Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 15 de 15
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Int J Mol Sci ; 24(23)2023 Nov 30.
Article de Anglais | MEDLINE | ID: mdl-38069298

RÉSUMÉ

Ambroxol (ABX), a frequently prescribed secretolytic agent which enhances the ciliary beat frequency (CBF) and ciliary bend angle (CBA, an index of amplitude) by 30%, activates a voltage-dependent Ca2+ channel (CaV1.2) and a small transient Ca2+ release in the ciliated lung airway epithelial cells (c-LAECs) of mice. The activation of CaV1.2 alone enhanced the CBF and CBA by 20%, mediated by a pHi increasei and a [Cl-]i decrease in the c-LAECs. The increase in pHi, which was induced by the activation of the Na+-HCO3- cotransporter (NBC), enhanced the CBF (by 30%) and CBA (by 15-20%), and a decrease in [Cl-]i, which was induced by the Cl- release via anoctamine 1 (ANO1), enhanced the CBA (by 10-15%). While a Ca2+-free solution or nifedipine (an inhibitor of CaV1.2) inhibited 70% of the CBF and CBA enhancement using ABX, CaV1.2 enhanced most of the CBF and CBA increases using ABX. The activation of the CaV1.2 existing in the cilia stimulates the NBC to increase pHi and ANO1 to decrease the [Cl-]i in the c-LAECs. In conclusion, the pHi increase and the [Cl-]i decrease enhanced the CBF and CBA in the ABX-stimulated c-LAECs.


Sujet(s)
Ambroxol , Animaux , Souris , Ambroxol/pharmacologie , Calcium/métabolisme , Cellules cultivées , Cils vibratiles/physiologie , Cellules épithéliales , Concentration en ions d'hydrogène , Poumon , Souris de lignée CBA
2.
Cell Mol Life Sci ; 80(12): 347, 2023 Nov 06.
Article de Anglais | MEDLINE | ID: mdl-37943391

RÉSUMÉ

Tubulointerstitial fibrosis (TIF) plays a crucial role in the progression of diabetic kidney disease (DKD). However, the underlying molecular mechanisms remain obscure. The present study aimed to examine whether transmembrane member 16A (TMEM16A), a Ca2+-activated chloride channel, contributes to the development of TIF in DKD. Interestingly, we found that TMEM16A expression was significantly up-regulated in tubule of murine model of DKD, which was associated with development of TIF. In vivo inhibition of TMEM16A channel activity with specific inhibitors Ani9 effectively protects against TIF. Then, we found that TMEM16A activation induces tubular mitochondrial dysfunction in in vivo and in vitro models, with the evidence of the TMEM16A inhibition with specific inhibitor. Mechanically, TMEM16A mediated tubular mitochondrial dysfunction through inhibiting PGC-1α, whereas overexpression of PGC-1α could rescue the changes. In addition, TMEM16A-induced fibrogenesis was dependent on increased intracellular Cl-, and reducing intracellular Cl- significantly blunted high glucose-induced PGC-1α and profibrotic factors expression. Taken together, our studies demonstrated that tubular TMEM16A promotes TIF by suppressing PGC-1α-mediated mitochondrial homeostasis in DKD. Blockade of TMEM16A may serve as a novel therapeutic approach to ameliorate TIF.


Sujet(s)
Diabète , Néphropathies diabétiques , Animaux , Souris , Néphropathies diabétiques/génétique , Homéostasie , Mitochondries , Fibrose
3.
Biochem Biophys Res Commun ; 685: 149170, 2023 12 10.
Article de Anglais | MEDLINE | ID: mdl-37924777

RÉSUMÉ

Our previous study revealed that changes of the intracellular Cl- concentration ([Cl-]i) affected cell proliferation in cancer cells. However, the role of Cl- on cell migration and invasion in cancer cells remains unanalyzed. Therefore, the aim of the present study is to investigate whether changes of [Cl-]i affects cell migration and invasion of cancer cells. In human prostate cancer DU145 cells, cell migration and invasion were enhanced by culturing in the low Cl- medium (replacement of Cl- by NO3-). We also found that DU145 cells in the low Cl- condition caused significant transient ERK1/2 activation followed by an increase of MMP-1 mRNA levels. Inhibition of ERK1/2 activation in the low Cl- condition reduced enhancement of MMP-1 mRNA levels and decreased cell migration and invasion. These observations indicate that [Cl-]i plays important roles in metastatic function by regulating the ERK1/2 signaling pathway in human prostate cancer cells, and intracellular Cl- would be one of the key targets for anti-cancer therapy.


Sujet(s)
Carcinomes , Tumeurs de la prostate , Mâle , Humains , Système de signalisation des MAP kinases , Chlorures/métabolisme , Matrix metalloproteinase 1/génétique , Prostate/métabolisme , Lignée cellulaire tumorale , Transduction du signal , Tumeurs de la prostate/anatomopathologie , Mouvement cellulaire/physiologie , ARN messager/métabolisme , Carcinomes/génétique , Invasion tumorale/génétique , Régulation de l'expression des gènes tumoraux
4.
J Infect ; 86(1): 47-59, 2023 01.
Article de Anglais | MEDLINE | ID: mdl-36334726

RÉSUMÉ

Toxoplasma gondii is a widespread parasitic protozoan causing toxoplasmosis including pulmonary toxoplasmosis. As the first line of host defense, airway epithelial cells play critical roles in orchestrating pulmonary innate immunity. However, the mechanism underlying the airway inflammation induced by the T. gondii infection remains largely unclear. This study demonstrated that after infection with T. gondii, the major anion channel located in the apical membranes of airway epithelial cells, cystic fibrosis transmembrane conductance regulator (CFTR), was degraded by the parasite-secreted cysteine proteases. The intracellular Cl- concentration ([Cl-]i) was consequently elevated, leading to activation of nuclear factor-κB (NF-κB) signaling via serum/glucocorticoid regulated kinase 1. Furthermore, the heightened [Cl-]i and activated NF-κB signaling could be sustained in a positive feedback regulatory manner resulting from decreased intracellular cAMP level through NF-κB-mediated up-regulation of phosphodiesterase 4. Conversely, the sulfur-containing compound allicin conferred anti-inflammatory effects on pulmonary toxoplasmosis by decreasing [Cl-]i via activation of CFTR. These results suggest that the intracellular Cl- dynamically modulated by T. gondii mediates sustained airway inflammation, which provides a potential therapeutic target against pulmonary toxoplasmosis.


Sujet(s)
Protéine CFTR , Épithélium , Toxoplasmose , Humains , Protéine CFTR/génétique , Épithélium/métabolisme , Inflammation , Poumon , Facteur de transcription NF-kappa B/métabolisme , Toxoplasma
5.
Front Cell Neurosci ; 16: 937060, 2022.
Article de Anglais | MEDLINE | ID: mdl-35966201

RÉSUMÉ

Postsynaptic cytosolic Cl- concentration determines whether GABAergic and glycinergic synapses are inhibitory or excitatory. We have shown that nitric oxide (NO) initiates the release of Cl- from acidic internal stores into the cytosol of retinal amacrine cells (ACs) thereby elevating cytosolic Cl-. In addition, we found that cystic fibrosis transmembrane conductance regulator (CFTR) expression and Ca2+ elevations are necessary for the transient effects of NO on cytosolic Cl- levels, but the mechanism remains to be elucidated. Here, we investigated the involvement of TMEM16A as a possible link between Ca2+ elevations and cytosolic Cl- release. TMEM16A is a Ca2+-activated Cl- channel that is functionally coupled with CFTR in epithelia. Both proteins are also expressed in neurons. Based on this and its Ca2+ dependence, we test the hypothesis that TMEM16A participates in the NO-dependent elevation in cytosolic Cl- in ACs. Chick retina ACs express TMEM16A as shown by Western blot analysis, single-cell PCR, and immunocytochemistry. Electrophysiology experiments demonstrate that TMEM16A functions in amacrine cells. Pharmacological inhibition of TMEM16A with T16inh-AO1 reduces the NO-dependent Cl- release as indicated by the diminished shift in the reversal potential of GABAA receptor-mediated currents. We confirmed the involvement of TMEM16A in the NO-dependent Cl- release using CRISPR/Cas9 knockdown of TMEM16A. Two different modalities targeting the gene for TMEM16A (ANO1) were tested in retinal amacrine cells: an all-in-one plasmid vector and crRNA/tracrRNA/Cas9 ribonucleoprotein. The all-in-one CRISPR/Cas9 modality did not change the expression of TMEM16A protein and produced no change in the response to NO. However, TMEM16A-specific crRNA/tracrRNA/Cas9 ribonucleoprotein effectively reduces both TMEM16A protein levels and the NO-dependent shift in the reversal potential of GABA-gated currents. These results show that TMEM16A plays a role in the NO-dependent Cl- release from retinal ACs.

6.
Am J Physiol Cell Physiol ; 321(2): C297-C307, 2021 08 01.
Article de Anglais | MEDLINE | ID: mdl-34161154

RÉSUMÉ

Chloride channels play an important role in regulating smooth muscle contraction and proliferation, and contribute to the enhanced constriction of pulmonary arteries (PAs) in pulmonary hypertension (PH). The intracellular Cl- concentration ([Cl-]i), tightly regulated by various Cl- transporters, determines the driving force for Cl- conductance, thereby the functional outcome of Cl- channel activation. This study characterizes for the first time the expression profile of Cl- transporters/exchangers in PA smooth muscle and provides the first evidence that the intracellular Cl- homeostasis is altered in PA smooth muscle cells (PASMCs) associated with chronic hypoxic PH (CHPH). Quantitative RT-PCR revealed that the endothelium-denuded intralobar PA of rats expressed Slc12a gene family-encoded Na-K-2Cl cotransporter 1 (NKCC1), K-Cl cotransporters (KCC) 1, 3, and 4, and Slc4a gene family-encoded Na+-independent and Na+-dependent Cl-/HCO3- exchangers. Exposure of rats to chronic hypoxia (10% O2, 3 wk) caused CHPH and selectively increased the expression of Cl--accumulating NKCC1 and reduced the Cl--extruding KCC4. The intracellular Cl- concentration ([Cl-]i) averaged at 45 mM and 47 mM in normoxic PASMCs as determined by fluorescent indicator MEQ and by gramicidin-perforated patch-clamp technique, respectively. The ([Cl-]i was increased by ∼10 mM in PASMCs of rats with CHPH. Future studies are warranted to further establish the hypothesis that the altered intracellular Cl- homeostasis contributes to the pathogenesis of CHPH.


Sujet(s)
Hypertension pulmonaire/métabolisme , Hypoxie/métabolisme , Myocytes du muscle lisse/métabolisme , Artère pulmonaire/métabolisme , Animaux , Calcium/métabolisme , Hypoxie cellulaire/physiologie , Canaux chlorure/métabolisme , Hypertension pulmonaire/anatomopathologie , Muscles lisses vasculaires/métabolisme , Artère pulmonaire/anatomopathologie , Rats
7.
Int J Mol Sci ; 21(11)2020 Jun 05.
Article de Anglais | MEDLINE | ID: mdl-32517062

RÉSUMÉ

Small inhaled particles, which are entrapped by the mucous layer that is maintained by mucous secretion via mucin exocytosis and fluid secretion, are removed from the nasal cavity by beating cilia. The functional activities of beating cilia are assessed by their frequency and the amplitude. Nasal ciliary beating is controlled by intracellular ions (Ca2+, H+ and Cl-), and is enhanced by a decreased concentration of intracellular Cl- ([Cl-]i) in ciliated human nasal epithelial cells (cHNECs) in primary culture, which increases the ciliary beat amplitude. A novel method to measure both ciliary beat frequency (CBF) and ciliary beat distance (CBD, an index of ciliary beat amplitude) in cHNECs has been developed using high-speed video microscopy, which revealed that a decrease in [Cl-]i increased CBD, but not CBF, and an increase in [Cl-]i decreased both CBD and CBF. Thus, [Cl-]i inhibits ciliary beating in cHNECs, suggesting that axonemal structures controlling CBD and CBF may have Cl- sensors and be regulated by [Cl-]i. These observations indicate that the activation of Cl- secretion stimulates ciliary beating (increased CBD) mediated via a decrease in [Cl-]i in cHNECs. Thus, [Cl-]i is critical for controlling ciliary beating in cHNECs. This review introduces the concept of Cl- regulation of ciliary beating in cHNECs.


Sujet(s)
Chlorures/métabolisme , Cils vibratiles/métabolisme , Cellules épithéliales/métabolisme , Muqueuse nasale/métabolisme , Marqueurs biologiques , Cils vibratiles/ultrastructure , Protéine CFTR/métabolisme , Humains , Espace intracellulaire/métabolisme , Phénomènes mécaniques , Vidéomicroscopie , Modèles biologiques
8.
Laryngoscope ; 130(5): E289-E297, 2020 05.
Article de Anglais | MEDLINE | ID: mdl-31294840

RÉSUMÉ

OBJECTIVE: Carbocisteine (CCis), a mucoactive agent, is used to improve the symptoms of sinonasal diseases. However, the effect of CCis on nasal ciliary beating remains uncertain. We examined the effects of CCis on ciliary beat distance (CBD, an index of amplitude), and ciliary beat frequency (CBF) in ciliated human nasal epithelial cells (cHNECs) in primary culture. METHODS: The cHNECs were prepared from the nasal tissue resected from patients required surgery for chronic sinusitis (CS) or allergic rhinitis (AR). CBD and CBF were measured using videomicroscopy equipped with a high-speed camera. RESULTS: CCis increased CBD by 30%, but not CBF, and decreased intracellular Cl- concentration ([Cl- ]i ) in cHNECs. The CCis' actions were mimicked by the Cl- -free NO3- solution. In contrast, prior treatment of NPPB (20 µM) or CFTR(inh)-172 (1 µM), which increased [Cl- ]i by 20%, decreased CBF by 10% and CBD by 25% and inhibited the CCis' actions. However, prior treatment of T16Ainh-A01 (10 µM) did not inhibit the CCis' actions, although it decreased [Cl- ]i by 10% and CBD by 15%. Thus, CCis stimulates Cl- channels including cystic fibrosis transmembrane conductance regulator (CFTR). Moreover, CCis enhanced the transport of microbeads driven by the beating cilia in cHNECs. The CCis actions were similar in cHNECs from both types of pateints. CONCLUSION: CCis increased CBD by 30% in cHNECs via an [Cl- ]i decrease stimulated by activation of Cl- channels, including CFTR. CCis may stimulate nasal mucociliary clearance by increasing CBD in patients contracting CS or AR. LEVEL OF EVIDENCE: NA. Laryngoscope, 130:E289-E297, 2020.


Sujet(s)
Carbocystéine/pharmacologie , Cils vibratiles/effets des médicaments et des substances chimiques , Clairance mucociliaire/effets des médicaments et des substances chimiques , Muqueuse nasale/imagerie diagnostique , Sinusite/traitement médicamenteux , Cellules cultivées , Cils vibratiles/métabolisme , Cils vibratiles/anatomopathologie , Cellules épithéliales/effets des médicaments et des substances chimiques , Humains , Muqueuse nasale/métabolisme , Muqueuse nasale/anatomopathologie , Transduction du signal , Sinusite/métabolisme , Sinusite/anatomopathologie
9.
Pflugers Arch ; 471(8): 1127-1142, 2019 08.
Article de Anglais | MEDLINE | ID: mdl-31104127

RÉSUMÉ

The ciliary transport is controlled by two parameters of the ciliary beating, frequency (CBF) and amplitude. In this study, we developed a novel method to measure both CBF and ciliary bend distance (CBD, an index of ciliary beating amplitude) in ciliated human nasal epithelial cells (cHNECs) in primary culture, which are prepared from patients contracting allergic rhinitis and chronic sinusitis. An application of Cl--free NO3- solution or bumetanide (an inhibitor of Na+/K+/2Cl- cotransport), which decreases intracellular Cl- concentration ([Cl-]i), increased CBD, not CBF, at 37 °C; however, it increased both CBD and CBF at 25 °C. Conversely, addition of Cl- channel blockers (5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB) and 4-[[4-Oxo-2-thioxo-3-[3-trifluoromethyl]phenyl]-5-thiazolidinylidene]methyl] benzoic acid (CFTR(inh)-172)), which increase [Cl-]i, decreased both CBD and CBF, suggesting that CFTR plays a crucial role for maintaining [Cl-]i in these cells. We speculate that Cl- modulates activities of the molecular motors regulating both CBD and CBF in cHNECs. Moreover, application of the CO2/HCO3--free solution did not change intracellular pH (pHi), and addition of an inhibitor of carbonic anhydrase (acetazolamide) sustained pHi increase induced by the NH4+ pulse, which transiently increased pHi in the absence of acetazolamide. These results indicate that the cHNEC produces a large amount of CO2, which maintains a constant pHi even under the CO2/HCO3--free condition.


Sujet(s)
Dioxyde de carbone/métabolisme , Chlorures/métabolisme , Cils vibratiles/physiologie , Muqueuse nasale/cytologie , Acétazolamide/pharmacologie , Hydrogénocarbonates/métabolisme , Bumétanide/pharmacologie , Inhibiteurs de l'anhydrase carbonique/pharmacologie , Cellules cultivées , Cils vibratiles/effets des médicaments et des substances chimiques , Cils vibratiles/métabolisme , Humains , Muqueuse nasale/effets des médicaments et des substances chimiques , Muqueuse nasale/métabolisme , Nitro-benzoates/pharmacologie , Inhibiteurs du symport chlorure potassium sodium/pharmacologie
10.
Pflugers Arch ; 471(2): 365-380, 2019 02.
Article de Anglais | MEDLINE | ID: mdl-30291431

RÉSUMÉ

Carbocisteine (CCis), a mucoactive agent, is widely used to improve respiratory diseases. This study demonstrated that CCis increases ciliary bend angle (CBA) by 30% and ciliary beat frequency (CBF) by 10% in mouse airway ciliary cells. These increases were induced by an elevation in intracellular pH (pHi; the pHi pathway) and a decrease in the intracellular Cl- concentration ([Cl-]i; the Cl- pathway) stimulated by CCis. The Cl- pathway, which is independent of CO2/HCO3-, increased CBA by 20%. This pathway activated Cl- release via activation of Cl- channels, leading to a decrease in [Cl-]i, and was inhibited by Cl- channel blockers (5-nitro-2-(3-phenylpropylamino) benzoic acid and CFTR(inh)-172). Under the CO2/HCO3--free condition, the CBA increase stimulated by CCis was mimicked by the Cl--free NO3- solution. The pHi pathway, which depends on CO2/HCO3-, increased CBF and CBA by 10%. This pathway activated HCO3- entry via Na+/HCO3- cotransport (NBC), leading to a pHi elevation, and was inhibited by 4,4'-diisothiocyano-2,2'-stilbenedisulfonic acid. The effects of CCis were not affected by a protein kinase A inhibitor (1 µM PKI-A) or Ca2+-free solution. Thus, CCis decreased [Cl-]i via activation of Cl- channels including CFTR, increasing CBA by 20%, and elevated pHi via NBC activation, increasing CBF and CBA by 10%.


Sujet(s)
Chlorures/métabolisme , Cils vibratiles/métabolisme , Appareil respiratoire/métabolisme , Animaux , Hydrogénocarbonates/métabolisme , Calcium/métabolisme , Cils vibratiles/effets des médicaments et des substances chimiques , Cyclic AMP-Dependent Protein Kinases/effets des médicaments et des substances chimiques , Cyclic AMP-Dependent Protein Kinases/métabolisme , Concentration en ions d'hydrogène , Souris , Inhibiteurs de protéines kinases/pharmacologie , Sodium/métabolisme
11.
Int J Mol Sci ; 19(12)2018 Nov 26.
Article de Anglais | MEDLINE | ID: mdl-30486295

RÉSUMÉ

The effects of the isoflavone daidzein on the ciliary beat distance (CBD, which is a parameter assessing the amplitude of ciliary beating) and the ciliary beat frequency (CBF) were examined in ciliated human nasal epithelial cells (cHNECs) in primary culture. Daidzein decreased [Cl-]i and enhanced CBD in cHNECs. The CBD increase that was stimulated by daidzein was mimicked by Cl--free NO3- solution and bumetanide (an inhibitor of Na⁺/K⁺/2Cl- cotransport), both of which decreased [Cl-]i. Moreover, the CBD increase was inhibited by 5-Nitro-2-(3-phenylpropylamino)benzoic acid (NPPB, a Cl- channel blocker), which increased [Cl-]i. CBF was also decreased by NPPB. The rate of [Cl-]i decrease evoked by Cl--free NO3- solution was enhanced by daidzein. These results suggest that daidzein activates Cl- channels in cHNECs. Moreover, daidzein enhanced the microbead transport driven by beating cilia in the cell sheet of cHNECs, suggesting that an increase in CBD enhances ciliary transport. An [Cl-]i decrease enhanced CBD, but not CBF, in cHNECs at 37 °C, although it enhanced both at 25 °C. Intracellular Cl- affects both CBD and CBF in a temperature-dependent manner. In conclusion, daidzein, which activates Cl- channels to decrease [Cl-]i, stimulated CBD increase in cHNECs at 37 °C. CBD is a crucial factor that can increase ciliary transport in the airways under physiological conditions.


Sujet(s)
Chlorures/métabolisme , Cils vibratiles/métabolisme , Cellules épithéliales/métabolisme , Isoflavones/pharmacologie , Nez/cytologie , Bumétanide/pharmacologie , Calcium/pharmacologie , Cellules cultivées , Cils vibratiles/effets des médicaments et des substances chimiques , AMP cyclique/pharmacologie , Cellules épithéliales/effets des médicaments et des substances chimiques , Humains , Latex/composition chimique , Microsphères , Mouvement
12.
J Physiol Sci ; 68(2): 191-199, 2018 Mar.
Article de Anglais | MEDLINE | ID: mdl-29332212

RÉSUMÉ

MQAE is a 'non-ratiometric' chloride ion (Cl-)-quenched fluorescent indicator that is used to determine intracellular Cl- concentration ([Cl-]i). MQAE-based two-photon microscopy is reported to be a useful method to measure [Cl-]i, but it is still controversial because a change in cell volume may alter the MQAE concentration, leading to a change in the fluorescence intensity without any change in [Cl-]i. In an attempt to elucidate the effect or lack of effect of cell volume on MQAE concentration, we studied the effects of changes in cell volume, achieved by applying different levels of osmotic stress, on the intensity of MQAE fluorescence in airway ciliary cells. To study solely the effect of changes in cell volume on MQAE fluorescence intensity, i.e., excluding the effect of any change in [Cl-]i, we first conducted the experiments in a Cl--free nitrate (NO3-) solution to substitute NO3- (non-quenching anion for MQAE fluorescence) for Cl- in the intracellular fluid. Hypo- (- 30 mM NaNO3) or hyper-osmotic stress (+ 30 mM NaNO3) effected changes in cell volume, but the stress did not result in any significant change in MQAE fluorescence intensity. The experiments were also carried out in Cl--containing solution. Hypo-osmotic stress (- 30 mM NaCl) increased both MQAE fluorescence intensity and cell volume, while hyper-osmotic stress (+ 30 mM NaCl) decreased both of these properties. These results suggest that the osmotic stress-induced change in MQAE fluorescence intensity was caused by the change in [Cl-]i and not by the MQAE concentration. Moreover, the intracellular distribution of MQAEs was heterogeneous and not affected by the changes in osmotic stress-induced cell volume, suggesting that MQAEs are bound to un-identified subcellular structures. These bound MQAEs appear to have enabled the measurement of [Cl-]i in airway ciliary cells, even under conditions of cell volume change.


Sujet(s)
Chlorures/métabolisme , Cils vibratiles/métabolisme , Appareil respiratoire/métabolisme , Animaux , Taille de la cellule , Femelle , Colorants fluorescents/métabolisme , Souris , Souris de lignée C57BL , Microscopie/méthodes , Pression osmotique/physiologie
13.
Arch Microbiol ; 199(6): 907-916, 2017 Aug.
Article de Anglais | MEDLINE | ID: mdl-28374062

RÉSUMÉ

Pseudomonas sp. strain C7 isolated from sediment of Thane creek near Mumbai, India, showed the ability to grow on glucose and carbaryl in the presence of 7.5 and 3.5% of NaCl, respectively. It also showed good growth in the absence of NaCl indicating the strain to be halotolerant. Increasing salt concentration impacted the growth on carbaryl; however, the specific activity of various enzymes involved in the metabolism remained unaffected. Among various enzymes, 1-naphthol 2-hydroxylase was found to be sensitive to chloride as compared to carbaryl hydrolase and gentisate 1,2-dioxygenase. The intracellular concentration of Cl- ions remained constant (6-8 mM) for cells grown on carbaryl either in the presence or absence of NaCl. Thus the ability to adapt to the increasing concentration of NaCl is probably by employing chloride efflux pump and/or increase in the concentration of osmolytes as mechanism for halotolerance. The halotolerant nature of the strain will be beneficial to remediate carbaryl from saline agriculture fields, ecosystems and wastewaters.


Sujet(s)
Carbaryl/métabolisme , Insecticides/métabolisme , Pseudomonas/métabolisme , Chlorure de sodium/métabolisme , Protéines bactériennes/génétique , Protéines bactériennes/métabolisme , Dépollution biologique de l'environnement , Dioxygenases/génétique , Dioxygenases/métabolisme , Gentisates/métabolisme , Inde , Pseudomonas/enzymologie , Pseudomonas/génétique
14.
Neuroscience ; 310: 401-9, 2015 Dec 03.
Article de Anglais | MEDLINE | ID: mdl-26415765

RÉSUMÉ

The purpose of the present study was to characterize the properties of A-type GABA receptor (GABAA receptor) currents in human sensory neurons. Neurons were obtained from adult organ donors. GABAA currents were recorded in isolated neurons. Both large inactivating low-affinity currents and smaller persistent high-affinity currents were present in all of the 129 neurons studied from 15 donors. The kinetics of human GABAA currents were slower than those in rat sensory neurons. GABA currents were completely blocked by bicuculline (10 µM), and persistent currents were activated by the δ-subunit-preferring agonist, 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridine-3-ol (THIP). The GABA current equilibrium potential was ∼ 20 mV more hyperpolarized than in rat neurons. Both low- and high-affinity currents were increased by inflammatory mediators but via different second messenger pathways. These results highlight potentially important species differences in the properties of ion channels present in their native environment and suggest the use of human sensory neurons may be a valuable tool to test compounds prior to use in humans.


Sujet(s)
Ganglions sensitifs des nerfs spinaux/physiologie , Récepteurs GABA-A/physiologie , Cellules réceptrices sensorielles/physiologie , Adulte , Femelle , Agonistes du récepteur GABA-A/pharmacologie , Ganglions sensitifs des nerfs spinaux/effets des médicaments et des substances chimiques , Humains , Médiateurs de l'inflammation/pharmacologie , Mâle , Potentiels de membrane/effets des médicaments et des substances chimiques , Adulte d'âge moyen , Cellules réceptrices sensorielles/effets des médicaments et des substances chimiques , Acide gamma-amino-butyrique/pharmacologie
15.
Proc Natl Acad Sci U S A ; 112(3): E329-37, 2015 Jan 20.
Article de Anglais | MEDLINE | ID: mdl-25561556

RÉSUMÉ

Cl(-) is a major anion in mammalian cells involved in transport processes that determines the intracellular activity of many ions and plasma membrane potential. Surprisingly, a role of intracellular Cl(-) (Cl(-) in) as a signaling ion has not been previously evaluated. Here we report that Cl(-) in functions as a regulator of cellular Na(+) and HCO3 (-) concentrations and transepithelial transport through modulating the activity of several electrogenic Na(+)-HCO3 (-) transporters. We describe the molecular mechanism(s) of this regulation by physiological Cl(-) in concentrations highlighting the role of GXXXP motifs in Cl(-) sensing. Regulation of the ubiquitous Na(+)-HCO3(-) co-transport (NBC)e1-B is mediated by two GXXXP-containing sites; regulation of NBCe2-C is dependent on a single GXXXP motif; and regulation of NBCe1-A depends on a cryptic GXXXP motif. In the basal state NBCe1-B is inhibited by high Cl(-) in interacting at a low affinity GXXXP-containing site. IP3 receptor binding protein released with IP3 (IRBIT) activation of NBCe1-B unmasks a second high affinity Cl(-) in interacting GXXXP-dependent site. By contrast, NBCe2-C, which does not interact with IRBIT, has a single high affinity N-terminal GXXP-containing Cl(-) in interacting site. NBCe1-A is unaffected by Cl(-) in between 5 and 140 mM. However, deletion of NBCe1-A residues 29-41 unmasks a cryptic GXXXP-containing site homologous with the NBCe1-B low affinity site that is involved in inhibition of NBCe1-A by Cl(-) in. These findings reveal a cellular Cl(-) in sensing mechanism that plays an important role in the regulation of Na(+) and HCO3 (-) transport, with critical implications for the role of Cl(-) in cellular ion homeostasis and epithelial fluid and electrolyte secretion.


Sujet(s)
Chlorures/métabolisme , Transduction du signal , Symporteurs des ions sodium-bicarbonate/métabolisme , Séquence d'acides aminés , Cellules HeLa , Humains , Données de séquences moléculaires , Symporteurs des ions sodium-bicarbonate/composition chimique
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE