Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 102
Filtrer
Plus de filtres











Gamme d'année
1.
FEMS Microbes ; 5: xtae024, 2024.
Article de Anglais | MEDLINE | ID: mdl-39246828

RÉSUMÉ

Marine sediments have been suggested as a reservoir for pathogenic bacteria, including Escherichia coli. The origins, and properties promoting survival of E. coli in marine sediments (including osmotolerance, biofilm formation capacity, and antibiotic resistance), have not been well-characterized. Phenotypes and genotypes of 37 E. coli isolates from coastal marine sediments were characterized. The isolates were diverse: 30 sequence types were identified that have been previously documented in humans, livestock, and other animals. Virulence genes were found in all isolates, with more virulence genes found in isolates sampled from sediment closer to the effluent discharge point of a wastewater treatment plant. Antibiotic resistance was demonstrated phenotypically for one isolate, which also carried tetracycline resistance genes on a plasmid. Biofilm formation capacity varied for the different isolates, with most biofilm formed by phylogroup B1 isolates. All isolates were halotolerant, growing at 3.5% NaCl. This suggests that the properties of some isolates may facilitate survival in marine environments and can explain in part how marine sediments can be a reservoir for pathogenic E. coli. As disturbance of sediment could resuspend bacteria, this should be considered as a potential contributor to compromised bathing water quality at nearby beaches.

2.
Int Microbiol ; 2024 Aug 07.
Article de Anglais | MEDLINE | ID: mdl-39107585

RÉSUMÉ

The emergence of Candida auris has caused a major concern in the public health worldwide. This novel fungus is characterized by its multidrug resistance profile, ability to thrive in harsh and stressful conditions, as well as high temperatures and salt concentrations, persistence on hospital surfaces, causing nosocomial infections and outbreaks, and unique fitness properties. Here, we study the antifungal susceptibility patterns, thermotolerance, and halotolerance of 15 putative C. auris clinical isolates from Inkosi Albert Academic Hospital, Durban, South Africa. Five of the C. auris isolates showed resistance to all three antifungals (fluconazole, amphotericin B, and micafungin) and were selected for characterization of their adaptability mechanisms. Four of the tested multidrug-resistant C. auris isolates (C. auris strain F25, C. auris strain F276, C. auris F283, and C. auris M153) showed good growth when exposed to high temperature (42 °C) and salinity (10% NaCl) conditions whereas one isolate (C. auris F65) showed moderate growth under these conditions. Candida parapsilosis showed poor growth whereas C. albicans no growth under these conditions. The five C. auris strains were positive for all the adaptive features.

3.
Biochem Biophys Res Commun ; 736: 150514, 2024 Aug 08.
Article de Anglais | MEDLINE | ID: mdl-39128267

RÉSUMÉ

We conducted a thorough genome-wide investigation of protein phosphorylation in the halotolerant bacterium Mangrovibacter phragmitis (MPH) ASIOC01, using the Fe-IMAC enrichment method combined with tandem mass spectrometry under low- and high-salinity conditions. The phosphoproteome comprises 86 unique phosphorylated proteins, crucially involving pathways such as glycolysis/gluconeogenesis, the citrate cycle, chaperones, ribosomal proteins, and cell division. This study represents the first and most extensive investigation to-date comparing the bacterial phosphoproteome under different osmotic conditions using a gel-free approach. We identified 45 unique phosphoproteins in MPH cultured in media containing 1 % NaCl, and 33 exclusive phosphoproteins in MPH cultured in media containing 5 % NaCl. Eight phosphoproteins were detected in both growth conditions. Analysis of high-confidence phosphosites reveals that phosphorylation predominantly occurs on serine residues (52.3 %), followed by threonine (35.1 %) and tyrosine (12.6 %) residues. Interestingly, 34 % of the phosphopeptides display multiple phosphosites. Currently, prokaryotic phosphorylation site prediction platforms like MPSite and NetPhosBac 1.0 demonstrate an average prediction accuracy of only 21 % when applied to our dataset. Fourteen phosphoproteins did not yield matches when compared against dbPSP 2.0 (database of Phosphorylation Sites in Prokaryotes), indicating that these proteins may be novel phosphoproteins. These unique proteins undergoing phosphorylation under high salinity growth conditions potentially enhance their adaptive capabilities to environmental challenges.

4.
IUBMB Life ; 76(9): 617-631, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-38647201

RÉSUMÉ

Experimental evolution was carried out to investigate the adaptive responses of extremotolerant fungi to a stressful environment. For 12 cultivation cycles, the halotolerant black yeasts Aureobasidium pullulans and Aureobasidium subglaciale were grown at high NaCl or glycerol concentrations, and the halophilic basidiomycete Wallemia ichthyophaga was grown close to its lower NaCl growth limit. All evolved Aureobasidium spp. accelerated their growth at low water activity. Whole genomes of the evolved strains were sequenced. No aneuploidies were detected in any of the genomes, contrary to previous studies on experimental evolution at high salinity with other species. However, several hundred single-nucleotide polymorphisms were identified compared with the genomes of the progenitor strains. Two functional groups of genes were overrepresented among the genes presumably affected by single-nucleotide polymorphisms: voltage-gated potassium channels in A. pullulans at high NaCl concentration, and hydrophobins in W. ichthyophaga at low NaCl concentration. Both groups of genes were previously associated with adaptation to high salinity. Finally, most evolved Aureobasidium spp. strains were found to have increased intracellular and decreased extracellular glycerol concentrations at high salinity, suggesting that the strains have optimised their management of glycerol, their most important compatible solute. Experimental evolution therefore not only confirmed the role of potassium transport, glycerol management, and cell wall in survival at low water activity, but also demonstrated that fungi from extreme environments can further improve their growth rates under constant extreme conditions in a relatively short time and without large scale genomic rearrangements.


Sujet(s)
Extrêmophiles , Pression osmotique , Extrêmophiles/génétique , Extrêmophiles/croissance et développement , Extrêmophiles/métabolisme , Génome fongique , Glycérol/métabolisme , Polymorphisme de nucléotide simple , Aureobasidium (genre)/génétique , Aureobasidium (genre)/métabolisme , Chlorure de sodium/métabolisme , Chlorure de sodium/pharmacologie , Adaptation physiologique/génétique , Salinité , Basidiomycota/génétique , Basidiomycota/croissance et développement , Ascomycota/génétique , Ascomycota/croissance et développement
5.
Antonie Van Leeuwenhoek ; 117(1): 53, 2024 Mar 14.
Article de Anglais | MEDLINE | ID: mdl-38483617

RÉSUMÉ

The genus Sporendonema (Gymnoascaceae, Onygenales) was introduced in 1827 with the type species S. casei for a red mould on cheese. Cheese is a consistent niche for this species. Sphaerosporium equinum is another species classified in Gymnoascaceae and has also been reported from cheese. Recently, other habitats have been reported for both Sporendonema casei and Sphaerosporium equinum. The present study aimed to investigate the taxonomy of Sporendonema and Sphaerosporium, as well as a close neighbour, Arachniotus. Two strains of Hormiscium aurantiacum, another related cheese-associated species were also included in the analyses. Strains were evaluated in terms of macro- and micromorphology, physiology including salt tolerance, growth rate at different temperatures, casein degradation, cellulase activity, lipolytic activity, and multi-locus phylogeny with sequences of the nuclear ribosomal internal transcribed spacer region, the D1-D2 region of the large subunit and partial ß-tubulin locus sequences. The results showed that the analysed species were congeneric, and the generic names Arachniotus and Sphaerosporium should be reduced to the synonymy of Sporendonema. Therefore, four new combinations as well as one lectotype and one epitype were designated in Sporendonema. Two strains attributed to Sphaerosporium equinum from substrates other than cheese were found to be phylogenetically and morphologically deviant and were introduced as a new species named Sporendonema isthmoides.


Sujet(s)
Ascomycota , Phylogenèse , Espaceur de l'ADN ribosomique
6.
Bioresour Technol ; 394: 130175, 2024 Feb.
Article de Anglais | MEDLINE | ID: mdl-38086463

RÉSUMÉ

Polyhydroxyalkanoates (PHA) have emerged as a promising bio-compound in the industrial application due to their potential to replace conventional petroleum-based plastics with sustainable bioplastics. This study focuses on Halomonas sp. YJPS3-3, a halophilic bacterium, and presents a novel approach to enhance PHA production by exploiting its salt tolerance toward PHA biosynthesis. Through gamma irradiation-induced mutants with enhanced salt tolerance from 15% NaCl to 20% NaCl, mutant halo6 showing a significant 11% increase in PHA yield, was achieved. Moreover, the mutants displayed not only higher PHA content but also remarkable cell morphology with elongation. In addition, this research unravels the genetic determinants behind the elevated PHA content and identifies a corresponding shift in fatty acid composition favoring PHA accumulation. This novel mutant obtained from gamma irradiation with enhanced salt tolerance in halophilic bacteria opens up new avenues not only for the bioplastic industry but also for applications in the production of high-value metabolites.


Sujet(s)
Halomonas , Polyhydroxyalcanoates , , Acide 3-hydroxy-butyrique/métabolisme , Tolérance au sel , Chlorure de sodium/pharmacologie , Chlorure de sodium/métabolisme , Polyhydroxyalcanoates/métabolisme , Biopolymères/métabolisme , Halomonas/génétique , Halomonas/métabolisme
7.
Mol Biotechnol ; 66(5): 1031-1050, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38097901

RÉSUMÉ

Diverse practices implementing biopolymer-producing bacteria have been examined in various domains lately. PHAs are among the major biopolymers whose relevance of PHA-producing bacteria in the field of crop improvement is one of the radical unexplored aspects in the field of agriculture. Prolonging shelf life is one serious issue hindering the establishment of biofertilizers. Studies support that PHA can help bacteria survive stressed conditions by providing energy. Therefore, PHA-producing bacteria with Plant Growth-Promoting ability can alter the existing problem of short shelf life in biofertilizers. In the present study, Bacillus subtilis NJ14 was isolated from the soil. It was explored to understand the ability of the strain to produce PHA and augment growth in Solanum lycopersicum and Cicer arietinum. NJ14 strain improved the root and shoot length of both plants significantly. The root and shoot length of S. lycopersicum was increased by 3.49 and 0.41 cm, respectively. Similarly, C. arietinum showed a 9.55 and 8.24 cm increase in root and shoot length, respectively. The strain also exhibited halotolerant activity (up to 10%), metal tolerance to lead (up to 1000 µg/mL) and mercury (up to 100 µg/mL), indicating that the NJ14 strain can be an ideal candidate for a potent biofertilizer.


Sujet(s)
Bacillus subtilis , Cicer , Solanum lycopersicum , Cicer/croissance et développement , Cicer/microbiologie , Cicer/métabolisme , Bacillus subtilis/métabolisme , Bacillus subtilis/croissance et développement , Solanum lycopersicum/croissance et développement , Solanum lycopersicum/métabolisme , Solanum lycopersicum/microbiologie , Stress physiologique , Biopolymères/métabolisme , Biopolymères/biosynthèse , Racines de plante/métabolisme , Racines de plante/croissance et développement , Racines de plante/microbiologie , Microbiologie du sol , Agriculture/méthodes , Pousses de plante/croissance et développement , Pousses de plante/métabolisme
8.
Environ Sci Pollut Res Int ; 30(60): 125947-125964, 2023 Dec.
Article de Anglais | MEDLINE | ID: mdl-38010547

RÉSUMÉ

Paracoccus sp. strain DMF (P. DMF from henceforth) is a gram-negative heterotroph known to tolerate and utilize high concentrations of N,N-dimethylformamide (DMF). The work presented here elaborates on the metabolic pathways involved in the degradation of C1 compounds, many of which are well-known pollutants and toxic to the environment. Investigations on microbial growth and detection of metabolic intermediates corroborate the outcome of the functional genome analysis. Several classes of C1 compounds, such as methanol, methylated amines, aliphatic amides, and naturally occurring quaternary amines like glycine betaine, were tested as growth substrates. The detailed growth and kinetic parameter analyses reveal that P. DMF can efficiently aerobically degrade trimethylamine (TMA) and grow on quaternary amines such as glycine betaine. The results show that the mechanism for halotolerant adaptation in the presence of glycine betaine is dissimilar from those observed for conventional trehalose-mediated halotolerance in heterotrophic bacteria. In addition, a close genomic survey revealed the presence of a Co(I)-based substrate-specific corrinoid methyltransferase operon, referred to as mtgBC. This demethylation system has been associated with glycine betaine catabolism in anaerobic methanogens and is unknown in denitrifying aerobic heterotrophs. This report on an anoxic-specific demethylation system in an aerobic heterotroph is unique. Our finding exposes the metabolic potential for the degradation of a variety of C1 compounds by P. DMF, making it a novel organism of choice for remediating a wide range of possible environmental contaminants.


Sujet(s)
N,N-Diméthyl-formamide , Paracoccus , N,N-Diméthyl-formamide/métabolisme , Amides , Bétaïne , Paracoccus/génétique , Voies et réseaux métaboliques
9.
World J Microbiol Biotechnol ; 39(11): 304, 2023 Sep 11.
Article de Anglais | MEDLINE | ID: mdl-37691038

RÉSUMÉ

ß-mannanase catalyzes the hydrolysis of mannans ß-1,4-mannosidic linkages to produce industrially relevant oligosaccharides. These enzymes have numerous important applications in the detergent, food, and feed industries, particularly those that are resistant to harsh environmental conditions such as salts and heat. While, moderately salt-tolerant ß-mannanases are already reported, existence of a high halotolerant ß-mannanase is still elusive. This study aims to report the first purification and characterization of ManH1, an extremely halotolerant ß-mannanase from the halotolerant B. velezensis strain H1. Electrospray ionization quadrupole time-of-flight mass spectrometry (ESI-Q-TOF-MS) analysis revealed a single major peak with a molecular mass of 37.8 kDa demonstrating its purity. The purified enzyme showed a good thermostability as no activity was lost after a 48 h incubation under optimal conditions of 50 °C and pH 5.5. The enzyme's salt activation nature was revealed when its maximum activity was obtained in the presence of 4 M NaCl, it doubled compared to the no-salt condition. Moreover, NaCl strengthens its resistance to thermal denaturation, as its melting temperature (Tm) increased steadily with increasing NaCl concentrations reaching 75.5 °C in the presence of 2.5 M NaCl. The Km and Vmax values were 5.63 mg/mL and 333.33 µmol/min/mL, respectively, using carob galactomannan (CG) as a substrate. The enzyme showed a significant ability to produce manno-oligosaccharides (MOS) from lignocellulosic biomass releasing 13 mg/mL of reducing sugars from olive mill wastes (OMW) after 24 h incubation. The results revealed that this enzyme may have significant commercial values for agro-waste treatment, and other potential applications.


Sujet(s)
Bacillus , Chlorure de sodium , beta-Mannosidase , Biomasse
10.
AIMS Microbiol ; 9(3): 540-553, 2023.
Article de Anglais | MEDLINE | ID: mdl-37649802

RÉSUMÉ

Prokaryotic α-carbonic anhydrases (α-CA) are metalloenzymes that catalyze the reversible hydration of CO2 to bicarbonate and proton. We had reported the first crystal structure of a pyschrohalophilic α-CA from a deep-sea bacterium, Photobacterium profundum SS9. In this manuscript, we report the first biochemical characterization of P. profundum α-CA (PprCA) which revealed several catalytic properties that are atypical for this class of CA's. Purified PprCA exhibited maximal catalytic activity at psychrophilic temperatures with substantial decrease in activity at mesophilic and thermophilic range. Similar to other α-CA's, Ppr9A showed peak activity at alkaline pH (pH 11), although, PprCA retained 88% of its activity even at acidic pH (pH 5). Exposing PprCA to varying concentrations of oxidizing and reducing agents revealed that N-terminal cysteine residues in PprCA may play a role in the structural stability of the enzyme. Although inefficient in CO2 hydration activity under mesophilic and thermophilic temperatures, PprCA exhibited salt-dependent thermotolerance and catalytic activity under extreme halophilic conditions. Similar to other well-characterized α-CA's, PprCA is also inhibited by monovalent anions even at low concentrations. Finally, we demonstrate that PprCA accelerates CO2 biomineralization to calcium carbonate under alkaline conditions.

11.
J Fungi (Basel) ; 9(8)2023 Aug 15.
Article de Anglais | MEDLINE | ID: mdl-37623622

RÉSUMÉ

In this study, a halotolerant yeast that is capable of efficiently decolorizing and detoxifying azo dyes was isolated, identified and characterized for coping with the treatment of azo-dye-containing wastewaters. A characterization of the yeast, including the optimization of its metabolism and growth conditions, its detoxification effectiveness and the degradation pathway of the target azo dye, as well as a determination of the key activities of the enzyme, was performed. Finally, the possible halotolerance mechanisms of the yeast were proposed through a comparative transcriptome analysis. The results show that a halotolerant yeast, A4, which could decolorize various azo dyes, was isolated from a marine environment and was identified as Meyerozyma guilliermondii. Its optimal conditions for dye decolorization were ≥1.0 g/L of sucrose, ≥0.2 g/L of (NH4)2SO4, 0.06 g/L of yeast extract, pH 6.0, a temperature of 35 °C and a rotation speed of ≥160 rpm. The yeast, A4, degraded and detoxified ARB through a series of steps, relying on the key enzymes that might be involved in the degradation of azo dye and aromatic compounds. The halotolerance of the yeast, A4, was mainly related to the regulation of the cell wall components and the excessive uptake of Na+/K+ and/or compatible organic solutes into the cells under different salinity conditions. The up-regulation of genes encoding Ca2+-ATPase and casein kinase II as well as the enrichment of KEGG pathways associated with proteasome and ribosome might also be responsible for its halotolerance.

12.
Adv Appl Microbiol ; 124: 55-117, 2023.
Article de Anglais | MEDLINE | ID: mdl-37597948

RÉSUMÉ

Cyanobacteria are ubiquitously distributed in nature and are the most abundant photoautotrophs on Earth. Their long evolutionary history reveals that cyanobacteria have a remarkable capacity and strong adaptive tendencies to thrive in a variety of conditions. Thus, they can survive successfully, especially in harsh environmental conditions such as salty environments, high radiation, or extreme temperatures. Among others, salt stress because of excessive salt accumulation in salty environments, is the most common abiotic stress in nature and hampers agricultural growth and productivity worldwide. These detrimental effects point to the importance of understanding the molecular mechanisms underlying the salt stress response. While it is generally accepted that the stress response mechanism is a complex network, fewer efforts have been made to represent it as a network. Substantial evidence revealed that salt-tolerant cyanobacteria have evolved genomic specific mechanisms and high adaptability in response to environmental changes. For example, extended gene families and/or clusters of genes encoding proteins involved in the adaptation to high salinity have been collectively reported. This chapter focuses on recent advances and provides an overview of the molecular basis of halotolerance mechanisms in salt­tolerant cyanobacteria as well as multiple regulatory pathways. We elaborate on the major protective mechanisms, molecular mechanisms associated with halotolerance, and the global transcriptional landscape to provide a gateway to uncover gene regulation principles. Both knowledge and omics approaches are utilized in this chapter to decipher the mechanistic insights into halotolerance. Collectively, this chapter would have a profound impact on providing a comprehensive understanding of halotolerance in salt­tolerant cyanobacteria.


Sujet(s)
Acclimatation , Cyanobactéries , Agriculture , Évolution biologique , Cyanobactéries/génétique ,
13.
Ecotoxicol Environ Saf ; 263: 115258, 2023 Sep 15.
Article de Anglais | MEDLINE | ID: mdl-37478569

RÉSUMÉ

The presence of high salinity levels in textile wastewater poses a significant obstacle to the process of decolorizing azo dyes. The present study involved the construction of a yeast consortium HYC, which is halotolerant and was recently isolated from wood-feeding termites. The consortium HYC was mainly comprised of Sterigmatomyces halophilus SSA-1575 and Meyerozyma guilliermondii SSA-1547. The developed consortium demonstrated a decolourization efficiency of 96.1% when exposed to a concentration of 50 mg/l of Reactive Black 5 (RB5). The HYC consortium significantly decolorized RB5 up to concentrations of 400 mg/l and in the presence of NaCl up to 50 g/l. The effects of physicochemical factors and the degradation pathway were systematically investigated. The optimal pH, salinity, temperature, and initial dye concentration were 7.0, 3%, 35 °C and 50 mg/l, respectively. The co-carbon source was found to be essential, and the addition of glucose resulted in a 93% decolorization of 50 mg/l RB5. The enzymatic activity of various oxido-reductases was assessed, revealing that NADH-DCIP reductase and azo reductase exhibited greater activity in comparison to other enzymes. UV-Visible (UV-vis) spectrophotometry, Fourier-transform infrared spectroscopy (FTIR), high-performance liquid chromatography (HPLC), and gas chromatography-mass spectrometry (GC-MS) were utilized to identify the metabolites generated during the degradation of RB5. Subsequently, a metabolic pathway was proposed. The confirmation of degradation was established through alterations in the functional groups and modifications in molecular weight. The findings indicate that this halotolerant yeast consortium exhibits promising potential of degrading dye compounds. The results of this study offer significant theoretical basis and crucial perspectives for the implementation of halotolerant yeast consortia in the bioremediation of textile and hypersaline wastewater. This approach is particularly noteworthy as it does not produce aromatic amines.


Sujet(s)
Composés azoïques , Eaux usées , Composés azoïques/métabolisme , Chromatographie gazeuse-spectrométrie de masse , Chromatographie en phase liquide à haute performance , Dépollution biologique de l'environnement , Agents colorants/composition chimique
14.
Microorganisms ; 11(4)2023 Mar 31.
Article de Anglais | MEDLINE | ID: mdl-37110331

RÉSUMÉ

Endophytic fungi have been found to produce a wide range of extracellular enzymes, which are increasingly in demand for their industrial applications. Different by-products from the agrifood industry could be used as fungal growth substrates for the massive production of these enzymes, specifically as a way to revalorize them. However, such by-products often present unfavorable conditions for the microorganism's growth, such as high salt concentrations. Therefore, the objective of the present study was to evaluate the potential of eleven endophytic fungi-which were isolated from plants growing in a harsh environment, specifically, from the Spanish dehesas-for the purposes of the in vitro production of six enzymes (i.e., amylase, lipase, protease, cellulase, pectinase and laccase) under both standard and salt-amended conditions. Under standard conditions, the studied endophytes produced between two and four of the six enzymes evaluated. In most of the producer fungal species, this enzymatic activity was relatively maintained when NaCl was added to the medium. Among the isolates evaluated, Sarocladium terricola (E025), Acremonium implicatum (E178), Microdiplodia hawaiiensis (E198), and an unidentified species (E586) were the most suitable candidates for the massive production of enzymes by using growth substrates with saline properties (such as those found in the many by-products from the agrifood industry). This study should be considered an initial approach by which to further study the identification of these compounds as well as to develop the optimization of their production by directly using those residues.

15.
Environ Microbiome ; 18(1): 20, 2023 Mar 18.
Article de Anglais | MEDLINE | ID: mdl-36934265

RÉSUMÉ

The adaptability of halophytes to increased soil salinity is related to complex rhizosphere interactions. In this study, an integrative approach, combining culture-independent and culture-dependent techniques was used to analyze the bacterial communities in the endorizosphere of indigenous succulent halophytes Salicornia europaea, Suaeda maritima, and Camphorosma annua from the natural salt marshes of Slano Kopovo (Serbia). The 16 S rDNA analyses gave, for the first time, an insight into the composition of the endophytic bacterial communities of S. maritima and C. annua. We have found that the composition of endophyte microbiomes in the same habitat is to some extent influenced by plant species. A cultivable portion of the halophyte microbiota was tested at different NaCl concentrations for the set of plant growth promoting (PGP) traits. Through the mining of indigenous halotolerant endophytes, we obtained a collection representing a core endophyte microbiome conferring desirable PGP traits. The majority (65%) of the selected strains belonged to the common halotolerant/halophilic genera Halomonas, Kushneria, and Halobacillus, with representatives exhibiting multiple PGP traits, and retaining beneficial traits in conditions of the increased salinity. The results suggest that the root endosphere of halophytes is a valuable source of PGP bacteria supporting plant growth and fitness in salt-affected soils.

16.
World J Microbiol Biotechnol ; 39(5): 127, 2023 Mar 21.
Article de Anglais | MEDLINE | ID: mdl-36941452

RÉSUMÉ

Laccases highlight for xenobiotic bioremediation, as well as application in the fine chemical, textile, biofuel and food industries. In a previous work, we described the preliminary characterization of laccase LacMeta, a promising enzyme for the bioremediation of dyes, able to decolorization malachite green (MG), trypan blue, methylene blue. Here we demonstrate that LacMeta is indeed suitable for the complete degradation and detoxification of MG dye, not just for its discoloration, since some works show false positives due to the formation of colorless intermediates such as leucomalachite. The optimal pH and temperature parameters of LacMeta were 5.0 and 50 °C, respectively (MG as substrate). LacMeta was tolerant of up to 10 mmol L- 1 EDTA (82%) and up to 5% (V/V) acetone (91%) and methanol (71%), while SDS promoted severe inhibition. For ions, a high tolerance to cobalt, zinc, manganese, and calcium (10 mmol L- 1) was also observed (> 90%). Even under high-salinity conditions (1 mol L- 1 NaCl), the residual bleaching activity of the dye remained at 61%. Furthermore, the bleaching product of MG did not inhibit the germination of sorghum and tomato seeds and was inert to the vegetative structures of the germinated seedlings. Additionally, this treatment effectively reduced the cytotoxic effect of the dye on microorganisms (Escherichia coli and Azospirillum brasilense), which can be explained by H-NMR spectral analysis results since LacMeta completely degraded the peak signals corresponding to the aromatic rings in the dye, demonstrating extreme efficiency in the bioremediation of the xenobiotic at high concentrations (50 mg L- 1).


Sujet(s)
Laccase , Xénobiotique , Laccase/métabolisme , Magenta I/métabolisme , Agents colorants/métabolisme , Dépollution biologique de l'environnement
17.
Front Microbiol ; 14: 1111472, 2023.
Article de Anglais | MEDLINE | ID: mdl-36992937

RÉSUMÉ

Halotolerant microorganisms have developed versatile mechanisms for coping with saline stress. With the increasing number of isolated halotolerant strains and their genomes being sequenced, comparative genome analysis would help understand the mechanisms of salt tolerance. Six type strains of Pontixanthobacter and Allopontixanthobacter, two phylogenetically close genera, were isolated from diverse salty environments and showed different NaCl tolerances, from 3 to 10% (w/v). Based on the co-occurrence greater than 0.8 between halotolerance and open reading frame (ORF) among the six strains, possible explanations for halotolerance were discussed regarding osmolyte, membrane permeability, transportation, intracellular signaling, polysaccharide biosynthesis, and SOS response, which provided hypotheses for further investigations. The strategy of analyzing genome-wide co-occurrence between genetic diversity and physiological characteristics sheds light on how microorganisms adapt to the environment.

18.
Appl Microbiol Biotechnol ; 107(4): 1129-1141, 2023 Feb.
Article de Anglais | MEDLINE | ID: mdl-36700967

RÉSUMÉ

Cyanobacteria harbor a high level of physiological flexibility, which enables them to reside in virtually all available environmental niches, including extreme environments. In this review, we summarize the recent advancements in stress mechanisms of salt-tolerant (a.k.a. halotolerant) cyanobacteria. Omics approaches have been extensively employed in recent years to decipher mechanisms of halotolerance and to understand the relevance of halotolerance-associated gene regulatory networks. The vast knowledge from genome mining disclosed that halotolerant cyanobacteria possess extended gene families and/or clusters, encoding enzymes that synthesize unique osmoprotectants, including glycine betaine (GB), betaine derivatives, and mycosporine-like amino acids (MAAs). Comprehensive transcriptomic analyses were conducted using Halothece sp. PCC7418 (hereafter referred to as Halothece), a cyanobacterium that exhibits remarkable halotolerance. These studies revealed a specific transcriptional response when Halothece was subjected to salt stress, whereas salt and osmotic stresses were found to share a common transcriptomic response. Transcriptome and metabolite analyses of Halothece illustrated a complex dynamic relationship between the biosyntheses of osmoprotectants, as well as corresponding and ancillary pathways. Lastly, novel insights highlight the relationship between the molecular regulation of the circadian rhythm and salt stress tolerance. Since the circadian rhythm of gene expression was distorted under salt stress, halotolerant cyanobacteria may prioritize the adaptation to salt stress by attenuation of circadian rhythmicity. KEY POINTS: • Recent advancements in the understanding of stress mechanisms in halotolerant cyanobacteria are described based on omics analyses. • Transcriptome and metabolite analyses of Halothece illustrated a complex dynamic relationship between the biosyntheses of osmoprotectants, as well as corresponding and ancillary pathways. • Since salt stress affects the molecular regulation among clock-related proteins, salt stress may attenuate circadian rhythmicity.


Sujet(s)
Horloges circadiennes , Cyanobactéries , Horloges circadiennes/génétique , Cyanobactéries/métabolisme , Acides aminés/métabolisme , Bétaïne/métabolisme , Stress salin/génétique
19.
Environ Res ; 216(Pt 2): 114620, 2023 01 01.
Article de Anglais | MEDLINE | ID: mdl-36273595

RÉSUMÉ

Immensely expanding world population and narrowing arable land for agriculture is a mighty concern faced by the planet at present. One of the major reasons for decline in arable lands is the increased soil salinity, making it unfavourable for crop cultivation. Utilisation of these saline land for agriculture is possible with suitable invention for improving the soil quality. Biofertizers manufactured out of Plant Growth Promoting Rhizobacteria is one such innovation. In the present study, Bacillus licheniformis NJ04 strain was isolated and studied for its halotolerance and other effective plant growth promoting traits. The NJ04 strain was able to tolerate salt up to 10% and highlighted remarkable antifungal activity against common fungal phytopathogens. The preliminary seed germination test in Solanum lycopersicum seeds revealed a significant increase in root length (16.29 ± 0.91 cm) and shoot length (9.66 ± 0.11 cm) of treated plants as compared with the control plants and thereby shows its possible use as a green bioinoculant in agriculture and an ideal candidate to compete with salt stress.


Sujet(s)
Bacillus licheniformis , Solanum lycopersicum , Sol , Microbiologie du sol , Développement des plantes , Racines de plante
20.
Arch Microbiol ; 204(11): 681, 2022 Oct 31.
Article de Anglais | MEDLINE | ID: mdl-36316590

RÉSUMÉ

Facing the critical issue of high production costs for cellulase, numerous studies have focused on improving the efficiency of cellulase production by potential cellulolytic microorganisms using agricultural wastes as substrates, extremophilic cellulases, in particular, are crucial in the biorefinery process because they can maintain activity under harsh environmental conditions. This study aims to investigate the ability of a potential carboxymethylcellulose-hydrolyzing bacterial strain H1, isolated from an Algerian saline soil and identified as Bacillus velezensis, to use untreated olive mill wastes as a substrate for the production of an endo-1,4-ß-glucanase. The enzyme was purified 44.9 fold using only two steps: ultrafiltration concentration and ion exchange chromatography, with final recovery of 80%. Its molecular mass was estimated to be 26 kDa by SDS-PAGE. Enzyme identification by LC-MS analysis showed 40% identity with an endo-1,3-1,4-ß-glucanase of GH-16 family. The highest enzymatic activity was significantly measured on barley ß-glucan (604.5 U/mL) followed by lichenan and carboxymethylcellulose as substrates, confirming that the studied enzyme is an endo-1,4-ß-glucanase. Optimal enzymatic activity was at pH 6.0-6.5 and at 60-65 °C. It was fairly thermotolerant, retaining 76.9% of the activity at 70 °C, and halotolerant, retaining 70% of its activity in the presence of 4 M NaCl. The enzyme had a Vmax of 625 U/min/mL and a high affinity with barley ß-glucan resulting a Km of 0.69 mg/mL. It also showed a significant ability to release cello-oligosaccharides. Based on such data, the H1 endo-1,4-ß-glucanase may have significant commercial values for industry, argo-waste treatment, and other biotechnological applications.


Sujet(s)
Cellulase , Olea , bêta-Glucanes , Cellulase/métabolisme , Carboxyméthylcellulose de sodium , Séquence d'acides aminés , Concentration en ions d'hydrogène , Spécificité du substrat
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE