Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 69
Filtrer
1.
EMBO Mol Med ; 16(8): 1901-1929, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-38977927

RÉSUMÉ

In humans, blood Classical CD14+ monocytes contribute to host defense by secreting large amounts of pro-inflammatory cytokines. Their aberrant activity causes hyper-inflammation and life-threatening cytokine storms, while dysfunctional monocytes are associated with 'immunoparalysis', a state of immune hypo responsiveness and reduced pro-inflammatory gene expression, predisposing individuals to opportunistic infections. Understanding how monocyte functions are regulated is critical to prevent these harmful outcomes. We reveal platelets' vital role in the pro-inflammatory cytokine responses of human monocytes. Naturally low platelet counts in patients with immune thrombocytopenia or removal of platelets from healthy monocytes result in monocyte immunoparalysis, marked by impaired cytokine response to immune challenge and weakened host defense transcriptional programs. Remarkably, supplementing monocytes with fresh platelets reverses these conditions. We discovered that platelets serve as reservoirs of key cytokine transcription regulators, such as NF-κB and MAPK p38, and pinpointed the enrichment of platelet NF-κB2 in human monocytes by proteomics. Platelets proportionally restore impaired cytokine production in human monocytes lacking MAPK p38α, NF-κB p65, and NF-κB2. We uncovered a vesicle-mediated platelet-monocyte-propagation of inflammatory transcription regulators, positioning platelets as central checkpoints in monocyte inflammation.


Sujet(s)
Plaquettes , Cytokines , Monocytes , Humains , Monocytes/métabolisme , Monocytes/immunologie , Plaquettes/métabolisme , Plaquettes/immunologie , Cytokines/métabolisme , Facteurs de transcription/métabolisme , Facteurs de transcription/génétique , Inflammation/métabolisme
2.
Int J Artif Organs ; : 3913988241262901, 2024 Jul 23.
Article de Anglais | MEDLINE | ID: mdl-39041351

RÉSUMÉ

BACKGROUND: Immune cell dysfunction plays a central role in sepsis-induced immunoparalysis. Targeted treatment using healthy donor immune cell transfusions, particularly granulocyte concentrates (GC) potentially induces tissue damage. Initial trials using GC in an extracorporeal immune cell perfusion system provided evidence for beneficial effects with fewer side effects, by separating patient and donor immune cell compartments. A multicenter clinical trial is exploring feasibility and effects of a 6-h treatment (NCT06143137). This ex vivo study examines technical feasibility and cellular effects of an extended treatment interval up to 24 h. METHODS: Standard GC were purified to increase the potential storage time and subsequently implemented in the extracorporeal immune cell perfusion system. Parameters assessed included cell viability, phagocytosis activity, oxidative burst, cytokine release, and metabolic parameters of purified. GC during an extended circulation time of up to 24 h. RESULTS: After storage of 72 h granulocytes were viable throughout the study period and exhibited preserved functionality and metabolic activity. The findings highlight a time-dependent nature of cytokine release by neutrophils in the extracorporeal circuit, as cytokine secretion patterns showed IL-8 peaking within 6 h, while MCP-1, IL-6, IL-1ß, and TNF-α increased after 24 h of circulation. CONCLUSION: Purified GC remain functional after 72 h of storage and additional 24 h in the circulating treatment model. Cytokine secretion patterns revealed a significant increase, especially between 10 and 24 h of treatment. Extending treatment time holds promise for enhancing immune response against sepsis-induced immunoparalysis. These findings provide valuable insights for optimizing immune-targeted therapeutic interventions.

3.
Expert Rev Clin Immunol ; : 1-13, 2024 Jun 11.
Article de Anglais | MEDLINE | ID: mdl-38850066

RÉSUMÉ

INTRODUCTION: Despite the fact incidence and mortality vary widely among regions, sepsis remains a major cause of morbidity and cost worldwide. The importance of the endothelial barrier in sepsis and infectious diseases is increasingly recognized; however, the underlying pathophysiology of the endothelial barrier in sepsis remains poorly understood. AREAS COVERED: Here we review the advances in basic and clinical research for relevant papers in PubMed database. We attempt to provide an updated overview of immunological alterations in endothelial dysfunction, discussing the central role of endothelial barrier involved in sepsis to provide new predictive and therapeutic paradigm for sepsis. EXPERT OPINION: Given its physiological and immunological functions in infectious diseases, the endothelial barrier has been dramatically altered in sepsis, suggesting that endothelial dysfunction may play a critical role in the pathogenesis of sepsis. Although many reliable biomarkers have been investigated to monitor endothelial activation and injury in an attempt to find diagnostic and therapeutic tools, there are no specific therapies to treat sepsis due to its complex pathophysiology. Since sepsis is initiated by both hyperinflammation and immunoparalysis occurring simultaneously, a 'one-treatment-fits-all' strategy for sepsis-induced immune injury and immunoparalysis is bound to fail, and an individualized 'precision medicine' approach is required.

4.
Int J Artif Organs ; 47(2): 115-117, 2024 Feb.
Article de Anglais | MEDLINE | ID: mdl-38182550

RÉSUMÉ

Critically ill septic patients present variable clinical trajectories, with some succumbing to hyperinflammatory responses while others develop a chronic critical illness, characterized by a prolonged low-grade inflammation, muscle atrophy, and mechanical ventilation dependency and often develop secondary infections often caused by from low-virulence microorganisms or reactivated latent viruses. The Seraph-100® hemoperfusion cartridge takes advantage from heparin-coated ultra-high molecular weight polyethylene microbeads mimicking pathogen-binding cell receptors and can adsorb both pathogens and damage-associated molecular patterns released by injured tissues. We describe two chronic critically ill patients who developed secondary viral bloodstream infections successfully treated with this device.


Sujet(s)
Hémoperfusion , Sepsie , Humains , Maladie grave , Polyéthylène , Microsphères
5.
Front Cell Infect Microbiol ; 13: 1252515, 2023.
Article de Anglais | MEDLINE | ID: mdl-37965258

RÉSUMÉ

Introduction: Severe Legionnaires' disease (LD) can lead to multi-organ failure or death in 10%-30% of patients. Although hyper-inflammation and immunoparalysis are well described in sepsis and are associated with high disease severity, little is known about the immune response in LD. This study aimed to evaluate the immune status of patients with LD and its association with disease severity. Methods: A total of 92 hospitalized LD patients were included; 19 plasmatic cytokines and pulmonary Legionella DNA load were measured in 84 patients on the day of inclusion (day 0, D0). Immune functional assays (IFAs) were performed from whole blood samples collected at D2 and stimulated with concanavalin A [conA, n = 19 patients and n = 21 healthy volunteers (HV)] or lipopolysaccharide (LPS, n = 14 patients and n = 9 HV). A total of 19 cytokines (conA stimulation) and TNF-α (LPS stimulation) were quantified from the supernatants. The Sequential Organ Failure Assessment (SOFA) severity score was recorded at D0 and the mechanical ventilation (MV) status was recorded at D0 and D8. Results: Among the 84 patients, a higher secretion of plasmatic MCP-1, MIP1-ß, IL-6, IL-8, IFN-γ, TNF-α, and IL-17 was observed in the patients with D0 and D8 MV. Multiparametric analysis showed that these seven cytokines were positively associated with the SOFA score. Upon conA stimulation, LD patients had a lower secretion capacity for 16 of the 19 quantified cytokines and a higher release of IL-18 and MCP-1 compared to HV. IL-18 secretion was higher in D0 and D8 MV patients. TNF-α secretion, measured after ex vivo LPS stimulation, was significantly reduced in LD patients and was associated with D8 MV status. Discussion: The present findings describe a hyper-inflammatory phase at the initial phase of Legionella pneumonia that is more pronounced in patients with severe LD. These patients also present an immunoparalysis for a large number of cytokines, except IL-18 whose secretion is increased. An assessment of the immune response may be relevant to identify patients eligible for future innovative host-directed therapies.


Sujet(s)
Interleukine-18 , Maladie des légionnaires , Humains , Facteur de nécrose tumorale alpha , Lipopolysaccharides , Maladie des légionnaires/complications , Cytokines
6.
Crit Care ; 27(1): 347, 2023 09 06.
Article de Anglais | MEDLINE | ID: mdl-37674218

RÉSUMÉ

BACKGROUND: One of five global deaths are attributable to sepsis. Hyperferritinemic sepsis (> 500 ng/mL) is associated with increased mortality in single-center studies. Our pediatric research network's objective was to obtain rationale for designing anti-inflammatory clinical trials targeting hyperferritinemic sepsis. METHODS: We assessed differences in 32 cytokines, immune depression (low whole blood ex vivo TNF response to endotoxin) and thrombotic microangiopathy (low ADAMTS13 activity) biomarkers, seven viral DNAemias, and macrophage activation syndrome (MAS) defined by combined hepatobiliary dysfunction and disseminated intravascular coagulation, and mortality in 117 children with hyperferritinemic sepsis (ferritin level > 500 ng/mL) compared to 280 children with sepsis without hyperferritinemia. Causal inference analysis of these 41 variables, MAS, and mortality was performed. RESULTS: Mortality was increased in children with hyperferritinemic sepsis (27/117, 23% vs 16/280, 5.7%; Odds Ratio = 4.85, 95% CI [2.55-9.60]; z = 4.728; P-value < 0.0001). Hyperferritinemic sepsis had higher C-reactive protein, sCD163, IL-22, IL-18, IL-18 binding protein, MIG/CXCL9, IL-1ß, IL-6, IL-8, IL-10, IL-17a, IFN-γ, IP10/CXCL10, MCP-1/CCL2, MIP-1α, MIP-1ß, TNF, MCP-3, IL-2RA (sCD25), IL-16, M-CSF, and SCF levels; lower ADAMTS13 activity, sFasL, whole blood ex vivo TNF response to endotoxin, and TRAIL levels; more Adenovirus, BK virus, and multiple virus DNAemias; and more MAS (P-value < 0.05). Among these variables, only MCP-1/CCL2 (the monocyte chemoattractant protein), MAS, and ferritin levels were directly causally associated with mortality. MCP-1/CCL2 and hyperferritinemia showed direct causal association with depressed ex vivo whole blood TNF response to endotoxin. MCP-1/CCL2 was a mediator of MAS. MCP-1/CCL2 and MAS were mediators of hyperferritinemia. CONCLUSIONS: These findings establish hyperferritinemic sepsis as a high-risk condition characterized by increased cytokinemia, viral DNAemia, thrombotic microangiopathy, immune depression, macrophage activation syndrome, and death. The causal analysis provides rationale for designing anti-inflammatory trials that reduce macrophage activation to improve survival and enhance infection clearance in pediatric hyperferritinemic sepsis.


Sujet(s)
Hyperferritinémie , Syndrome d'activation macrophagique , Sepsie , Humains , Enfant , Syndrome d'activation macrophagique/complications , Sepsie/complications , Cytokines , Ferritines
7.
Front Cell Infect Microbiol ; 13: 1037850, 2023.
Article de Anglais | MEDLINE | ID: mdl-37207185

RÉSUMÉ

Resistance and tolerance are two important strategies employed by the host immune response to defend against pathogens. Multidrug-resistant bacteria affect the resistance mechanisms involved in pathogen clearance. Disease tolerance, defined as the ability to reduce the negative impact of infection on the host, might be a new research direction for the treatment of infections. The lungs are highly susceptible to infections and thus are important for understanding host tolerance and its precise mechanisms. This review focuses on the factors that induce lung disease tolerance, cell and molecular mechanisms involved in tissue damage control, and the relationship between disease tolerance and sepsis immunoparalysis. Understanding the exact mechanism of lung disease tolerance could allow better assessment of the immune status of patients and provide new ideas for the treatment of infections.


Sujet(s)
Maladies pulmonaires , Pneumopathie infectieuse , Sepsie , Humains , Poumon , Résistance à la maladie , Tolérance immunitaire , Interactions hôte-pathogène
8.
Front Immunol ; 14: 1130214, 2023.
Article de Anglais | MEDLINE | ID: mdl-36825018

RÉSUMÉ

Sepsis, a heterogeneous clinical syndrome, features a systemic inflammatory response to tissue injury or infection, followed by a state of reduced immune responsiveness. Measurable alterations occur in both the innate and adaptive immune systems. Immunoparalysis, an immunosuppressed state, associates with worsened outcomes, including multiple organ dysfunction syndrome, secondary infections, and increased mortality. Multiple immune markers to identify sepsis immunoparalysis have been proposed, and some might offer clinical utility. Sepsis immunoparalysis is characterized by reduced lymphocyte numbers and downregulation of class II human leukocyte antigens (HLA) on innate immune monocytes. Class II HLA proteins present peptide antigens for recognition by and activation of antigen-specific T lymphocytes. One monocyte class II protein, mHLA-DR, can be measured by flow cytometry. Downregulated mHLA-DR indicates reduced monocyte responsiveness, as measured by ex-vivo cytokine production in response to endotoxin stimulation. Our literature survey reveals low mHLA-DR expression on peripheral blood monocytes correlates with increased risks for infection and death. For mHLA-DR, 15,000 antibodies/cell appears clinically acceptable as the lower limit of immunocompetence. Values less than 15,000 antibodies/cell are correlated with sepsis severity; and values at or less than 8000 antibodies/cell are identified as severe immunoparalysis. Several experimental immunotherapies have been evaluated for reversal of sepsis immunoparalysis. In particular, sargramostim, a recombinant human granulocyte-macrophage colony-stimulating factor (rhu GM-CSF), has demonstrated clinical benefit by reducing hospitalization duration and lowering secondary infection risk. Lowered infection risk correlates with increased mHLA-DR expression on peripheral blood monocytes in these patients. Although mHLA-DR has shown promising utility for identifying sepsis immunoparalysis, absence of a standardized, analytically validated method has thus far prevented widespread adoption. A clinically useful approach for patient inclusion and identification of clinically correlated output parameters could address the persistent high unmet medical need for effective targeted therapies in sepsis.


Sujet(s)
Facteur de stimulation des colonies de granulocytes et de macrophages , Sepsie , Humains , Facteur de stimulation des colonies de granulocytes et de macrophages/métabolisme , Monocytes , Antigènes HLA-DR , Marqueurs biologiques
9.
Front Immunol ; 14: 1130009, 2023.
Article de Anglais | MEDLINE | ID: mdl-36756117

RÉSUMÉ

Formation of long-lasting memory lymphocytes is one of the foundational characteristics of adaptive immunity and the basis of many vaccination strategies. Following the rapid expansion and contraction of effector CD8 T cells, the surviving antigen (Ag)-specific cells give rise to the memory CD8 T cells that persist for a long time and are phenotypically and functionally distinct from their naïve counterparts. Significant heterogeneity exists within the memory CD8 T cell pool, as different subsets display distinct tissue localization preferences, cytotoxic ability, and proliferative capacity, but all memory CD8 T cells are equipped to mount an enhanced immune response upon Ag re-encounter. Memory CD8 T cells demonstrate numerical stability under homeostatic conditions, but sepsis causes a significant decline in the number of memory CD8 T cells and diminishes their Ag-dependent and -independent functions. Sepsis also rewires the transcriptional profile of memory CD8 T cells, which profoundly impacts memory CD8 T cell differentiation and, ultimately, the protective capacity of memory CD8 T cells upon subsequent stimulation. This review delves into different aspects of memory CD8 T cell subsets as well as the immediate and long-term impact of sepsis on memory CD8 T cell biology.


Sujet(s)
Sepsie , Sous-populations de lymphocytes T , Humains , Lymphocytes T CD8+ , Antigènes , Différenciation cellulaire , Mémoire immunologique
10.
Article de Chinois | WPRIM (Pacifique Occidental) | ID: wpr-953750

RÉSUMÉ

Immunoparalysis is the main cause of death in patients with intermediate and terminal sepsis. The correction of immunoparalysis is an important direction of sepsis treatment. In the pathological process of sepsis, a variety of factors contribute to the imbalanced secretion of cytokines, weakened function of antigen-presenting cells, apoptosis and depletion of lymphocytes, and ultimately lead to immunoparalysis, secondary infection, and even patient deaths. Cytokines such as GM-CSF, IFN-γ, IL-7, and IL-15, immune checkpoint-related therapies such as PD-1/PD-L1 antibodies, CTLA-4 antibodies, TIM-3 antibodies, and LAG-3 antibodies, and immunoreactive substances such as thymosin α1 and immunoglobulin might be beneficial to correct the immune paralysis of patients. the progress of immunotherapy to correct immune paralysis in sepsis were reviewed in this article.

11.
Front Immunol ; 14: 1323797, 2023.
Article de Anglais | MEDLINE | ID: mdl-38193090

RÉSUMÉ

Sepsis currently remains a major contributor to mortality in the intensive care unit (ICU), with 48.9 million cases reported globally and a mortality rate of 22.5% in 2017, accounting for almost 20% of all-cause mortality worldwide. This highlights the urgent need to improve the understanding and treatment of this condition. Sepsis is now recognized as a dysregulation of the host immune response to infection, characterized by an excessive inflammatory response and immune paralysis. This dysregulation leads to secondary infections, multiple organ dysfunction syndrome (MODS), and ultimately death. PD-L1, a co-inhibitory molecule expressed in immune cells, has emerged as a critical factor in sepsis. Numerous studies have found a significant association between the expression of PD-1/PD-L1 and sepsis, with a particular focus on PD-L1 expressed on neutrophils recently. This review explores the role of PD-1/PD-L1 in immunostimulatory and anti-inflammatory pathways, illustrates the intricate link between PD-1/PD-L1 and sepsis, and summarizes current therapeutic approaches against PD-1/PD-L1 in the treatment and prognosis of sepsis in preclinical and clinical studies.


Sujet(s)
Récepteur-1 de mort cellulaire programmée , Sepsie , Humains , Antigène CD274 , Immunisation , Sepsie/traitement médicamenteux , Anti-inflammatoires/usage thérapeutique
12.
Cell Rep Med ; 3(11): 100817, 2022 11 15.
Article de Anglais | MEDLINE | ID: mdl-36384100

RÉSUMÉ

The state of immune activation may guide targeted immunotherapy in sepsis. In a double-blind, double-dummy randomized clinical study, 240 patients with sepsis due to lung infection, bacteremia, or acute cholangitis were subjected to measurements of serum ferritin and HLA-DR/CD14. Patients with macrophage activation-like syndrome (MALS) or immunoparalysis were randomized to treatment with anakinra or recombinant interferon-gamma or placebo. Twenty-eight-day mortality was the primary endpoint; sepsis immune classification was the secondary endpoint. Using ferritin >4,420 ng/mL and <5,000 HLA-DR receptors/monocytes as biomarkers, patients were classified into MALS (20.0%), immunoparalysis (42.9%), and intermediate (37.1%). Mortality was 79.1%, 66.9%, and 41.6%, respectively. Survival after 7 days with SOFA score decrease was achieved in 42.9% of patients of the immunotherapy arm and 10.0% of the placebo arm (p = 0.042). Three independent immune classification strata are recognized in sepsis. MALS and immunoparalysis are proposed as stratification for personalized adjuvant immunotherapy. Clinicaltrials.gov registration NCT03332225.


Sujet(s)
Syndrome d'activation macrophagique , Sepsie , Humains , Sepsie/thérapie , Antigènes HLA-DR/métabolisme , Syndrome d'activation macrophagique/complications , Ferritines/usage thérapeutique , Immunothérapie
13.
Front Med (Lausanne) ; 9: 988686, 2022.
Article de Anglais | MEDLINE | ID: mdl-36059840

RÉSUMÉ

Introduction: Stress hyperglycemia is a frequent finding in patients with COVID-19 infection and could affect the outcome of disease. Cytokines released in response to infection could have adverse effects on insulin sensitivity and pancreatic beta-cell function. The aim of the study was to examine the relationships of stress hyperglycemia with cytokines and clinical outcomes in hospitalized patients with COVID-19. Methods: In a cross-sectional analysis of 150 patients hospitalized for COVID-19 infection who were included in the GIRA-COVID database, we identified patients with stress hyperglycemia by calculation of the Stress Hyperglycemia Ratio (SHR) and use of a cut-off of 1.14. Plasma levels of cytokines principally involved in COVID-19 infection-related cytokine storm were measured. Outcome variables were use of mechanical ventilation and death within 60 days from hospital admission. Results: Patients with SHR > 1.14 had significantly higher plasma insulin, HOMA-index, and levels of interleukin-10 (IL-10), interleukin-10/tumor necrosis factor-a ratio (IL-10/TNF-α), and CXC motif chemokine ligand 10 (CXCL10) than patients with SHR ≤ 1.14. IL-10, IL-10/TNF-α ratio, CXCL10, and IFN-γ were significantly and directly related with SHR in univariate analysis and multivariate logistic regression models showed that IL-10, IL-10/TNF-α ratio, and CXCL10 were independently associated with SHR>1.14. In a multivariate logistic model, stress hyperglycemia predicted use of mechanical ventilation (OR 2.453; CI 1.078-6.012) and death (OR 2.281; CI 1.049-7.369) independently of diabetes and other major confounders. Conclusions: In patients hospitalized for COVID-19 infection, stress hyperglycemia is associated with worse clinical outcomes and is independently related to levels of cytokines that might impair glucose homeostasis.

14.
Eur J Intern Med ; 104: 89-97, 2022 10.
Article de Anglais | MEDLINE | ID: mdl-35918257

RÉSUMÉ

BACKGROUND: Limited knowledge exists on how early host response impacts outcomes in influenza pneumonia. METHODS: This study assessed what was the contribution of host immune response at the emergency department on hospital mortality amongst adults with influenza A H1N1pdm09 pneumonia and whether early stratification by immune host response anticipates the risk of death. This is a secondary analysis from a prospective, observational, multicenter cohort comparing 75 adults requiring intensive care with 38 hospitalized in medical wards. Different immune response biomarkers within 24 h of hospitalization and their association with hospital mortality were assessed. RESULTS: Fifty-three were discharged alive. Non-survivors were associated (p<0.05) with lower lymphocytes (751 vs. 387), monocytes (450 vs. 220) expression of HLA-DR (1,662 vs. 962) and higher IgM levels (178 vs. 152;p<0.01). Lymphocyte subpopulations amongst non-survivors showed a significantly (p<0.05) lower number of TCD3+ (247.2 vs. 520.8), TCD4+ (150.3 vs. 323.6), TCD8+ (95.3 vs. 151.4) and NKCD56+ (21.9 vs. 91.4). Number of lymphocytes, monocytes and NKCD56+ predicted hospital mortality (AUC 0.854). Hospital mortality was independently associated with low HLA-DR values, low number of NKCD56+ cells, and high IgM levels, in a Cox-proportional hazard analysis. A second model, documented that hospital mortality was independently associated with a phenotype combining immunoparalysis with hyperinflammation (HR 5.53; 95%CI 2.16-14.14), after adjusting by predicted mortality. CONCLUSIONS: We conclude that amongst influenza pneumonia, presence of immunoparalysis was a major mortality driver. Influenza heterogeneity was partly explained by early specific host response dysregulations which should be considered to design personalized approaches of adjunctive therapy.


Sujet(s)
Sous-type H1N1 du virus de la grippe A , Grippe humaine , Pneumopathie infectieuse , Études de cohortes , Hospitalisation , Humains , Immunité , Immunoglobuline M , Études prospectives
15.
Front Pediatr ; 10: 893993, 2022.
Article de Anglais | MEDLINE | ID: mdl-35844733

RÉSUMÉ

Preclinical models and emerging translational data suggest that acute kidney injury (AKI) has far reaching effects on all other major organ systems in the body. Common in critically ill children and adults, AKI is independently associated with worse short and long term morbidity, as well as mortality, in these vulnerable populations. Evidence exists in adult populations regarding the impact AKI has on life course. Recently, non-renal organ effects of AKI have been highlighted in pediatric AKI survivors. Given the unique pediatric considerations related to somatic growth and neurodevelopmental consequences, pediatric AKI has the potential to fundamentally alter life course outcomes. In this article, we highlight the challenging and complex interplay between AKI and the brain, heart, lungs, immune system, growth, functional status, and longitudinal outcomes. Specifically, we discuss the biologic basis for how AKI may contribute to neurologic injury and neurodevelopment, cardiac dysfunction, acute lung injury, immunoparalysis and increased risk of infections, diminished somatic growth, worsened functional status and health related quality of life, and finally the impact on young adult health and life course outcomes.

16.
Crit Care ; 26(1): 128, 2022 05 07.
Article de Anglais | MEDLINE | ID: mdl-35526000

RÉSUMÉ

BACKGROUND: Thrombotic microangiopathy-induced thrombocytopenia-associated multiple organ failure and hyperinflammatory macrophage activation syndrome are important causes of late pediatric sepsis mortality that are often missed or have delayed diagnosis. The National Institutes of General Medical Science sepsis research working group recommendations call for application of new research approaches in extant clinical data sets to improve efficiency of early trials of new sepsis therapies. Our objective is to apply machine learning approaches to derive computable 24-h sepsis phenotypes to facilitate personalized enrollment in early anti-inflammatory trials targeting these conditions. METHODS: We applied consensus, k-means clustering analysis to our extant PHENOtyping sepsis-induced Multiple organ failure Study (PHENOMS) dataset of 404 children. 24-hour computable phenotypes are derived using 25 available bedside variables including C-reactive protein and ferritin. RESULTS: Four computable phenotypes (PedSep-A, B, C, and D) are derived. Compared to all other phenotypes, PedSep-A patients (n = 135; 2% mortality) were younger and previously healthy, with the lowest C-reactive protein and ferritin levels, the highest lymphocyte and platelet counts, highest heart rate, and lowest creatinine (p < 0.05); PedSep-B patients (n = 102; 12% mortality) were most likely to be intubated and had the lowest Glasgow Coma Scale Score (p < 0.05); PedSep-C patients (n = 110; mortality 10%) had the highest temperature and Glasgow Coma Scale Score, least pulmonary failure, and lowest lymphocyte counts (p < 0.05); and PedSep-D patients (n = 56, 34% mortality) had the highest creatinine and number of organ failures, including renal, hepatic, and hematologic organ failure, with the lowest platelet counts (p < 0.05). PedSep-D had the highest likelihood of developing thrombocytopenia-associated multiple organ failure (Adj OR 47.51 95% CI [18.83-136.83], p < 0.0001) and macrophage activation syndrome (Adj OR 38.63 95% CI [13.26-137.75], p < 0.0001). CONCLUSIONS: Four computable phenotypes are derived, with PedSep-D being optimal for enrollment in early personalized anti-inflammatory trials targeting thrombocytopenia-associated multiple organ failure and macrophage activation syndrome in pediatric sepsis. A computer tool for identification of individual patient membership ( www.pedsepsis.pitt.edu ) is provided. Reproducibility will be assessed at completion of two ongoing pediatric sepsis studies.


Sujet(s)
Syndrome d'activation macrophagique , Sepsie , Thrombopénie , Anti-inflammatoires , Protéine C-réactive , Enfant , Essais cliniques comme sujet , Créatinine , Ferritines , Humains , Apprentissage machine , Syndrome d'activation macrophagique/complications , Défaillance multiviscérale/étiologie , Scores de dysfonction d'organes , Phénotype , Reproductibilité des résultats
18.
Clin Infect Dis ; 74(1): 144-148, 2022 01 07.
Article de Anglais | MEDLINE | ID: mdl-32604407

RÉSUMÉ

We are learning that the host response to severe acute respiratory syndrome coronavirus 2 ( SARS-CoV-2) infection is complex and highly dynamic. Effective initial host defense in the lung is associated with mild symptoms and disease resolution. Viral evasion of the immune response can lead to refractory alveolar damage, ineffective lung repair mechanisms, and systemic inflammation with associated organ dysfunction. The immune response in these patients is highly variable and can include moderate to severe systemic inflammation and/or marked systemic immune suppression. There is unlikely to be a "one size fits all" approach to immunomodulation in patients with coronavirus disease 2019 (COVID-19). We believe that a personalized, immunophenotype-driven approach to immunomodulation that may include anticytokine therapy in carefully selected patients and immunostimulatory therapies in others is the shortest path to success in the study and treatment of patients with critical illness due to COVID-19.


Sujet(s)
COVID-19 , Immunomodulation , Médecine de précision , COVID-19/immunologie , COVID-19/thérapie , Cytokines , Humains , Immunité , Poumon , SARS-CoV-2
19.
Article de Chinois | WPRIM (Pacifique Occidental) | ID: wpr-957678

RÉSUMÉ

Objective:To evaluate the effect of immune status on disease progression in patients with newly diagnosed multiple myeloma (NDMM) achieving deep response.Methods:Clinical data of 125 NDMM patients at Beijing Chaoyang Hospital from August 2015 to February 2020 were retrospectively analyzed who achieved very good partial response (VGPR) or better after front-line treatment. The immune status and its influence on progression-free survival (PFS) were analyzed.Results:(1) All patients received novel drug regimens, and 50.4% (63/125) patients followed by autologous stem cell transplantation (ASCT). The rate of complete response (CR) as best efficacy was 89.6%, in which 66.4% achieved CR and MRD negativity tested by second generation flow cytometry. (2) Cox multivariate analysis suggested that persistent severe immunoparesis 3 months and 6 months since the best response was an independent poor prognostic factor for PFS. (3) The 3-year PFS rate in the severe immunoparesis group was significantly lower than that in the control group (41.3% vs. 64.4%, P=0.021). (4) The 3-year PFS rates in patients with persistent severe immunoparesis at 3 months or 6 months were significantly lower (30.0% vs. 63.5%, P<0.001; 16.4% vs. 63.8%, P<0.001 respectively). (5) Even in those achieving CR and negative MRD, the 3-year PFS rate when severe immunoparesis lasted 6 months was significantly lower (22.2% vs. 83.2%, P=0.005). Conclusion:The immune status in NDMM patients achieving deep response is closely related to survival. Persistent severe immunoparesis indicates early progression of the disease.

20.
Cells ; 10(12)2021 11 30.
Article de Anglais | MEDLINE | ID: mdl-34943881

RÉSUMÉ

The COVID-19 pandemic drastically highlighted the vulnerability of the elderly population towards viral and other infectious threats, illustrating that aging is accompanied by dysregulated immune responses currently summarized in terms like inflammaging and immunoparalysis. To gain a better understanding on the underlying mechanisms of the age-associated risk of adverse outcome in individuals experiencing a SARS-CoV-2 infection, we analyzed the impact of age on circulating monocyte phenotypes, activation markers and inflammatory cytokines including interleukin 6 (IL-6), IL-8 and tumor necrosis factor (TNF) in the context of COVID-19 disease progression and outcome in 110 patients. Our data indicate no age-associated differences in peripheral monocyte counts or subset composition. However, age and outcome are associated with differences in monocyte activation status. Moreover, a distinct cytokine pattern of IL-6, IL-8 and TNF in elderly survivors versus non-survivors, which consolidates over the time of hospitalization, suggests that older patients with adverse outcomes experience an inappropriate immune response, reminiscent of an inflammaging driven immunoparalysis. Our study underscores the value, necessity and importance of longitudinal monitoring in elderly COVID-19 patients, as dynamic changes after symptom onset can be observed, which allow for a differentiated insight into confounding factors that impact the complex pathogenesis following an infection with SARS-CoV-2.


Sujet(s)
Vieillissement/anatomopathologie , COVID-19/sang , COVID-19/anatomopathologie , Cytokines/sang , Monocytes/anatomopathologie , Maladie aigüe , Adolescent , Adulte , Facteurs âges , Sujet âgé , Sujet âgé de 80 ans ou plus , Marqueurs biologiques/métabolisme , Humains , Études longitudinales , Adulte d'âge moyen , Granulocytes neutrophiles/métabolisme , Études prospectives , SARS-CoV-2 , Jeune adulte
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE