Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 107
Filtrer
Plus de filtres










Gamme d'année
1.
Biomimetics (Basel) ; 9(7)2024 Jul 06.
Article de Anglais | MEDLINE | ID: mdl-39056852

RÉSUMÉ

Biomass-fungi composite materials primarily consist of biomass particles (sourced from agricultural residues) and a network of fungal hyphae that bind the biomass particles together. These materials have potential applications across diverse industries, such as packaging, furniture, and construction. 3D printing offers a new approach to manufacturing parts using biomass-fungi composite materials, as an alternative to traditional molding-based methods. However, there are challenges in producing parts with desired quality (for example, geometric accuracy after printing and height shrinkage several days after printing) by using 3D printing-based methods. This paper introduces an innovative approach to enhance part quality by incorporating ionic crosslinking into the 3D printing-based methods. While ionic crosslinking has been explored in hydrogel-based bioprinting, its application in biomass-fungi composite materials has not been reported. Using sodium alginate (SA) as the hydrogel and calcium chloride as the crosslinking agent, this paper investigates their effects on quality (geometric accuracy and height shrinkage) of 3D printed samples and physiochemical characteristics (rheological, chemical, and texture properties) of biomass-fungi composite materials. Results show that increasing SA concentration led to significant improvements in both geometric accuracy and height shrinkage of 3D printed samples. Moreover, crosslinking exposure significantly enhanced hardness of the biomass-fungi mixture samples prepared for texture profile analysis, while the inclusion of SA notably improved cohesiveness and springiness of the biomass-fungi mixture samples. Furthermore, Fourier transform infrared spectroscopy confirms the occurrence of ionic crosslinking within 3D printed samples. Results from this study can be used as a reference for developing new biomass-fungi mixtures for 3D printing in the future.

2.
Gels ; 10(7)2024 Jun 28.
Article de Anglais | MEDLINE | ID: mdl-39057451

RÉSUMÉ

This study describes the development of hydrogel formulations with ionic crosslinking capacity and photocatalytic characteristics. The objective of this research is to provide an effective, accessible, "green", and facile route for the decontamination of chemical warfare agents (CWAs, namely the blistering agent-mustard gas/sulfur mustard (HD)) from contaminated surfaces, by decomposition and entrapment of CWAs and their degradation products inside the hydrogel films generated "on-site". The decontamination of the notorious warfare agent HD was successfully achieved through a dual hydrolytic-photocatalytic degradation process. Subsequently, the post-decontamination residues were encapsulated within a hydrogel membrane film produced via an ionic crosslinking mechanism. Polyvinyl alcohol (PVA) and sodium alginate (ALG) are the primary constituents of the decontaminating formulations. These polymeric components were chosen for this application due to their cost-effectiveness, versatility, and their ability to form hydrogen bonds, facilitating hydrogel formation. In the presence of divalent metallic ions, ALG undergoes ionic crosslinking, resulting in rapid gelation. This facilitated prompt PVA-ALG film curing and allowed for immediate decontamination of targeted surfaces. Additionally, bentonite nanoclay, titanium nanoparticles, and a tetrasulfonated nickel phthalocyanine (NiPc) derivative were incorporated into the formulations to enhance absorption capacity, improve mechanical properties, and confer photocatalytic activity to the hydrogels obtained via Zn2+-mediated ionic crosslinking. The resulting hydrogels underwent characterization using a variety of analytical techniques, including scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), viscometry, and mechanical analysis (shear, tensile, and compression tests), as well as swelling investigations, to establish the optimal formulations for CWA decontamination applications. The introduction of the fillers led to an increase in the maximum strain up to 0.14 MPa (maximum tensile resistance) and 0.39 MPa (maximum compressive stress). The UV-Vis characterization of the hydrogels allowed the determination of the band-gap value and absorption domain. A gas chromatography-mass spectrometry assay was employed to evaluate the decontamination efficacy for a chemical warfare agent (sulfur mustard-HD) and confirmed that the ionic crosslinked hydrogel films achieved decontamination efficiencies of up to 92.3%. Furthermore, the presence of the photocatalytic species can facilitate the degradation of up to 90% of the HD removed from the surface and entrapped inside the hydrogel matrix, which renders the post-decontamination residue significantly less dangerous.

3.
Int J Biol Macromol ; 277(Pt 3): 134245, 2024 Jul 28.
Article de Anglais | MEDLINE | ID: mdl-39079568

RÉSUMÉ

Polyvinyl alcohol (PVA) is a promising alternative to non-biodegradable flexible packaging materials, and nanocellulose is often used to enhance the properties of PVA films, but the composite films still have poor water resistance and barrier properties. To address this issue, iron ions (Fe3+) were introduced into PVA/cellulose nanofibrils (CNF) films, and Fe3+ formed coordination bonds with carboxyl and hydroxyl groups on the surface of CNF and PVA chains. Therefore, constructing a strong coordination crosslinking network within the film and improving the interfacial interaction between PVA and CNF. The water resistance, mechanical and barrier properties of the crosslinked films were significantly improved. Compared with the un-crosslinked film, the oxygen transmission rate (OTR) was decreased by up to 67 %, and the water swelling ratio was significantly reduced from 1085 % to 352 %. The tensile strength of the film with 1.5 wt% Fe3+ reached 41.93 MPa, which was 62 % higher than that of the un-crosslinked film. Furthermore, the composite film demonstrated good recyclability, almost recovering its original mechanical properties in two recycling tests. This simple and effective method for preparing water resistance and barrier films shows potential applications in flexible packaging areas.

4.
Nanomaterials (Basel) ; 14(12)2024 Jun 14.
Article de Anglais | MEDLINE | ID: mdl-38921908

RÉSUMÉ

Anionic carboxylated cellulose nanofibers (CNF) are effective media to remove cationic contaminants from water. In this study, sustainable cationic CNF-based adsorbents capable of removing anionic contaminants were demonstrated using a simple approach. Specifically, the zero-waste nitro-oxidization process was used to produce carboxylated CNF (NOCNF), which was subsequently converted into a cationic scaffold by crosslinking with aluminum ions. The system, termed Al-CNF, is found to be effective for the removal of fluoride ions from water. Using the Langmuir isotherm model, the fluoride adsorption study indicates that Al-CNF has a maximum adsorption capacity of 43.3 mg/g, which is significantly higher than that of alumina-based adsorbents such as activated alumina (16.3 mg/g). The selectivity of fluoride adsorption in the presence of other anionic species (nitrate or sulfate) by Al-CNF at different pH values was also evaluated. The results indicate that Al-CNF can maintain a relatively high selectivity towards the adsorption of fluoride. Finally, the sequential applicability of using spent Al-CNF after the fluoride adsorption to further remove cationic contaminant such as Basic Red 2 dye was demonstrated. The low cost and relatively high adsorption capacity of Al-CNF make it suitable for practical applications in fluoride removal from water.

5.
ACS Appl Mater Interfaces ; 16(27): 35576-35587, 2024 Jul 10.
Article de Anglais | MEDLINE | ID: mdl-38940328

RÉSUMÉ

Inspired by the charge-governed protein channels located in the cell membrane, a series of polyether ether ketone-based polymers with side chains containing ionically cross-linkable quaternary ammonium groups and acidic groups have been designed and synthesized to prepare monovalent cation-selective membranes (MCEMs). Three acidic groups (sulfonic acid, carboxylic acid, and phenolic hydroxyl) with different acid dissociation constant (pKa) were selected to form the ionic cross-linking structure with quaternary ammonium groups in the membranes. The ionic cross-linking induced the nanophase separation and constructed ionic channels, which resulted in excellent mechanical performance and high cation fluxes. Interesting, the cation flux of membranes increased as the ionization of acidic groups increase, but the selectivity of MCEMs did not follow the same trend, which was mainly dependent on the affinity between the functional groups and the cations. Carboxyl group-containing MCEMs exhibited the best selectivity (9.01 for Li+/Mg2+), which was higher than that of the commercial monovalent cation-selective CIMS membrane. Therefore, it is possible to prepare stable MCEMs through a simple process using ionically cross-linkable polymers, and tuning acidic groups in the membranes provided an attractive approach to improving the cation flux and selectivity of MCEMs.

6.
Gels ; 10(6)2024 May 24.
Article de Anglais | MEDLINE | ID: mdl-38920909

RÉSUMÉ

A polydopamine polyelectrolyte hydrogel was developed by ionic crosslinking dextran sulfate with a copolymer of polyethyleneimine and polydopamine. Gelation was promoted by the slow hydrolysis of glucono-δ-lactone. Within this hydrogel, silver nanoparticles were generated in situ, ranging from 25 nm to 200 nm in size. The antibacterial activity of the hydrogel was proportional to the quantity of silver nanoparticles produced, increasing as the nanoparticle count rose. The hydrogels demonstrated broad-spectrum antibacterial efficacy at concentrations up to 108 cells/mL for P. aeruginosa, K. pneumoniae, E. coli and S. aureus, the four most prevalent bacterial pathogens in chronic septic wounds. In ex vivo studies on human skin, biocompatibility was enhanced by the presence of polydopamine. Dextran sulfate is a known irritant, but formulations with polydopamine showed improved cell viability and reduced levels of the inflammatory biomarkers IL-8 and IL-1α. Silver nanoparticles can inhibit cell migration, but an ex vivo human skin study showed significant re-epithelialization in wounds treated with hydrogels containing silver nanoparticles.

7.
ACS Biomater Sci Eng ; 10(7): 4245-4258, 2024 Jul 08.
Article de Anglais | MEDLINE | ID: mdl-38865608

RÉSUMÉ

Most hydrogels have poor mechanical properties, severely limiting their potential applications, and numerous approaches have been introduced to fabricate more robust and durable examples. However, these systems consist of nonbiodegradable polymers which limit their application in tissue engineering. Herein, we focus on the fabrication and investigate the influence of hydrophobic segments on ionic cross-linking properties for the construction of a tough, biodegradable hydrogel. A biodegradable, poly(γ-glutamic acid) polymer conjugated with a hydrophobic amino acid, l-phenylalanine ethyl ester (Phe), together with an ionic cross-linking group, alendronic acid (Aln) resulting in γ-PGA-Aln-Phe, was initially synthesized. Rheological assessments through time sweep oscillation testing revealed that the presence of hydrophobic domains accelerated gelation. Comparing gels with and without hydrophobic domains, the compressive strength of γ-PGA-Aln-Phe was found to be six times higher and exhibited longer stability properties in ethylenediaminetetraacetic acid solution, lasting for up to a month. Significantly, the contribution of the hydrophobic domains to the mechanical strength and stability of ionic cross-linking properties of the gel was found to be the dominant factor for the fabrication of a tough hydrogel. As a result, this study provides a new strategy for mechanical enhancement and preserves ionic cross-linked sites by the addition of hydrophobic domains. The development of tough, biodegradable hydrogels reported herein will open up new possibilities for applications in the field of biomaterials.


Sujet(s)
Hydrogels , Interactions hydrophobes et hydrophiles , Hydrogels/composition chimique , Hydrogels/synthèse chimique , Réactifs réticulants/composition chimique , Acide polyglutamique/composition chimique , Acide polyglutamique/analogues et dérivés , Rhéologie , Résistance à la compression , Ions/composition chimique , Matériaux biocompatibles/composition chimique , Phénylalanine/composition chimique , Phénylalanine/analogues et dérivés
8.
Gels ; 10(4)2024 Apr 01.
Article de Anglais | MEDLINE | ID: mdl-38667660

RÉSUMÉ

This manuscript explores self-healing hydrogels as innovative solutions for diverse wound management challenges. Addressing antibiotic resistance and tailored wound care, these hydrogels exhibit promising outcomes, including accelerated wound closure and tissue regeneration. Advancements in multifunctional hydrogels with controlled drug release, antimicrobial properties, and real-time wound assessment capabilities signal a significant leap toward patient-centered treatments. However, challenges such as scalability, long-term safety evaluation, and variability in clinical outcomes persist. Future directions emphasize personalized medicine, manufacturing innovation, rigorous evaluation through clinical trials, and interdisciplinary collaboration. This manuscript features the ongoing pursuit of effective, adaptable, and comprehensive wound care solutions to transform medical treatments and improve patient outcomes.

9.
Article de Anglais | MEDLINE | ID: mdl-38656187

RÉSUMÉ

To address the plasticization phenomenon and MOF-polymer interfacial defects, we report the synthesis of ionic cross-linked MOF MMMs from a dual brominated polymer and MOF components by using N,N'-dimethylpiperazine as the cross-linker. We synthesized brominated MIL-101(Cr) nanoparticles by using mixed linkers and prepared brominated polyimide (6FDA-DAM-Br) to form ionic cross-linked MMMs. The gas permeation properties of the polyimide, ionic cross-linked MOF-polymer MMMs, and non-cross-linked MOF-polymer MMMs with various MOF weight loadings were investigated systematically to effectively understand the effects of MOF weight loading and ionic cross-linking. The ionic cross-linked 40 wt % MOF-polymer MMM exhibited significantly enhanced gas permeability with an H2 permeability of 1640 Barrer and CO2 permeability of 1981 Barrer and slightly decreased H2/CH4, H2/N2, CO2/CH4 and CO2/N2 selectivities of 16.9, 15.4, 20.5, and 18.6, respectively. The H2 and CO2 permeabilities are approximately 2-3 fold higher than those of the pure polyimide (6FDA-DAM) membrane. Moreover, the ionic cross-linked 40 wt % MOF-polymer MMM exhibited significantly increased resistance to plasticization. This is because the brominated MOF incorporation boosted molecular transport and polymer chain rigidity, and ionic cross-linking further reduced the number of interfacial defects and polymer chain mobility.

10.
Int J Biol Macromol ; 262(Pt 2): 130038, 2024 Mar.
Article de Anglais | MEDLINE | ID: mdl-38336323

RÉSUMÉ

Frequent administrations are often needed during the treatment of ocular diseases due to the low bioavailability of the existing eye drops owing to inadequate corneal penetration and rapid drug washout. Herein, sodium alginate polymannuronate (SA) nanocarriers were developed using ionic gelation method that can provide better bioavailability through mucoadhesivity and sustained drug release by binding to the ocular mucus layer. This study disproves the common belief that only the G block of SA participates in the crosslinking reaction during ionic gelation. Self-assembly capability due to the linear flexible structure of the M block, better biocompatibility than G block along with the feasibility of controlling physicochemical characteristics postulate a high potential for designing efficient ocular drug delivery systems. Initially, four crosslinkers of varied concentrations were investigated. Taguchi design of experiment revealed the statistically significant effect of the crosslinker type and concentration on the particle size and stability. The best combination was detected by analyzing the particle size and zeta potential values that showed the desired microstructural properties for ocular barrier penetration. The desired combination was SA-Ca-1 that had particle size within the optimal corneal penetration range, that is 10-200 nm (135 nm). The drug carriers demonstrated excellent entrapment efficiency (∼89 % for Ciprofloxacin and ∼96 % for Dexamethasone) along with a sustained and simultaneous release of dual drug for at least 2 days. The nanoparticles also showed biocompatibility (4 ± 0.6 % hemolysis) and high mucoadhesivity (73 ± 2 % for 0.25 g) which was validated by molecular docking analysis. The prepared formulation was able to reduce the scleral inflammation of the rabbit uveitis models significantly within 3 days. Thus, the eye drop showed remarkable potential for efficient drug delivery leading to faster recovery.


Sujet(s)
Chitosane , Nanoparticules , Animaux , Lapins , Alginates/composition chimique , Simulation de docking moléculaire , Systèmes de délivrance de médicaments/méthodes , Vecteurs de médicaments/composition chimique , Inflammation , Cornée , Administration par voie ophtalmique , Nanoparticules/composition chimique , Taille de particule , Chitosane/composition chimique , Solutions ophtalmiques
11.
Appl Biochem Biotechnol ; 196(1): 32-49, 2024 Jan.
Article de Anglais | MEDLINE | ID: mdl-37097401

RÉSUMÉ

Quercetin is a kind of flavonol compound, which has been widely concerned because of its good pharmacological effects. However, its poor water solubility and poor oral absorption limit its application. To address the above problems, the optimal technological conditions for preparing quercetin-loaded chitosan sodium alginate nanoparticles (Q-CSNPs) were obtained through single-factor experiment method. Q-CSNPs were characterized by particle size analyzer, scanning electron microscope (SEM), transmission electron microscope (TEM), and Fourier transform infrared spectroscopy (FTIR). Biofilm experiment evaluated the antibacterial activity of five different concentrations of Q-CSNPs against Escherichia coli and Staphylococcus aureus. DPPH and hydroxyl radical scavenging experiments determined their antioxidant activity. The effect of Q-CSNPs labeled with FITC on the oxidative stress of planarian was determined. The results showed that quercetin was successfully encapsulated and had good antibacterial and antioxidant capacity in vitro. In vivo experiments of planarians also showed that Q-CSNPs could inhibit the oxidative stress induced by lipopolysaccharide (LPS) and especially alleviate the decrease of CAT activity and the increase of MDA content in planarians induced by LPS. After being supported by future in vivo studies, this preparation will provide research possibilities for the development of quercetin nano-drugs, quercetin dietary supplement, and so on.


Sujet(s)
Chitosane , Nanoparticules , Planaires , Animaux , Quercétine/pharmacologie , Quercétine/composition chimique , Lipopolysaccharides/pharmacologie , Antioxydants/pharmacologie , Antioxydants/composition chimique , Stress oxydatif , Antibactériens/pharmacologie , Antibactériens/composition chimique , Chitosane/pharmacologie , Chitosane/composition chimique , Nanoparticules/composition chimique , Biofilms , Taille de particule
12.
Carbohydr Polym ; 322: 121363, 2023 Dec 15.
Article de Anglais | MEDLINE | ID: mdl-37839835

RÉSUMÉ

The main obstacle of high-performance cationic functionalization chitosan (CS) as anion exchange membranes (AEMs) is the trade-off between mechanical stability and ionic conductivity. Here, in-situ ionic crosslinking between the deprotonated hydroxyl group and quaternary ammonium group under alkaline conditions was ingeniously applied to improve the mechanical stability of highly quaternized CS (HQCS) with high IEC (>2 mmol g-1). Meanwhile, to further reduce the swelling and enhance the hydroxide conductivity, a mechanically robust hydroxide ion conduction network, quaternized electrospun poly(vinylidene fluoride) (QPVDF) nanofiber, was subsequently used as the filling substrate of in-situ crosslinked HQCS to prepare dual reinforced thin AEMs. The introduction of a robust QPVDF nanofiber mat can not only greatly improve the mechanical properties and limit swelling, but also create facile ion transport channels. Notably, the HQCS/QPVDF-74.0 composite membrane demonstrates perfect dimensional stability, high mechanical performance and excellent alkaline stability, as well as superior ionic conductivity of 66.2 mS cm-1 at 80 °C. The thus assembled alkaline direct methanol fuel cell displays a maximum power density of 132.30 mW cm-2 using 5 M KOH and 3 M methanol as fuels at 80 °C with satisfactory durability.

13.
Nano Lett ; 23(19): 9011-9019, 2023 Oct 11.
Article de Anglais | MEDLINE | ID: mdl-37676743

RÉSUMÉ

Freeze-casting has been wildly exploited to construct porous ceramics but usually requires costly and demanding freeze-drying (high vacuum, size limit, and supercooled chamber), which can be avoided by the ambient pressure drying (APD) technique. However, applying APD to freeze-cast ceramic based on an aqueous suspension is still challenging due to inert surface chemistry. Herein, a modified APD strategy is developed to improve the drying process of freeze-cast ceramics by exploiting the simultaneous ice etching, ionic cross-linking, and solvent exchange under mild conditions (-10-0 °C, ambient pressure). This versatile strategy is applicable to various ceramic species, metal ions, and freezing techniques. The incorporated metal ions not only enhance liquid-phase sintering, producing ceramics with higher density and mechanical properties than freeze-cast counterparts, but also render customizable coloration and antibacterial property. The cost-/time-efficient APD is promising for mass production and even successive production of large-size freeze-cast ceramics that exceed the size of commercial freeze-dryers.

14.
Angew Chem Int Ed Engl ; 62(41): e202306994, 2023 Oct 09.
Article de Anglais | MEDLINE | ID: mdl-37597178

RÉSUMÉ

Mechanically compliant conductors are of utmost importance for the emerging fields of soft electronics and robotics. However, the development of intrinsically deformable organic conductors remains a challenge due to the trade-off between mechanical performance and charge mobility. In this study, we report a solution to this issue based on size-selective ionic crosslinking. This rationally designed crosslinking mediated by length-regulated oligo(ethylene glycol) pendant groups and metal ions simultaneously improved the softness and toughness and ensured excellent mixed ionic-electronic conductivity in poly(3,4-ethylenedioxythiophene):polystyrene sulfonate composite materials. Moreover, the added ions remarkably promoted accumulation of charge carriers in response to temperature gradient, thus offering a viable approach to stretchable thermoelectric generators with enhanced stability against humidity.

15.
Polymers (Basel) ; 15(15)2023 Jul 26.
Article de Anglais | MEDLINE | ID: mdl-37571071

RÉSUMÉ

In this study, novel materials have been obtained via a dual covalent and ionic crosslinking strategies, leading to the formation of a fully interpenetrated polymeric network with remarkable mechanical performances as drug delivery platforms for dermal patches. The polymeric network was obtained by the free-radical photopolymerization of N-vinylpyrrolidone using tri(ethylene glycol) divinyl ether as crosslinker in the presence of sodium alginate (1%, weight%). The ionic crosslinking was achieved by the addition of Zn2+, ions which were coordinated by the alginate chains. Bentonite nanoclay was incorporated in hydrogel formulations to capitalize on its mechanical reinforcement and adsorptive capacity. TiO2 and ZnO nanoparticles were also included in two of the samples to evaluate their influence on the morphology, mechanical properties and/or the antimicrobial activity of the hydrogels. The double-crosslinked nanocomposite hydrogels presented a good tensile resistance (1.5 MPa at 70% strain) and compression resistance (12.5 MPa at a strain of 70%). Nafcillin was loaded into nanocomposite hydrogel films with a loading efficiency of up to 30%. The drug release characteristics were evaluated, and the profile was fitted by mathematical models that describe the physical processes taking place during the drug transfer from the polymer to a PBS (phosphate-buffered saline) solution. Depending on the design of the polymeric network and the nanofillers included, it was demonstrated that the nafcillin loaded into the nanocomposite hydrogel films ensured a high to moderate activity against S. aureus and S. pyogenes and no activity against E. coli. Furthermore, it was demonstrated that the presence of zinc ions in these polymeric matrices can be correlated with the inactivation of E. coli.

16.
Food Chem ; 429: 136874, 2023 Dec 15.
Article de Anglais | MEDLINE | ID: mdl-37454616

RÉSUMÉ

This study addresses the limitations of konjac glucomannan (KGM) films in mechanical properties, hydrophobicity and antibacterial activities. For the first time, a zein-pectin nanoparticle-stabilized corn germ oil-oregano essential oil Pickering emulsion (ZPCEO) was incorporated into KGM, with the resulting film being further ionically crosslinked with Ca2+, Cu2+ or Fe3+. FTIR, SEM and EDS results showed that the metal ions were crosslinked with the hydroxyl and carbonyl groups of polysaccharides and uniformly distributed throughout the films (degree of crosslinking: Fe3+ > Cu2+ > Ca2+). Compared with pure KGM films, the ionic crosslinked ZPCEO/KGM (IL-ZPCEO/KGM) films have superior water resistance mechanical properties, and exhibit unique UV-blocking properties, antioxidant and antibacterial activities. The ZPCEO/KGM-Fe3+ film offered the best all-round properties, including the highest tensile strength, water resistance, UV-blocking capacity, and antimicrobial activity. Thus, ionic crosslinking of ZPCEO/KGM films can be applied to the preparation of food packaging for use in high humidity environments.


Sujet(s)
Nanoparticules , Origanum , Zéine , Emballage alimentaire , Zea mays , Pectine , Émulsions , Eau , Mannanes , Antibactériens/pharmacologie
17.
Polymers (Basel) ; 15(13)2023 Jul 04.
Article de Anglais | MEDLINE | ID: mdl-37447587

RÉSUMÉ

It is a great challenge to obtain an ideal guided bone regeneration (GBR) membrane. In this study, tragacanth gum (GT) was introduced into a chitosan/nano-hydroxyapatite (CS/n-HA) system. The effects of different component ratios and strontium-doped nano-hydroxyapatite (Sr-HA) on the physical-chemical properties and degradation behavior of the CS/Sr-n-HA/GT ternary composite membrane were investigated using Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), contact angle, electromechanical universal tester and in vitro soaking in simulated body fluid (SBF). The results showed that CS could be ionically crosslinked with GT through electrostatic interaction, and Sr-n-HA was loaded via hydrogen bond, which endowed the GT/CS/n-HA composite membrane with good tensile strength and hydrophilicity. In addition, the results of immersion in SBF in vitro showed that CS/n-HA/GT composite membranes had different degradation rates and good apatite deposition by investigating the changes in pH value, weight loss, water absorption ratio, SEM morphology observation and tensile strength reduction. All results revealed that the CS/Sr-n-HA/GT (6:2:2) ternary composite membrane possessed the strongest ionic crosslinking of GT and CS, which was expected to obtain more satisfactory GBR membranes, and this study will provide new applications of GT in the field of biomedical membranes.

18.
Angew Chem Int Ed Engl ; 62(38): e202307690, 2023 Sep 18.
Article de Anglais | MEDLINE | ID: mdl-37524652

RÉSUMÉ

The lack of anion exchange membranes (AEMs) that possess both high hydroxide conductivity and stable mechanical and chemical properties poses a major challenge to the development of high-performance fuel cells. Improving one side of the balance between conductivity and stability usually means sacrificing the other. Herein, we used facile, high-yield chemical reactions to design and synthesize a piperidinium polymer with a polyethylene backbone for AEM fuel cell applications. To improve the performance, we introduced ionic crosslinking into high-cationic-ratio AEMs to suppress high water uptake and swelling while further improving the hydroxide conductivity. Remarkably, PEP80-20PS achieved a hydroxide conductivity of 354.3 mS cm-1 at 80 °C while remaining mechanically stable. Compared with the base polymer PEP80, the water uptake of PEP80-20PS decreased by 69 % from 813 % to 350 %, and the swelling decreased substantially by 85 % from 350.0 % to 50.2 % at 80 °C. PEP80-20PS also showed excellent alkaline stability, 84.7 % remained after 35 days of treatment with an aqueous KOH solution. The chemical design in this study represents a significant advancement toward the development of simultaneously highly stable and conductive AEMs for fuel cell applications.

19.
Molecules ; 28(12)2023 Jun 11.
Article de Anglais | MEDLINE | ID: mdl-37375250

RÉSUMÉ

Amylase is an enzyme used to hydrolyze starch in order to obtain different products that are mainly used in the food industry. The results reported in this article refer to the immobilization of α-amylase in gellan hydrogel particles ionically cross-linked with Mg2+ ions. The obtained hydrogel particles were characterized physicochemically and morphologically. Their enzymatic activity was tested using starch as a substrate in several hydrolytic cycles. The results showed that the properties of the particles are influenced by the degree of cross-linking and the amount of immobilized α-amylase enzyme. The temperature and pH at which the immobilized enzyme activity is maximum were T = 60 °C and pH = 5.6. The enzymatic activity and affinity of the enzyme to the substrate depend on the particle type, and this decreases for particles with a higher cross-linking degree owing to the slow diffusion of the enzyme molecules inside the polymer's network. By immobilization, α-amylase is protected from environmental factors, and the obtained particles can be quickly recovered from the hydrolysis medium, thus being able to be reused in repeated hydrolytic cycles (at least 11 cycles) without a substantial decrease in enzymatic activity. Moreover, α-amylase immobilized in gellan particles can be reactivated via treatment with a more acidic medium.


Sujet(s)
Hydrogels , Pancreatic alpha-Amylases , Suidae , Stabilité enzymatique , Enzymes immobilisées/composition chimique , alpha-Amylases/métabolisme , Température , Ions , Amidon , Concentration en ions d'hydrogène , Animaux
20.
J Biomater Appl ; 38(1): 25-38, 2023 07.
Article de Anglais | MEDLINE | ID: mdl-37329334

RÉSUMÉ

In this study, biodegradable oxidized methacrylated alginate (OMA) hydrogels with controllable mechanical properties were engineered. An ionic and photo cross-linking combination was employed to fabricate dual cross-linked hydrogels. By altering the degree of methacrylation and polymer concentration, hydrogels with an elastic modulus of 4.85 ± 0.13 to 21.02 ± 0.91 kPa, controllable swelling, and degradation kinetics, and cross-link density in the range of 1.0 × 10-5 to 6.5 × 10-5 mol/cm3 were obtained. Moreover, evaluating the effect of cross-linking sequence on the hydrogels' mechanical properties demonstrated that in comparison to the hydrogels fabricated by ionic cross-linking followed by photo-polymerization, hydrogels produced by photo-polymerization followed by ionic cross-linking retain a stiffer gel network with more compact structure. Cytocompatibility examination was performed via MTT assay against L929 fibroblasts, and all the hydrogel samples demonstrated high cell viability (>80%). The findings demonstrate the significant effect of the sequence of cross-linking as a novel tool to tune the OMA hydrogel's final properties which can serve as a useful platform for tissue engineering applications.


Sujet(s)
Méthacrylates , Polymères , Méthacrylates/composition chimique , Hydrogels/composition chimique , Alginates/composition chimique , Temps de réaction , Ingénierie tissulaire
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE