-guided surgery. Several agents have entered late-stage clinical trials or secured FDA approval, suggesting they are likely to become standard of care in cancer surgeries. One of the key parameters to optimize in contrast agent is molecular size, which dictates much of the pharmacokinetic and pharmacodynamic properties of the agent. Here, we describe the development of a class of protease-activated quenched fluorescent probes in which a N-(2-hydroxypropyl)methacrylamide copolymer is used as the primary scaffold. This copolymer core provides a high degree of probe modularity to generate structures that cannot be achieved with small molecules and peptide probes. We used a previously validated cathepsin substrate and evaluated the effects of length and type of linker as well as positioning of the fluorophore/quencher pair on the polymer core. We found that the polymeric probes could be optimized to achieve increased over-all signal and tumor-to-background ratios compared to the reference small molecule probe. Our results also revealed multiple structure-activity relationship trends that can be used to design and optimize future optical imaging probes. Furthermore, they confirm that a hydrophilic polymer is an ideal scaffold for use in optical imaging contrast probes, allowing a highly modular design that enables efficient optimization to maximize probe accumulation and overall biodistribution properties.

7.
J Biol Chem ; 300(6): 107325, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38685532

RÉSUMÉ

Immune checkpoint blockade (ICB) using monoclonal antibodies against programmed cell death protein 1 (PD-1) or programmed death-ligand 1 (PD-L1) is the treatment of choice for cancer immunotherapy. However, low tissue permeability, immunogenicity, immune-related adverse effects, and high cost could be possibly improved using alternative approaches. On the other hand, synthetic low-molecular-weight (LMW) PD-1/PD-L1 blockers have failed to progress beyond in vitro studies, mostly due to low binding affinity or poor pharmacological characteristics resulting from their limited solubility and/or stability. Here, we report the development of polymer-based anti-human PD-L1 antibody mimetics (α-hPD-L1 iBodies) by attaching the macrocyclic peptide WL12 to a N-(2-hydroxypropyl)methacrylamide copolymer. We characterized the binding properties of iBodies using surface plasmon resonance, enzyme-linked immunosorbent assay, flow cytometry, confocal microscopy, and a cellular ICB model. We found that the α-hPD-L1 iBodies specifically target human PD-L1 (hPD-L1) and block the PD-1/PD-L1 interaction in vitro, comparable to the atezolizumab, durvalumab, and avelumab licensed monoclonal antibodies targeting PD-L1. Our findings suggest that iBodies can be used as experimental tools to target hPD-L1 and could serve as a platform to potentiate the therapeutic effect of hPD-L1-targeting small molecules by improving their affinity and pharmacokinetic properties.


Sujet(s)
Antigène CD274 , Inhibiteurs de points de contrôle immunitaires , Humains , Antigène CD274/antagonistes et inhibiteurs , Antigène CD274/immunologie , Antigène CD274/métabolisme , Inhibiteurs de points de contrôle immunitaires/pharmacologie , Inhibiteurs de points de contrôle immunitaires/composition chimique , Anticorps monoclonaux/composition chimique , Anticorps monoclonaux/pharmacologie , Polymères/composition chimique , Lignée cellulaire tumorale
8.
Int J Pharm ; 654: 123979, 2024 Apr 10.
Article de Anglais | MEDLINE | ID: mdl-38458405

RÉSUMÉ

The application of polymer-based drug delivery systems is advantageous for improved pharmacokinetics, controlled drug release, and decreased side effects of therapeutics for inflammatory disease. Herein, we describe the synthesis and characterization of linear N-(2-hydroxypropyl)methacrylamide-based polymer conjugates designed for controlled release of the anti-inflammatory drug dexamethasone through pH-sensitive bonds. The tailored release rates were achieved by modifying DEX with four oxo-acids introducing reactive oxo groups to the DEX derivatives. Refinement of reaction conditions yielded four well-defined polymer conjugates with varied release profiles which were more pronounced at the lower pH in cell lysosomes. In vitro evaluations in murine peritoneal macrophages, human synovial fibroblasts, and human peripheral blood mononuclear cells demonstrated that neither drug derivatization nor polymer conjugation affected cytotoxicity or anti-inflammatory properties. Subsequent in vivo tests using a murine arthritis model validated the superior anti-inflammatory efficacy of the prepared DEX-bearing conjugates with lower release rates. These nanomedicines showed much higher therapeutic activity compared to the faster release systems or DEX itself.


Sujet(s)
Agranulocytes , Rhumatismes , Souris , Humains , Animaux , Libération de médicament , Nanomédecine , Polymères/composition chimique , Dexaméthasone , Anti-inflammatoires/usage thérapeutique , Vecteurs de médicaments/composition chimique , Doxorubicine/composition chimique
9.
Polymers (Basel) ; 16(6)2024 Mar 10.
Article de Anglais | MEDLINE | ID: mdl-38543364

RÉSUMÉ

In vitro diagnostic methods face non-specific interactions increasing their background level and influencing the efficacy and reproducibility. Currently, the most important and employed blocker of non-specific interactions is bovine serum albumin (BSA), an animal product with some disadvantages like its batch-to-batch variability and contamination with RNases. Herein, we developed amphiphilic water-soluble synthetic copolymers based on the highly biocompatible, non-immunogenic and nontoxic N-2-(hydroxypropyl)methacrylamide (HPMA)-based copolymers or poly(oxazoline)s as highly effective synthetic blockers of non-specific interactions and an effective BSA alternative. The highest blocking capacity was observed for HPMA-based polymers containing two hydrophobic anchors taking advantage of the combination of two structurally different hydrophobic molecules. Polymers prepared by free radical polymerisation with broader dispersity were slightly better in terms of surface covering. The sandwich ELISA evaluating human thyroid-stimulating Hormone in patient samples revealed that the designed polymers can fully replace BSA without compromising the assay results. Importantly, as a fully synthetic material, the developed polymers are fully animal pathogen-free; thus, they are highly important materials for further development.

10.
Nanomedicine ; 57: 102744, 2024 Apr.
Article de Anglais | MEDLINE | ID: mdl-38460653

RÉSUMÉ

We recently prepared pH-responsive HPMA copolymer conjugates of bradykinin (P-BK), which release BK in response to the acidic tumor microenvironment, and found that administration of P-BK increased the tumor accumulation and therapeutic efficacy of nanomedicine. Because the release of BK from P-BK determines its onset of action, P-BKs with different release rates were prepared, and their properties were evaluated. The release kinetics were significantly altered by substitution proximal to hydrazone bond, release constant of methyl-substituted P-BK (P-MeBK) was approximately 4- and 80-fold higher than that of cyclopropyl-substituted P-BK (P-CPBK) and phenyl-substituted P-BK (P-PhBK). None of the P-BKs were active, but the release of BK restored their BK-like activity. Pre-administration of the P-BKs increased the tumor accumulation of nanomedicine in C26 tumor-bearing mice by 2- and 1.4-fold for P-MeBK and P-PhBK at 3 and 6 h. Altogether, this study provides insights into the design of pH-responsive nanodrugs with the desired release properties to target acidic lesions such as cancer and inflammation.


Sujet(s)
Tumeurs , Polymères , Animaux , Souris , Polymères/composition chimique , Doxorubicine/composition chimique , Bradykinine , Nanomédecine , Concentration en ions d'hydrogène , Tumeurs/traitement médicamenteux , Microenvironnement tumoral
11.
Mol Pharm ; 21(4): 1838-1847, 2024 Apr 01.
Article de Anglais | MEDLINE | ID: mdl-38413029

RÉSUMÉ

The extensive use of opioids for chronic pain management has contributed significantly to the current opioid epidemic. While many alternative nonopioid analgesics are available, opioids remain the most potent analgesics for moderate to severe pain management. In addition to the implementation of multimodal analgesia, there is a pressing need for the development of more effective and safer opioids. In this study, we developed a thermoresponsive N-(2-hydroxypropyl) methacrylamide (HPMA) copolymer-based hydromorphone (HMP) prodrug (ProGel-HMP, HMP content = 16.2 wt %, in base form). The aqueous solution of ProGel-HMP was free-flowing at 4 °C but became a hydrogel when the temperature was raised to ≥37 °C, allowing sustained local retention when administered in vivo. When tested in the destabilization of the medial meniscus (DMM) mouse model of osteoarthritis (OA), ProGel-HMP was retained after intra-articular injection in the OA knee joint for at least 2 weeks postinjection, with low extra-articular distribution. ProGel-HMP was not detected in the central nervous system (CNS). A single dose of ProGel-HMP produced rapid and sustained joint pain resolution for greater than 14 days when compared to saline and dose-equivalent HMP controls, likely mediated through peripheral µ-opioid receptors in the knee joint. Systemic analgesia effect was absent in the DMM mice treated with ProGel-HMP, as evident in the lack of difference in tail flick response between the ProGel-HMP-treated mice and the controls (i.e., Healthy, Saline, and Sham). Repeated dosing of ProGel-HMP did not induce tolerance. Collectively, these data support the further development of ProGel-HMP as a potent, safe, long-acting and nonaddictive analgesic for better clinical pain management.


Sujet(s)
Analgésie , Effets secondaires indésirables des médicaments , Arthrose , Promédicaments , Souris , Animaux , Hydromorphone , Gestion de la douleur , Promédicaments/usage thérapeutique , Douleur/traitement médicamenteux , Analgésiques morphiniques/effets indésirables , Analgésiques/usage thérapeutique
12.
Chempluschem ; 89(5): e202300647, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38217401

RÉSUMÉ

Herein, we report the development of a macromolecular multifunctional imaging tool for biological investigations, which is comprised of an N-(2-hydroxypropyl)methacrylamide backbone, iridium-based luminescent probe, glutamate carboxypeptidase II (GCPII) targeting ligand, and biotin affinity tag. The iridium luminophore is a tris-cyclometalated complex based on [Ir(ppy)3] with one of its 2-phenylpyridine ligands functionalized to allow conjugation. Synthesized macromolecular probes differed in the structure of the polymer and content of the iridium complex. The applicability of the developed imaging tools has been tested in flow cytometry (FACS) based assay, laser confocal microscopy, and fluorescence lifetime imaging microscopy (FLIM). The FACS analysis has shown that the targeted iBodies containing the iridium luminophore exhibit selective labelling of GCPII expressing cells. This observation was also confirmed in the imaging experiments with laser confocal microscopy. The FLIM experiment has shown that the iBodies with the iridium label exhibit a lifetime greater than 100 ns, which distinguishes them from typically used systems labelled with organic fluorophores exhibiting short fluorescence lifetimes. The results of this investigation indicate that the system exhibits interesting properties, which supports the development of additional biological tools utilizing the key components (iridium complexes, iBody concept), primarily focusing on the longer lifetime of the iridium emitter.


Sujet(s)
Iridium , Microscopie confocale , Polymères , Iridium/composition chimique , Humains , Polymères/composition chimique , Colorants fluorescents/composition chimique , Microscopie de fluorescence/méthodes , Cytométrie en flux , Imagerie optique/méthodes
13.
Nanomedicine ; 56: 102730, 2024 Feb.
Article de Anglais | MEDLINE | ID: mdl-38158146

RÉSUMÉ

We synthesized three novel STAT3 inhibitors (S3iD1-S3iD3) possessing oxoheptanoic residue enabling linkage to HPMA copolymer carrier via a pH-sensitive hydrazone bond. HPMA copolymer conjugates bearing doxorubicin (Dox) and our STAT3 inhibitors were synthesized to evaluate the anticancer effect of Dox and STAT3 inhibitor co-delivery into tumors. S3iD1-3 and their copolymer-bound counterparts (P-S3iD1-P-S3iD3) showed considerable in vitro cytostatic activities in five mouse and human cancer cell lines with IC50 ~0.6-7.9 µM and 0.7-10.9 µM, respectively. S3iD2 and S3iD3 were confirmed to inhibit the STAT3 signaling pathway. The combination of HPMA copolymer-bound Dox (P-Dox) and P-S3iD3 at the dosage showing negligible toxicity demonstrated significant antitumor activity in B16F10 melanoma-bearing mice and completely cured 2 out of 15 mice. P-Dox alone had a significantly lower therapeutic activity with no completely cured mice. Thus, polymer conjugates bearing STAT3 inhibitors may be used for the chemosensitization of chemorefractory tumors.


Sujet(s)
Doxorubicine , Méthacrylates , Tumeurs , Souris , Humains , Animaux , Doxorubicine/pharmacologie , Doxorubicine/usage thérapeutique , Tumeurs/traitement médicamenteux , Poly(acides méthacryliques) , Concentration en ions d'hydrogène , Facteur de transcription STAT-3/métabolisme
14.
Int J Nanomedicine ; 18: 5343-5363, 2023.
Article de Anglais | MEDLINE | ID: mdl-37746048

RÉSUMÉ

Objective: This study aimed to deliver a polypeptide from the Bax-BH3 domain (BHP) through the synthesis of self-assembled amphiphile nanovectors (NVs) and to assess their potential for cancer therapeutic applications and biological safety in vitro and in vivo. These findings provide valuable options for cancer intervention and a novel approach for the rational design of therapeutics. Methods: We studied the antitumor activity of BHP by preparing RGDfK-PHPMA-b-Poly (MMA-alt-(Rhob-MA)) (RPPMMRA) and encapsulating it in BHP-NV. We also performed a series of characterizations and property analyses of RPPMMRA, including its size, stability, and drug-carrying capacity. The biocompatibility of RPPMMRA was evaluated in terms of cytotoxicity and hemolytic effects. The pro-apoptotic capacity of BHP was evaluated in vitro using mitochondrial membrane potential, flow cytometry, and apoptosis visualization techniques. The potential therapeutic effects of BHP on tumors were explored using reverse molecular docking. We also investigated the in vivo proapoptotic effect of BHP-NV in a nude mouse tumor model. Results: NVs were successfully prepared with hydrated particle sizes ranging from 189.6 nm to 256.6 nm, spherical overall, and were able to remain stable in different media for 72 h with drug loading up to 15.2%. The NVs were be successfully internalized within 6 h with good biocompatibility. Neither BHP nor NV showed significant toxicity when administered alone, however, BHP-NV demonstrated significant side effects in vitro and in vivo. The apoptosis rate increased significantly from 14.13% to 66.34%. Experiments in vivo showed that BHP-NV exhibited significant apoptotic and tumor-suppressive effects. Conclusion: A targeted fluorescent NV with high drug delivery efficiency and sustained release protected the active center of BHP, constituting BHP-NV for targeted delivery. RPPMMRA demonstrated excellent biocompatibility, stability, and drug loading ability, whereas and BHP-NV demonstrated potent antitumor effects in vivo and in vitro.


Sujet(s)
Systèmes de délivrance de médicaments , Peptides , Animaux , Souris , Simulation de docking moléculaire , Apoptose , Agents colorants , Souris nude
15.
Theranostics ; 13(14): 4952-4973, 2023.
Article de Anglais | MEDLINE | ID: mdl-37771769

RÉSUMÉ

Background: Efficient theranostic strategies concurrently bring and use both the therapeutic and diagnostic features, serving as a cutting-edge tool to combat advanced cancers. Goals of the Investigation: Here, we develop stimuli-sensitive theranostics consisting of tailored copolymers forming micellar conjugates carrying pyropheophorbide-a (PyF) attached by pH-sensitive hydrazone bonds, thus enabling the tumor microenvironment-sensitive activation of the photodynamic therapy (PDT) effect, fluorescence or phosphorescence. Results: The nanomedicines show superior anti-tumor PDT efficacy and huge tumor-imaging potential, while reducing their accumulation, and potentially side effects, in the liver and spleen. The developed theranostics exhibit clear selective tumor accumulation at high levels in the mouse sarcoma S180 tumor model with almost no PyF found in the healthy tissues after 48 h. Once in the tumor, illumination at λexc = 420 nm reaches the therapeutic effect due to the 1O2 generation. Indeed, an almost complete inhibition of tumor growth is observed up to 18 days after the treatment. Conclusion: The clear benefit of the specific PyF release and activation in the acidic tumor environment for the targeted delivery and tissue distribution dynamics was proved. Conjugates carrying pyropheophorbide-a (PyF) attached by pH-sensitive hydrazone bonds showed their excellent antitumor PDT effect and its applicability as advanced theranostics at very low dose of PyF.


Sujet(s)
Tumeurs , Photothérapie dynamique , Animaux , Souris , Polymères/composition chimique , Médecine de précision , Tumeurs/imagerie diagnostique , Tumeurs/traitement médicamenteux , Tumeurs/anatomopathologie , Photothérapie dynamique/méthodes , Hydrazones/usage thérapeutique , Lignée cellulaire tumorale , Nanomédecine théranostique/méthodes , Photosensibilisants/usage thérapeutique , Microenvironnement tumoral
16.
Acta Biomater ; 171: 417-427, 2023 11.
Article de Anglais | MEDLINE | ID: mdl-37696413

RÉSUMÉ

Biodegradable polymer-based therapeutics have recently become essential drug delivery biomaterials for various bioactive compounds. Biodegradable and biocompatible polymer-based biomaterials fulfill the requirements of these therapeutics because they enable to obtain polymer biomaterials with optimized blood circulation, pharmacokinetics, biodegradability, and renal excretion. Herein, we describe an adaptable polymerization platform employed for the synthesis of long-circulating, stimulus-sensitive and biodegradable biomaterials, therapeutics, or theranostics. Four chain transfer agents (CTA) were designed and successfully synthesized for the reversible addition-fragmentation chain transfer polymerization, allowing the straightforward synthesis of hydrolytically biodegradable structures of block copolymers-based biomaterials. The controlled polymerization using the CTAs enables controlling the half-life of the hydrolytic degradation of polymer precursors in a wide range from 5 h to 21 days. Moreover, the antitumor drug pirarubicin (THP) was successfully conjugated to the polymer biomaterials via a pH-sensitive hydrazone bond for in vitro and in vivo experiments. Polymer conjugates demonstrated superior antitumor efficacy compared to basic linear polymer-based conjugates. Notably, the biodegradable systems, even though those with degradation in the order of hours were selected, increased the half-life of THP in the bloodstream almost two-fold. Indeed, the presented platform design enables the main chain-end specific attachment of targeting ligands or diagnostic molecules. The adaptable polymerization platform design allows tuning of the biodegradability rate, stimuli-sensitive drug bonding, and optimized pharmacokinetics to increase the therapy outcome and system targeting, thus allowing the preparation of targeted or theranostic polymer conjugates. STATEMENT OF SIGNIFICANCE: Biodegradable and biocompatible polymer-based biomaterials are recognized as potential future bioactive nanomedicines. To advance the development of such biomaterials, we developed polymerization platforms utilizing tailored chain transfer agents allowing the straightforward synthesis of hydrolytically degradable polymer biomaterials with tuned biodegradability from hours to several days. The platform allows for the synthesis of long-circulating, stimulus-sensitive and biodegradable biomaterial serving as drug carriers or theranostics. The therapeutic potential was validated by preparation of polymer biomaterials containing pirarubicin, anticancer drug, bound via pH sensitive bond and by showing prolonged blood circulation and increased antitumor activity while keeping the drug side effects low. This work paves the way for future development of biodegradable polymer biomaterials with advanced properties in drug delivery.


Sujet(s)
Antinéoplasiques , Doxorubicine , Polymérisation , Doxorubicine/composition chimique , Antinéoplasiques/usage thérapeutique , Vecteurs de médicaments/composition chimique , Polymères/composition chimique , Matériaux biocompatibles/pharmacologie , Matériaux biocompatibles/composition chimique
17.
Adv Healthc Mater ; 12(28): e2301183, 2023 11.
Article de Anglais | MEDLINE | ID: mdl-37288946

RÉSUMÉ

Nano-sized carriers are widely studied as suitable candidates for the advanced delivery of various bioactive molecules such as drugs and diagnostics. Herein, the development of long-circulating stimuli-responsive polymer nanoprobes tailored for the fluorescently-guided surgery of solid tumors is reported. Nanoprobes are designed as long-circulating nanosystems preferably accumulated in solid tumors due to the Enhanced permeability and retention effect, so they act as a tumor microenvironment-sensitive activatable diagnostic. This study designs polymer probes differing in the structure of the spacer between the polymer carrier and Cy7 by employing pH-sensitive spacers, oligopeptide spacers susceptible to cathepsin B-catalyzed enzymatic hydrolysis, and non-degradable control spacer. Increased accumulation of the nanoprobes in the tumor tissue coupled with stimuli-sensitive release behavior and subsequent activation of the fluorescent signal upon dye release facilitated favorable tumor-to-background ratio, a key feature for fluorescence-guided surgery. The probes show excellent diagnostic potential for the surgical removal of intraperitoneal metastasis and orthotopic head and neck tumors with very high efficacy and accuracy. In addition, the combination of macroscopic resection followed by fluorescence-guided surgery using developed probes enable the identification and resection of most of the CAL33 intraperitoneal metastases with total tumor burden reduced to 97.2%.


Sujet(s)
Tumeurs de la tête et du cou , Polymères réagissant aux stimuli , Humains , Fluorescence , Colorants fluorescents/composition chimique , Polymères , Tumeurs de la tête et du cou/imagerie diagnostique , Tumeurs de la tête et du cou/chirurgie , Lignée cellulaire tumorale , Microenvironnement tumoral
18.
Regul Toxicol Pharmacol ; 141: 105404, 2023 Jun.
Article de Anglais | MEDLINE | ID: mdl-37105297

RÉSUMÉ

Occupational asthma resulting from workplace exposure to chemical respiratory allergens is an important disease. No widely accepted or formally validated tests for the identification of chemical respiratory sensitizers. Consequently, there is a heavy reliance on human data from clinical examinations. Unfortunately, however, although such investigations are critical for the diagnosis of occupational asthma, and in guiding remedial actions, they do not reliably identify specific chemicals within the workplace that are the causative agents. There are several reasons for this, including the fact that specific inhalation tests conducted as part of clinical investigations are frequently performed with complex mixtures rather than single substances, that sometimes inhalation challenges are conducted at concentrations above the OEL and STEL, where effects may be confounded by irritation, and that involvement of immune mechanisms cannot be assumed from the observation of late asthmatic reactions. Further, caution should be taken when implicating substances on lists of "recognised" asthmagens unless they have undergone a formal weight of evidence assessment. Here the limitations of clinical investigations as currently performed for the purposes of regulatory classification and decision making are explored by reference to previously published case studies that implicate 2-hydroxyethylmethacrylate (HEMA) and/or 2-hydroxypropylmethacrylate (HPMA) as respiratory allergens.


Sujet(s)
Asthme professionnel , Exposition professionnelle , Humains , Allergènes/toxicité , Méthacrylates/toxicité , Inflammation , Exposition professionnelle/effets indésirables
19.
Mol Pharm ; 20(3): 1670-1680, 2023 03 06.
Article de Anglais | MEDLINE | ID: mdl-36724294

RÉSUMÉ

Osteosarcoma (OS) is the most common form of primary malignant bone cancer in adolescents. Over the years, OS prognosis has greatly improved due to adjuvant and neoadjuvant (preoperative) chemotherapeutic treatment, increasing the chances of successful surgery and reducing the need for limb amputation. However, chemotherapeutic treatment to treat OS is limited by off-target toxicities and requires improved localization at the tumor site. Collagen, the main constituent of bone tissue, is extensively degraded and remodeled in OS, leading to an increased availability of denatured (monomeric) collagen. Collagen hybridizing peptides (CHPs) comprise a class of peptides rationally designed to selectively bind to denatured collagen. In this work, we have conjugated CHPs as targeting moieties to water-soluble N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers to target OS tumors. We demonstrated increased accumulation of collagen-targeted HPMA copolymer-CHP conjugates compared to nontargeted HPMA copolymers, as well as increased retention compared to both nontargeted copolymers and CHPs, in a murine intratibial OS tumor model. Furthermore, we used microcomputed tomography analysis to evaluate the bone microarchitecture and correlated bone morphometric parameters (porosity, bone volume, and surface area) with maximum accumulation (Smax) and accumulation at 168 h postinjection (S168) of the copolymers at the tumor. Our results provide the foundation for the use of HPMA copolymer-CHP conjugates as targeted drug delivery systems in OS tumors.


Sujet(s)
Tumeurs osseuses , Ostéosarcome , Souris , Humains , Animaux , Adolescent , Microtomographie aux rayons X , Systèmes de délivrance de médicaments/méthodes , Méthacrylates , Peptides , Collagène , Polymères
20.
Pharmaceutics ; 15(2)2023 Jan 25.
Article de Anglais | MEDLINE | ID: mdl-36839728

RÉSUMÉ

Microbial resistance is one of the main problems of modern medicine. Recently, antimicrobial peptides have been recognized as a novel approach to overcome the microbial resistance issue, nevertheless, their low stability, toxicity, and potential immunogenic response in biological systems have limited their clinical application. Herein, we present the design, synthesis, and preliminary biological evaluation of polymer-antibacterial peptide constructs. The antimicrobial GKWMKLLKKILK-NH2 oligopeptide (PEP) derived from halictine, honey bee venom, was bound to a polymer carrier via various biodegradable spacers employing the pH-sensitive or enzymatically-driven release and reactivation of the PEP's antimicrobial activity. The antibacterial properties of the polymer-PEP constructs were assessed by a determination of the minimum inhibitory concentrations, followed by fluorescence and transmission electron microscopy. The PEP exerted antibacterial activity against both, gram-positive and negative bacteria, via disruption of the bacterial cell wall mechanism. Importantly, PEP partly retained its antibacterial efficacy against Staphylococcus epidermidis, Escherichia coli, and Acinetobacter baumanii even though it was bound to the polymer carrier. Indeed, to observe antibacterial activity similar to the free PEP, the peptide has to be released from the polymer carrier in response to a pH decrease. Enzymatically-driven release and reactivation of the PEP antimicrobial activity were recognized as less effective when compared to the pH-sensitive release of PEP.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE