Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 1.731
Filtrer
1.
J Environ Sci (China) ; 150: 1-13, 2025 Apr.
Article de Anglais | MEDLINE | ID: mdl-39306387

RÉSUMÉ

Iron oxide nanoparticles (IONPs) have wide applications in the biomedical field due to their outstanding physical and chemical properties. However, the potential adverse effects and related mechanisms of IONPs in human organs, especially the lung, are still largely ignored. In this study, we found that group-modified IONPs (carboxylated, aminated and silica coated) induce slight lung cell damage (in terms of the cell cycle, reactive oxygen species (ROS) production, cell membrane integrity and DNA damage) at a sublethal dosage. However, aminated IONPs could release more iron ions in the lysosome than the other two types of IONPs, but the abnormally elevated iron ion concentration did not induce ferroptosis. Intriguingly, amino-modified IONPs aggravated the accumulation of intracellular peroxides induced by the ferroptosis activator RSL3 and thus caused ferroptosis in vitro, and the coadministration of amino-modified IONPs and RSL3 induced more severe lung injury in vivo. Therefore, our data revealed that the surface functionalization of IONPs plays an important role in determining their potential pulmonary toxicity, as surface modification influences their degradation behavior. These results provide guidance for the design of future IONPs and the corresponding safety evaluations and predictions.


Sujet(s)
Ferroptose , Fer , Lysosomes , Ferroptose/effets des médicaments et des substances chimiques , Lysosomes/métabolisme , Lysosomes/effets des médicaments et des substances chimiques , Fer/composition chimique , Humains , Espèces réactives de l'oxygène/métabolisme , Nanoparticules magnétiques d'oxyde de fer/toxicité , Mort cellulaire/effets des médicaments et des substances chimiques
2.
Photodiagnosis Photodyn Ther ; : 104356, 2024 Oct 03.
Article de Anglais | MEDLINE | ID: mdl-39368768

RÉSUMÉ

BACKGROUND: Photodynamic therapy (PDT) is a targeted treatment option for cancers that are non-responding to ordinary anticancer therapies. It involves activating a photosensitizer with a light source of a specific wavelength to destroy targeted cells and their surrounding vasculature. Aluminum phthalocyanine tetra sulfonate (AlPcS4) has gained attention as a second-generation photosensitizer for its strong absorption in the red-light region. AlPcS4 can be conjugated to magnetic iron oxide nanoparticles (IONs) to provide targeted drug delivery to the tumor cells while reducing its undesired effect on healthy tissues in other body parts. METHODS: Magnetic glutamine functionalized iron oxide nanocomposites loaded with AlPcS4 (IONs-NH2-AlPcS4) were synthesized via the co-precipitation method. The conjugate (IONs-NH2-AlPcS4) was characterized by TEM, Zeta potential, DLS, FTIR, and UV-VIS absorption spectroscopy. Furthermore, its photodynamic activity was investigated using albino mice with induced Ehrlich solid tumors. RESULTS: AlPcS4 was successfully conjugated to IONs-NH2 with a high loading efficiency of 54±2%. The synthesized conjugate exhibited a spherical shape, with 7±2 nm particle size. The In vivo experiment revealed that the albino mice with induced Ehrlich solid tumor that were treated by combined PDT and magnetic targeting conjugate exhibited significant tumor regression and notably higher levels of necrotic tissue compared to the animals in other groups. CONCLUSION: PDT mediated by magnetic targeting significantly inhibited tumor growth with minimal adverse effects, indicating its great potential as a promising strategy for solid cancer treatment.

3.
BMC Vet Res ; 20(1): 455, 2024 Oct 09.
Article de Anglais | MEDLINE | ID: mdl-39385161

RÉSUMÉ

BACKGROUND AND AIM: Contamination from increased anthropogenic activities poses a threat to human health as well as the ecosystem. To develop a nanotechnological approach to improve aqua fisheries, we synthesized magnetic hematite nanoparticle-based gel and evaluated its efficacy in a cadmium-polluted closed system to decontaminate water and improve tilapia fish health. METHODS: Green iron oxide nanoparticles were biosynthesized by the metabolite of bacillus subtilis and incorporated into polyvinyl alcohol to construct a hydrogel by cryogelation. KEY FINDINGS: The cryogel had interconnected macropores with diameters widely ranging between 20 and 200 µm and could be free-floating in water. When applied in cadmium-polluted tilapia culture, this nanogel reduced turbidity and ammonia in the aquarium, adsorbed cadmium from the water with a larger quantity on the gel's outer surface than in its center., and reduced cadmium concentration in tilapia's liver, gills, and muscles. Application of this nano-based cryogel reduced the toxic effects of cadmium on tilapia fish. It maintained hepatic and renal cell nuclear integrity as determined by comet assay. This nano-treatment also reversed the cadmium-induced elevations of plasma lipids, glucose, stress marker cortisol, the hepatic enzymes AST and ALT, and the kidney function marker urea, and improved the lymphocytopenia and other hematological functions in tilapia fish intoxicated by cadmium.


Sujet(s)
Bacillus subtilis , Cryogels , Nanoparticules magnétiques d'oxyde de fer , Tilapia , Polluants chimiques de l'eau , Animaux , Cryogels/composition chimique , Bacillus subtilis/métabolisme , Tilapia/métabolisme , Nanoparticules magnétiques d'oxyde de fer/composition chimique , Cadmium , Aquaculture , Composés du fer III/composition chimique , Composés du fer III/pharmacologie , Foie/métabolisme , Foie/effets des médicaments et des substances chimiques , Assainissement et restauration de l'environnement/méthodes
4.
J Biomed Mater Res B Appl Biomater ; 112(9): e35480, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-39223717

RÉSUMÉ

The aim of this study was to develop multifunctional magnetic poly(ε-caprolactone) (PCL) mats with antibacterial properties for bone tissue engineering and osteosarcoma prevention. To provide good dispersion of magnetic iron oxide nanoparticles (IONs), they were first grafted with PCL using a novel three-step approach. Then, a series of PCL-based mats containing a fixed amount of ION@PCL particles and an increasing content of ascorbic acid (AA) was prepared by electrospinning. AA is known for increasing osteoblast activity and suppressing osteosarcoma cells. Composites were characterized in terms of morphology, mechanical properties, hydrolytic stability, antibacterial performance, and biocompatibility. AA affected both the fiber diameter and the mechanical properties of the nanocomposites. All produced mats were nontoxic to rat bone marrow-derived mesenchymal cells; however, a composite with 5 wt.% of AA suppressed the initial proliferation of SAOS-2 osteoblast-like cells. Moreover, AA improved antibacterial properties against Staphylococcus aureus and Escherichia coli compared to PCL. Overall, these magnetic composites, reported for the very first time, can be used as scaffolds for both tissue regeneration and osteosarcoma prevention.


Sujet(s)
Acide ascorbique , Polyesters , Staphylococcus aureus , Ingénierie tissulaire , Polyesters/composition chimique , Acide ascorbique/composition chimique , Acide ascorbique/pharmacologie , Humains , Rats , Animaux , Staphylococcus aureus/effets des médicaments et des substances chimiques , Staphylococcus aureus/croissance et développement , Escherichia coli/effets des médicaments et des substances chimiques , Antibactériens/composition chimique , Antibactériens/pharmacologie , Nanoparticules de magnétite/composition chimique , Ostéoblastes/métabolisme , Ostéoblastes/cytologie , Lignée cellulaire tumorale , Ostéosarcome/anatomopathologie , Os et tissu osseux , Nanocomposites/composition chimique , Structures d'échafaudage tissulaires/composition chimique , Test de matériaux
5.
Mater Today Bio ; 28: 101213, 2024 Oct.
Article de Anglais | MEDLINE | ID: mdl-39280110

RÉSUMÉ

An increasing number of medications have been explored to treat the progressive and irreversible Alzheimer's disease (AD) that stands as the predominant form of dementia among neurodegenerative ailments. However, assertions about toxic side effects of these drugs are a significant hurdle to overcome, calling for drug-free nanotherapeutics. Herein, a new therapeutic strategy devoid of conventional drugs or other cytotoxic species was developed. The constructed superparamagnetic iron oxide nanoparticles (SPIONs) nanospinners can accrete neurotoxic ß-amyloid 42 oligomers (oAß42) into aggregated magnetic plaques (mpAß) by mechanical rotating force via remote interaction between nanoparticles and the applied magnetic field. While the cellular uptake of mpAß attained from the magnetic stirring treatment by neuronal cells is severely limited, the facile phagocytic uptake of mpAß by microglial cells leads to the polarization of the brain macrophages to M2 phenotype and thus the increased anti-inflammatory responses to the treatment. The SPION stirring treatment protects the AD mice from memory deterioration and maintain cognitive ability as evidenced from both nesting and Barnes maze tests. The examination of the oAß42 injected brain tissues with the stirring treatment showed significant amelioration of functional impairment of neurons, microglia, astrocytes and oligodendrocytes alongside no obvious tissue damage caused by stirring meanwhile complete degradation of SPION was observed at day 7 after the treatment. The in vitro and animal data of this work strongly corroborate that this new modality of undruggable stirring treatment with SPIONs provides a new feasible strategy for developing novel AD treatments.

6.
Int J Med Sci ; 21(11): 2233-2243, 2024.
Article de Anglais | MEDLINE | ID: mdl-39239546

RÉSUMÉ

Purpose: Cognitive dysfunction caused by chronic cerebral hypoperfusion (CCH) is the leading cause of vascular dementia. Therefore, it is necessary to explore the mechanism that causes cerebral injury and find an effective therapy. Methods: Bone marrow mononuclear cells (BMMNCs) were extracted to detect the activity by CCK-8 kit and verify the transfection efficiency using reverse transcription-quantitative real-time polymerase chain reaction (RT-qPCR). A CCH rat model was established. Superparamagnetic iron oxide nanoparticles (BMPs)-PEI-Slit2/BMMNCs were injected into the tail vein and intervened with an external magnetic field. Hematoxylin and eosin staining was used to observe the pathological changes in brain tissue. The Slit/Robo pathway-related proteins Slit2 and Robo4 were detected by RT-qPCR and Western blotting. Results: The neurological score of the CCH group significantly increased compared with that of the sham group (P<0.05). The levels of brain injury markers S-100ß and NSE were significantly higher in the CCH group than in the sham group (P<0.05). Neuronal apoptosis in the frontal cortex and hippocampus of CCH rats significantly increased compared with that of the sham group (P<0.05). The expression levels of Slit2 and Robo4 mRNAs and proteins in brain tissue of CCH rats significantly increased (P<0.05). The neurological function scores of CCH rats treated with BMP-PEI-Slit2/BMMNC significantly increased after Robo4 siRNA administration (P<0.05). Conclusion: BMP combination with the CCH-related gene Slit2 can effectively improve the efficiency of BMMNC transplantation in treatment.


Sujet(s)
Encéphalopathie ischémique , Dysfonctionnement cognitif , Modèles animaux de maladie humaine , Protéines et peptides de signalisation intercellulaire , Protéines de tissu nerveux , Animaux , Protéines de tissu nerveux/génétique , Protéines de tissu nerveux/métabolisme , Rats , Dysfonctionnement cognitif/thérapie , Dysfonctionnement cognitif/étiologie , Encéphalopathie ischémique/thérapie , Encéphalopathie ischémique/génétique , Protéines et peptides de signalisation intercellulaire/génétique , Protéines et peptides de signalisation intercellulaire/métabolisme , Humains , Mâle , Nanoparticules de magnétite/administration et posologie , Nanoparticules de magnétite/composition chimique , Nanoparticules magnétiques d'oxyde de fer/administration et posologie , Cellules de la moelle osseuse , Apoptose/génétique , Récepteurs immunologiques/génétique , Récepteurs immunologiques/métabolisme , Rat Sprague-Dawley , Récepteurs de surface cellulaire/génétique , Récepteurs de surface cellulaire/métabolisme , Thérapie génétique/méthodes , Roundabout Proteins
7.
Nanomedicine (Lond) ; : 1-15, 2024 Sep 11.
Article de Anglais | MEDLINE | ID: mdl-39258568

RÉSUMÉ

Adoptive cell therapy (ACT) is on the horizon as a thrilling therapeutic plan for cancer. However, widespread application of ACT is often restricted by several challenges, including complexity of priming tumor-specific T cells and poor trafficking in solid tumors. The convergence of nanotechnology and cancer immunotherapy is coming of age and could address the limitations of ACT. Recent studies have provided evidence on the application of magnetic nanoparticles (MNPs) to generate smart immune cells and to bypass problems associated with conventional ACT. Herein, we review current progress in the application of MNPs to improve preparing, guiding and tracking immune cells in cancer ACT. Besides, we comment on the challenges ahead and strategies to optimize MNPs for clinical settings.


[Box: see text].

8.
Front Pharmacol ; 15: 1433734, 2024.
Article de Anglais | MEDLINE | ID: mdl-39246659

RÉSUMÉ

Introduction: The study aimed to systematically enhance the fabrication process of flurbiprofen-loaded bilosomes (FSB) using Quality by Design (QbD) principles and Design of Experiments (DOE). The objective was to develop an optimized formulation with improved entrapment efficiency and targeted drug delivery capabilities. Methods: The optimization process involved applying QbD principles and DOE to achieve the desired formulation characteristics. Superparamagnetic iron oxide nanoparticles (SPIONs) were incorporated to impart magnetic responsiveness. The size, entrapment efficiency, morphology, and in vitro release patterns of the FSB formulation were evaluated. Additionally, an in situ forming hydrogel incorporating FSB was developed, with its gelation time and drug release kinetics assessed. In vivo studies were conducted on osteoarthritic rats to evaluate the efficacy of the FSB-loaded hydrogel. Results: The optimized FSB formulation yielded particles with a size of 453.60 nm and an entrapment efficiency of 91.57%. The incorporation of SPIONs enhanced magnetic responsiveness. Morphological evaluations and in vitro release studies confirmed the structural integrity and sustained release characteristics of the FSB formulation. The in situ forming hydrogel exhibited a rapid gelation time of approximately 40 ± 1.8 s and controlled drug release kinetics. In vivo studies demonstrated a 27.83% reduction in joint inflammation and an 85% improvement in locomotor activity in osteoarthritic rats treated with FSB-loaded hydrogel. Discussion: This comprehensive investigation highlights the potential of FSB as a promising targeted drug delivery system for the effective management of osteoarthritis. The use of QbD and DOE in the formulation process, along with the integration of SPIONs, resulted in an optimized FSB formulation with enhanced entrapment efficiency and targeted delivery capabilities. The in situ forming hydrogel further supported the formulation's applicability for injectable applications, providing rapid gelation and sustained drug release. The in vivo results corroborate the formulation's efficacy, underscoring its potential for improving the treatment of osteoarthritis.

9.
Nanotoxicology ; : 1-16, 2024 Sep 14.
Article de Anglais | MEDLINE | ID: mdl-39275857

RÉSUMÉ

Inhalation exposure to iron oxide occurs in many workplaces and respirable aerosols occur during thermal processes (e.g. welding, casting) or during abrasion of iron and steel products (e.g. cutting, grinding, machining, polishing, sanding) or during handling of iron oxide pigments. There is limited evidence of adverse effects in humans specifically linked to inhalation of iron oxides. This contrasts to oxides of other metals used to alloy or for coating of steel and iron of which several have been classified as being hazardous by international and national agencies. Such metal oxides are often present in the air at workplaces. In general, iron oxides might therefore be regarded as low-toxicity, low-solubility (LTLS) particles, and are often considered to be nontoxic even if very high and prolonged inhalation exposures might result in diseases. In animal studies, such exposures lead to cancer, fibrosis and other diseases. Our hypothesis was that pulmonary-workplace exposure during manufacture and handling of SPION preparations might be harmful. We therefore conducted a systematic review of the relevant literature to understand how iron oxides deposited in the lung are related to acute and subchronic pulmonary inflammation. We included one human and several in vivo animal studies published up to February 2023. We found 25 relevant studies that were useful for deriving occupational exposure limits (OEL) for iron oxides based on an inflammatory reaction. Our review of the scientific literature indicates that lowering of health-based occupational exposure limits might be considered.

10.
Int J Biol Macromol ; 280(Pt 3): 135969, 2024 Sep 24.
Article de Anglais | MEDLINE | ID: mdl-39322144

RÉSUMÉ

Inappropriate treatment of chronic inflammation and infection can lead to serious consequences, with anemia being the most common secondary disease that often requires systematic treatment. However, the complex pathology and gastrointestinal irritation associated with oral iron supplements limit their effectiveness. To address this, a bioactive ingredient derived from natural herbs, Angelica sinensis polysaccharide (ASP), was utilized as an ideal adjuvant for regulating the size and stability of iron oxide nanoparticles (IONPs). Highly hydrophilic ASP-modified IONPs (IONPs@ASP) with a mesoporous structure were developed under the induction of microemulsion.The as-prepared IONPs@ASP exhibited enhanced stability, retention performance and controlled degradation in blood and lysosomal environments, respectively, which is beneficial for long-term intravenous iron maintenance in anemia treatment. After confirming the biosafety of IONPs@ASP, pharmacodynamic results showed that hemoglobin levels increased significantly and rapidly returned to normal levels in anemia model rats treated with IONPs@ASP, even surpassing the effects of IONPs or ASP monotherapy. Additionally, analysis of inflammatory factors in rat serum suggested that ASP effectively upregulated the expression of anti-inflammatory factors, indicating synergistic effects of iron-based nanomedicine and immune regulation in anemia treatment. These findings represent a significant advancement in anemia treatment and open new possibilities for developing versatile nanoparticles based on ASP.

11.
Sci Rep ; 14(1): 22027, 2024 09 25.
Article de Anglais | MEDLINE | ID: mdl-39322646

RÉSUMÉ

Iron deficiency anemia (IDA) is a common health issue, and researchers are interested in overcoming it. Nanotechnology green synthesis is one of the recent approaches to making efficient drugs. In this study, we modeled curcumin-coated iron oxide nanoparticles (cur-IONPs) to study their predicted toxicity and drug-likeness properties, then to investigate mucoadhesive behavior by docking cur-IONPs with two main mucin proteins in gastrointestinal tract (GIT) mucosa (muc 5AC and muc 2). Furthermore, the stability of cur-IONPs/protein complexes was assessed by molecular dynamics. Our in-silico studies results showed that cur-IONPs were predicted to be potential candidates to treat IDA due to its mucoadhesive properties, which could enhance the bioavailability, time residency, and iron absorbance through GIT, in addition to its high safety profile with high drug-likeness properties and oral bioavailability. Finally, molecular dynamic simulation studies revealed stable complexes supporting strength docking studies. Our results focus on the high importance of in-silico drug design studies; however, they need to be supported with in vitro and in vivo studies to reveal the efficacy, toxicity, and bioavailability of cur-IONPs.


Sujet(s)
Anémie par carence en fer , Biodisponibilité , Curcumine , Simulation de docking moléculaire , Simulation de dynamique moléculaire , Curcumine/composition chimique , Curcumine/pharmacocinétique , Curcumine/administration et posologie , Curcumine/pharmacologie , Anémie par carence en fer/traitement médicamenteux , Humains , Administration par voie orale , Nanoparticules magnétiques d'oxyde de fer/composition chimique , Liaison aux protéines
12.
J Colloid Interface Sci ; 678(Pt C): 873-885, 2024 Sep 19.
Article de Anglais | MEDLINE | ID: mdl-39321643

RÉSUMÉ

Iron oxide nanoparticles (IONPs) synthesized via thermal decomposition find diverse applications in biomedicine owing to precise control of their physico-chemical properties. However, use in such applications requires phase transfer from organic solvent to water, which remains a bottleneck. Through the thermal decomposition of iron oleate (FeOl), we systematically investigate the impact of synthesis conditions such as oleic acid (OA) amount, temperature increase rate, dwell time, and solvent on the size, magnetic saturation, and crystallinity of IONPs. Solvent choice significantly influences these properties, manipulating which, synthesis of monodisperse IONPs within a tunable size range (10-30 nm) and magnetic properties (75 to 42 Am2Kg-1) is obtained. To enable phase transfer of IONPs, we employ flash nanoprecipitation (FNP) for the first time as a method for scalable and precise size control, demonstrating its potential over conventional methods. Poly(lactic-co-glycolic acid) (PLGA)-coated IONPs with hydrodynamic diameter (Hd) in the range of 250 nm, high colloidal stability and high IONPs loadings up to 43% were obtained, such physicochemical properties being tuned exclusively by the size and hydrophobicity of starting IONPs. They showed no discernible cytotoxicity in human dermal fibroblasts, highlighting the applicability of FNP as a novel method for the functionalization of hydrophobic IONPs for biomedicine.

13.
ACS Appl Mater Interfaces ; 16(37): 49790-49800, 2024 Sep 18.
Article de Anglais | MEDLINE | ID: mdl-39231029

RÉSUMÉ

Today's extensive use of inorganic fertilizers in agricultural techniques has increased the concentration of nitrate in drinking water beyond safety limits, causing serious health problems in humans such as thyroidism and methemoglobinemia. Therefore, the present work describes the synthesis of a benzimidazolium salt-based fluorescent chemosensor (KG3) via a multistep synthesis which detects nitrate ions in aqueous medium. This was validated using various analytical techniques such as fluorescence spectroscopy, UV-visible spectroscopy, and electrochemical studies with a detection limit of 0.032 µM without any interference from other active water pollutants. Subsequently, KG3 is further modified with the help of iron oxide nanoparticles (Fe3O4 NPs) and silica to obtain the SiO2@Fe3O4-KG3 nanocomposite, which was immobilized over a polyether sulfone membrane and evaluated for removal of nitrate ions from groundwater with a removal efficiency of 96%. Moreover, the engineered composite membrane can serve as a solid-state fluorescence sensor to detect NO3- ions, which was demonstrated through a portable mobile-based prototype employing a hue, saturation, and value parameter model.

14.
Environ Res ; 263(Pt 1): 120009, 2024 Sep 14.
Article de Anglais | MEDLINE | ID: mdl-39284490

RÉSUMÉ

The global problem of major oil spills not only generates crude oil pollution, but produces many derivatives that pose ecological and human health challenges. While extensive research has focused on understanding the types of these contaminants, their transport modes, detection techniques, and ecotoxicological impacts, there are still significant research gaps in mechanisms for removal of petroleum-derived pollutants by iron oxide nanoparticles (IONPs). This work summarizes systematically the types and green synthesis of IONPs for the environmental remediation of various petroleum contaminants. We also provide comprehensive coverage of the excellent removal capacity and latest environmental remediation of IONPs-based materials (e.g., pristine, modified, or porous-supported IONPs materials) for the removal of petroleum-derived pollutants, potential interaction mechanisms (e.g., adsorption, photocatalytic oxidation, and synergistic biodegradation). A sustainable framework was highlighted in depth based on a careful assessment of the environmental impacts, associated hazards, and economic viability. Finally, the review provides an possible improvements of IONPs for petroleum-derived pollutants remediation and sustainable design on future prospect. In the current global environment of pollution reduction and carbon reduction, this information is very important for researchers to synthesize and screen suitable IONPs for the control and eradication of future petroleum-based pollutants with low environmental impact.

15.
Curr Top Med Chem ; 2024 Sep 18.
Article de Anglais | MEDLINE | ID: mdl-39297471

RÉSUMÉ

INTRODUCTION: Iron oxide nanoparticles demonstrate tremendous potential in preserving the ecological balance of the environment since they act as antimicrobial agents and efficient photocatalysts. However, environmental sustainability has challenged the synthesis protocols of nanomaterials. METHOD: This study compares the green synthesis method with the scalable chemical synthesis method. In this work, Iron oxide nanoparticles were fabricated via the green chemistry technique utilizing the leaf extract of Mentha spicata (M-IONP) and also via the chemical co-precipitation method (C-IONP). The synthesized IONPs were analyzed by different characterization methods such as XRD, FTIR, SEM analysis, ZETA potential measurements, and DLS spectroscopy analysis. RESULTS: The biosynthesized and chemically synthesized IONPs were analyzed for their mechanistic action against different applications like antimicrobial, antioxidant, and degradation of harmful dyes. Interestingly, the biosynthesized IONPs (M-IONP) exhibited more effective antimicrobial efficacy towards Gram-positive and Gram-negative organisms than chemically synthesized IONPs. CONCLUSION: The green synthesized M-IONP also showed significant antioxidant propensity similar to that of the standards taken. Additionally, green-synthesized M-IONP exhibited enhanced degradation efficacies against Methylene blue, chromium, and sulphamethoxazole in comparison to chemically synthesized IONP.

16.
Front Immunol ; 15: 1437430, 2024.
Article de Anglais | MEDLINE | ID: mdl-39211053

RÉSUMÉ

Macrophages play a pivotal role as host cells for Leishmania parasites, displaying a notable functional adaptability ranging from the proinflammatory, leishmanicidal M1 phenotype to the anti-inflammatory, parasite-permissive M2 phenotype. While macrophages can potentially eradicate amastigotes through appropriate activation, Leishmania employs diverse strategies to thwart this activation and redirect macrophages toward an M2 phenotype, facilitating its survival and replication. Additionally, a competition for iron between the two entities exits, as iron is vital for both and is also implicated in macrophage defensive oxidative mechanisms and modulation of their phenotype. This review explores the intricate interplay between macrophages, Leishmania, and iron. We focus the attention on the potential of iron oxide nanoparticles (IONPs) as a sort of immunotherapy to treat some leishmaniasis forms by reprogramming Leishmania-permissive M2 macrophages into antimicrobial M1 macrophages. Through the specific targeting of iron in macrophages, the use of IONPs emerges as a promising strategy to finely tune the parasite-host interaction, endowing macrophages with an augmented antimicrobial arsenal capable of efficiently eliminating these intrusive microbes.


Sujet(s)
Leishmania , Leishmaniose , Activation des macrophages , Macrophages , Nanoparticules magnétiques d'oxyde de fer , Macrophages/immunologie , Macrophages/métabolisme , Humains , Leishmaniose/immunologie , Leishmaniose/traitement médicamenteux , Animaux , Activation des macrophages/effets des médicaments et des substances chimiques , Activation des macrophages/immunologie , Leishmania/immunologie , Leishmania/effets des médicaments et des substances chimiques , Interactions hôte-parasite/immunologie
17.
Spectrochim Acta A Mol Biomol Spectrosc ; 323: 124888, 2024 Dec 15.
Article de Anglais | MEDLINE | ID: mdl-39116589

RÉSUMÉ

An important issue in the context of both potenial toxicity of iron oxide nanoparticles (IONP) and their medical applications is tracking of the internalization process of these nanomaterials into living cells, as well as their localization and fate within them. The typical methods used for this purpose are transmission electron microscopy, confocal fluorescence microscopy as well as light-scattering techniques including dark-field microscopy and flow cytometry. All the techniques mentioned have their advantages and disadvantages. Among the problems it is necessary to mention complicated sample preparation, difficult interpretation of experimental data requiring qualified and experienced personnel, different behavior of fluorescently labeled IONP comparing to those label-free or finally the lack of possibility of chemical composition characteristics of nanomaterials. The purpose of the present investigation was the assessment of the usefulness of Raman microscopy for the tracking of the internalization of IONP into cells, as well as the optimization of this process. Moreover, the study focused on identification of the potential differences in the cellular fate of superparamagnetic nanoparticles having magnetite and maghemite core. The Raman spectra of U87MG cells which internalized IONP presented additional bands which position depended on the used laser wavelength. They occurred at the wavenumber range 1700-2400 cm-1 for laser 488 nm and below the wavenumber of 800 cm-1 in case of laser 532 nm. The intensity of the mentioned Raman bands was higher for the green laser (532 nm) and their position, was independent and not characteristic on the primary core material of IONP (magnetite, maghemite). The obtained results showed that Raman microscopy is an excellent, non-destructive and objective technique that allows monitoring the process of internalization of IONP into cells and visualizing such nanoparticles and/or their metabolism products within them at low exposure levels. What is more, the process of tracking IONP using the technique may be further improved by using appropriate wavelength and power of the laser source.


Sujet(s)
Nanoparticules magnétiques d'oxyde de fer , Analyse spectrale Raman , Analyse spectrale Raman/méthodes , Humains , Nanoparticules magnétiques d'oxyde de fer/composition chimique , Lignée cellulaire tumorale , Microscopie/méthodes , Composés du fer III/composition chimique , Composés du fer III/analyse , Composés du fer III/métabolisme
18.
Int J Mol Sci ; 25(16)2024 Aug 22.
Article de Anglais | MEDLINE | ID: mdl-39201784

RÉSUMÉ

Magnetic Fe3O4 nanoparticles (MNPs) functionalized with (3-aminopropylo)trietoksysilan (APTES) or N-carboxymethylchitosan (CMC) were proposed as nanocarriers of methotrexate (MTX) to target ovarian cancer cell lines. The successful functionalization of the obtained nanostructures was confirmed by FT-IR spectroscopy. The nanoparticles were characterized by transmission electron spectroscopy (TEM) and dynamic light scattering (DLS) techniques. Their potential zeta, magnetization, and hyperthermic properties were also explored. MTX was conjugated with the nanocarriers by ionic bonds or by amide bonds. The drug release kinetics were examined at different pH and temperatures. The MTT assay showed no toxicity of the MNPs[APTES] and MNPs[CMC]. Finally, the cytotoxicity of the nanostructures with MTX attached towards the ovarian cancer cells was measured. The sensitivity and resistance to methotrexate was determined in simplistic 2D and spheroid 3D conditions. The cytotoxicity tests of the tested nanostructures showed similar values for inhibiting the proliferation of ovarian cancer cells as methotrexate in its free form. Conjugating MTX with nanoparticles allows the drug to be directed to the target site using an external magnetic field, reducing overall toxicity. Combining this approach with hyperthermia could enhance the therapeutic effect in vivo compared to free MTX, though further research on advanced 3D models is needed.


Sujet(s)
Méthotrexate , Tumeurs de l'ovaire , Méthotrexate/composition chimique , Méthotrexate/pharmacologie , Méthotrexate/administration et posologie , Femelle , Tumeurs de l'ovaire/traitement médicamenteux , Tumeurs de l'ovaire/anatomopathologie , Humains , Lignée cellulaire tumorale , Nanoparticules de magnétite/composition chimique , Vecteurs de médicaments/composition chimique , Systèmes de délivrance de médicaments/méthodes , Nanoparticules magnétiques d'oxyde de fer/composition chimique , Libération de médicament , Antimétabolites antinéoplasiques/pharmacologie , Antimétabolites antinéoplasiques/composition chimique , Antimétabolites antinéoplasiques/administration et posologie , Survie cellulaire/effets des médicaments et des substances chimiques
19.
Nanotoxicology ; 18(5): 464-478, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-39091195

RÉSUMÉ

The need of the hour with respect to cancer treatment is a targeted approach with minimal or nil ramifications. Apropos, magnetic fluid hyperthermia (MFH) is emerging as a potential therapeutic strategy with anticipated reduced side effects for solid tumors. MFH causes cytotoxicity due to the heat generated owing to Hysteresis, Neel, and Brownian relaxation losses once magnetic nanoparticles (MNPs) carrying cancer cells are placed under an alternating magnetic field. With respect to MFH, iron oxide-based MNPs have been most extensively studied to date compared to other metal oxides with magnetic properties. The effectiveness of MFH relies on the composition, coating, size, physical and biocompatible properties of the MNPs. Pure iron oxide and doped iron oxide MNPs have been utilized to study their effects on cancer cell killing through MFH. This review evaluates the biocompatibility of pure and doped iron oxide MNPs and their subsequent hyperthermic effect for effectively killing cancer cells in vitro and in vivo.


Sujet(s)
Hyperthermie provoquée , Nanoparticules magnétiques d'oxyde de fer , Tumeurs , Humains , Hyperthermie provoquée/méthodes , Animaux , Nanoparticules magnétiques d'oxyde de fer/composition chimique , Nanoparticules magnétiques d'oxyde de fer/toxicité , Tumeurs/traitement médicamenteux , Lignée cellulaire tumorale
20.
Small ; : e2406631, 2024 Aug 29.
Article de Anglais | MEDLINE | ID: mdl-39205548

RÉSUMÉ

Superparamagnetic iron oxide nanoparticles (SPIONs) have attracted wide attention due to their promising applications in biomedicine, chemical catalysis, and magnetic memory devices. In this work, the force is measured between a single SPION coated with chiral molecules and a ferromagnetic substrate by atomic force microscopy (AFM), with the substrate magnetized either toward or away from the approaching AFM tip. The force between the coated SPION and the magnetic substrate depends on the handedness of the molecules adsorbed on the SPION and on the direction of the magnetization of the substrate. By inserting nm-scale spacing layers between the coated SPION and the magnetic substrate it is shown that the SPION has a short-range magnetic monopole-like magnetic field. A theoretical framework for the nature of this field is provided.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE