Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 6.334
Filtrer
1.
J Gastrointest Oncol ; 15(3): 1282-1296, 2024 Jun 30.
Article de Anglais | MEDLINE | ID: mdl-38989406

RÉSUMÉ

Background and Objective: Lactic acid is a metabolite of glycolysis produced in the body, and its production is thought to be a mechanism by which cancer cells evade immune surveillance. Immune evasion and metabolic changes are well established as basic hallmarks of cancer. Although lactate has long been considered a waste product, it is now generally recognized to be a versatile small-molecule chemical that plays an important part in the tumor microenvironment (TME), with increased lactate production linked to the development of human malignancies. Metabolism in liver cancer is redirected toward glycolysis, which enhances the production of metabolic compounds used by tumor cells to produce proteins, lipids, and nucleotides, enabling them to maintain high proliferation rates and to establish the TME. Dysregulation of metabolic activity in liver cancer may impair antitumor responses owing to the immunosuppressive activity of the lactate produced by anaerobic glycolytic rates in tumor cells. This review primarily explores the link connection between lactic acid and the TME; evaluates the role of lactic acid in the occurrence, metastasis, prognosis, and treatment of liver cancer. Additionally, it investigates the associated pathways as potential targets for liver cancer treatment. Methods: Literature searches were conducted in PubMed, Web of Science, and Google Scholar, with the publication date of the most recent article included being January 2024. After eliminating duplicate articles and less relevant articles through titles and abstracts, we selected 113 articles for this review. We categorized references into two categories. One is to classify the content into lactate-related, liver cancer-related and tumor metabolism-related. The other is to classify the article types, which are divided into reviews, research articles and clinical trials. Additionally, we consulted the reference lists of the relevant articles to ensure coverage was comprehensive and unbiased. Key Content and Findings: The connection between lactic acid and the TME has recently become an area of intense research interest, and many related articles have been published in this field. The main finding of this review is to summarize the proven link between lactate and the TME and its possible impact on the TME of liver cancer. And analyzed the potential of lactate in liver cancer treatment and prognosis prediction. Conclusions: Lactate may be key to developing novel approaches in the future treatment of liver cancer. Related research on the combination of classic therapies and molecular targeted drugs may provide innovative medicines that more selectively regulate immune cell activity.

2.
Talanta ; 278: 126477, 2024 Jun 25.
Article de Anglais | MEDLINE | ID: mdl-38968656

RÉSUMÉ

Early treatment significantly improves the survival rate of liver cancer patients, so the development of early diagnostic methods for liver cancer is urgent. Liver cancer can develop from viral hepatitis, alcoholic liver, and fatty liver, thus making the above diseases share common features such as elevated viscosity, reactive oxygen species, and reactive nitrogen species. Therefore, accurate differentiation between other liver diseases and liver cancer is both a paramount practical need and challenging. Numerous fluorescent probes have been reported for the diagnosis of liver cancer by detecting a single biomarker, but these probes lack specificity for liver cancer in complex biological systems. Obviously, using multiple liver cancer biomarkers as the basis for judgment can dramatically improve diagnostic accuracy. Herein, we report the first fluorescent probe, LD-TCE, that sequentially detects carboxylesterase (CE) and lipid droplet polarity in liver cancer cells with high sensitivity and selectivity, with linear detection of CE in the range of 0-6 U/mL and a 65-fold fluorescence enhancement in response to polarity. The probe first reacts with CE and releases weak fluorescence, which is then dramatically enhanced due to the decrease in lipid droplet polarity in liver cancer cells. This approach allows the probe to enable specific imaging of liver cancer with higher contrast and accuracy. The probe successfully achieved the screening of liver cancer cells and the precise identification of liver cancer in mice. More importantly, it is not disturbed by liver fibrosis, which is a common pathological feature of many liver diseases. We believe that the LD-TCE is expected to be a powerful tool for early diagnosis of liver cancer.

3.
Cell Signal ; 121: 111280, 2024 Jul 02.
Article de Anglais | MEDLINE | ID: mdl-38960058

RÉSUMÉ

OBJECTIVE: To investigate whether tricyclic decylbenzoxazole (TDB) regulates liver cancer cell proliferation and apoptosis through p300-mediated FOXO acetylation. METHODS: Sequencing, adenovirus, and lentivirus transfection were performed in human liver cancer cell line SMMC-7721 and apoptosis was detected by Tunel, Hoechst, and flow cytometry. TEM for mitochondrial morphology, MTT for cell proliferation ability, Western blot, and PCR were used to detect protein levels and mRNA changes. RESULTS: Sequencing analysis and cell experiments confirmed that TDB can promote the up-regulation of FOXO3 expression. TDB induced FOXO3 up-regulation in a dose-dependent manner, promoted the expression of p300 and Bim, and enhanced the acetylation and dephosphorylation of FOXO3, thus promoting apoptosis. p300 promotes apoptosis of cancer cells through Bim and other proteins, while HAT enhances the phosphorylation of FOXO3 and inhibits apoptosis. Overexpression of FOXO3 can increase the expression of exo-apoptotic pathways (FasL, TRAIL), endo-apoptotic pathways (Bim), and acetylation at the protein level and inhibit cell proliferation and apoptotic ability, while FOXO3 silencing or p300 mutation can partially reverse apoptosis. In tumor tissues with overexpression of FOXO3, TDB intervention can further increase the expression of p53 and caspase-9 proteins in tumor cells, resulting in loss of mitochondrial membrane integrity during apoptosis, the release of cytoplasm during signal transduction, activation of caspase-9 and synergistic inhibition of growth. CONCLUSION: TDB induces proliferation inhibition and promotes apoptosis of SMMC-7721 cells by activating p300-mediated FOXO3 acetylation.

4.
Cureus ; 16(6): e61583, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38962635

RÉSUMÉ

Lactic acidosis occurs from an overproduction of lactate or decreased metabolism. It is common in critically ill patients, especially those with hematological conditions such as multiple myeloma, leukemia, and lymphoma. There are two types of lactic acidosis, Type A and Type B, with Type B presenting more commonly in hematological conditions that require prompt diagnosis and treatment of the underlying condition. We present a case of a 43-year-old male with Type B lactic acidosis secondary to stage IV colon cancer with metastasis to the liver. Initial laboratory work was significant for lactic acid of 16.52 mmol/L. Arterial blood gas (ABG) showed pH 7.26, pCO2 21 mmHg, pO2 111 mmHg, and HCO3 9 mEq/L, revealing an anion gap and metabolic acidosis with compensatory respiratory alkalosis. Initially, the patient was treated with aggressive fluid management, IV antibiotics, and sodium bicarbonate; however, his lactic acid continued to rise. The recommendation was made for urgent dialysis. Despite treatments, the prognosis is poor.

5.
Nanotechnology ; 2024 Jul 04.
Article de Anglais | MEDLINE | ID: mdl-38964289

RÉSUMÉ

Liver cancer, which is well-known to us as one of human most prevalent malignancies across the globe, poses a significant risk to live condition and life safety of individuals in every region of the planet. It has been shown that immune checkpoint treatment may enhance survival benefits and make a significant contribution to patient prognosis, which makes it a promising and popular therapeutic option for treating liver cancer at the current time. However, there are only a very few numbers of patients who can benefit from the treatment and there also exist adverse events such as toxic effects and so on, which is still required further research and discussion. Fortunately, the clustered regularly interspaced short palindromic repeat/CRISPR-associated nuclease 9 (CRISPR/Cas9) provides a potential strategy for immunotherapy and immune checkpoint therapy of liver cancer. In this review, we focus on elucidating the fundamentals of the recently developed CRISPR/Cas9 technology as well as the present-day landscape of immune checkpoint treatment which pertains to liver cancer. What's more, we aim to explore the molecular mechanism of immune checkpoint treatment in liver cancer based on CRISPR/Cas9 technology. At last, its encouraging and powerful potential in the future application of the clinic is discussed, along with the issues that already exist and the difficulties that must be overcome. To sum it all up, our ultimate goal is to create a fresh knowledge that we can utilize this new CRISPR/Cas9 technology for the current popular immune checkpoint therapy to overcome the treatment issues of liver cancer. .

7.
Biomater Adv ; 163: 213936, 2024 Jul 01.
Article de Anglais | MEDLINE | ID: mdl-38959652

RÉSUMÉ

Matrix stiffening is one of the major risk factors for hepatocellular carcinoma (HCC) and drives tumor progression. The extracellular matrix (ECM) stiffness of HCC displays mechanical heterogeneity, with stiffness increasing from the core to the invasive frontier. The distribution of liver cancer stem cells (CSCs) is related to this mechanical property. However, it is not sufficiently understood how heterogeneous matrix stiffness regulates the stemness of CSCs. In this study, we developed an adjustable gelatin/alginate hydrogel to investigate the effect of various matrix stiffnesses on CSC stemness under three-dimensional culture conditions. Gelatin/alginate hydrogel with the stiffness of soft (5 kPa), medium (16 kPa), and stiff (81 kPa) were prepared by altering the concentration of calcium ions. It was found that a stiffer matrix promoted stemness-associated gene expression, reduced drug sensitivity, enhanced sphere-forming and clonogenic ability, and tumorigenic potential. Mechanistically, matrix stiffening facilitates CSC stemness by increasing Yes-associated protein (YAP) activity and inhibiting Bcl-2 modifying factor (BMF) expression. Knockdown of YAP or overexpression of BMF significantly attenuated matrix stiffening-induced stemness, suggesting the involvement of YAP and BMF in this process. Together, our results unravel the regulatory mechanism of heterogeneous matrix stiffness on CSC stemness and also provide a novel therapeutic strategy for eradicating CSCs and improving the efficiency of HCC treatment.

8.
J Pharm Biomed Anal ; 248: 116320, 2024 Jun 25.
Article de Anglais | MEDLINE | ID: mdl-38959758

RÉSUMÉ

Diethylnitrosamine (DEN) was applied to create the primary liver cancer (PLC) animal model. In the study, the normal group, model group, cyclophosphamide (CTX) group, Cortex Juglandis Mandshuricae (CJM) extract group, myricetin group and myricitrin group were divided. LC-MS/MS technology was applied to determine the metabolites of liver tissue samples from different locations (nodular and non-nodular parts of liver tissue) in each group of rats. Through metabolomics research, the connection and difference of anti-PLC induced by the CJM extract, myricetin and myricitrin was analyzed. The surface of the liver tissues of rats in the model group was rough, dimly colored, inelastic, on which there were scattered gray white cancer nodules and blood stasis points. The number of cancer nodules was significantly reduced, and the degree of cell malignancy was low, but there were some inflammatory cell infiltrations, necrosis area and karyokinesis in the CJM extract group, myricetin group, myricitrin group and CTX group. The result of metabolic research indicated that 45 potential biomarkers of the PLC were found, as gamma-aminoisobutyrate, taurochenodeoxycholate, xanthurenic acid, etc. There were 22 differential metabolites in the CTX group, 16 differential metabolites in the CJM extract group, 14 differential metabolites in the myricetin group, 14 differential metabolites in the myricitrin group.

9.
Article de Anglais | MEDLINE | ID: mdl-38963106

RÉSUMÉ

Liver and Breast cancer are ranked as the most prevailing cancers that cause high cancer-related mortality. As cancer is a life-threatening disease that affects the human population globally, there is a need to develop novel therapies. Among the available treatment options include radiotherapy, chemotherapy, surgery, and immunotherapy. The most superlative modern method is the use of plant-derived anticancer drugs that target the cancerous cells and inhibit their proliferation. Plant-derived compounds are generally considered safer than synthetic drugs/traditional therapies and could serve as potential novel targets to treat liver and breast cancer to revolutionize cancer treatment. Alkaloids and Polyphenols have been shown to act as anticancer agents through molecular approaches. They disrupt various cellular mechanisms, inhibit the production of cyclins and CDKs to arrest the cell cycle, and activate the DNA repairing mechanism by upregulating p53, p21, and p38 expression. In severe cases, when no repair is possible, they induce apoptosis in liver and breast cancer cells by activating caspase-3, 8, and 9 and increasing the Bax/Bcl-2 ratio. They also deactivate several signaling pathways, such as PI3K/AKT/mTOR, STAT3, NF-kB, Shh, MAPK/ERK, and Wnt/ß-catenin pathways, to control cancer cell progression and metastasis. The highlights of this review are the regulation of specific protein expressions that are crucial in cancer, such as in HER2 over-expressing breast cancer cells; alkaloids and polyphenols have been reported to reduce HER2 as well as MMP expression. This study reviewed more than 40 of the plant-based alkaloids and polyphenols with specific molecular targets against liver and breast cancer. Among them, Oxymatrine, Hirsutine, Piperine, Solamargine, and Brucine are currently under clinical trials by qualifying as potent anticancer agents due to lesser side effects. As a lot of research is there on anticancer compounds, there is a desideratum to compile data to move towards clinical trials phase 4 and control the prevalence of liver and breast cancer.

10.
Curr Gene Ther ; 2024 Jul 03.
Article de Anglais | MEDLINE | ID: mdl-38963113

RÉSUMÉ

BACKGROUND: Hepatocellular carcinoma (HCC) is one of the most intractable tumors in the world due to its high rate of recurrence and heterogeneity. AIM: The objective of this study was to investigate the role of circular RNA 0102231 (hsa_circ_ 0102231) in the progression of liver cancer. METHODS: In this study, quantitative polymerase chain reaction experiments were performed to quantify the hsa_circ_0102231 level in different liver cancer cell lines. Bioinformatics analysis, as well as a dual-luciferase reporter and RNA pull-down assay, were used to identify putative hsa_circ_ 0102231 downstream targets. Colony formation and CCK8 assays were utilized to examine cell proliferation, whereas Transwell assays were employed to monitor cell migration. Lastly, the role of hsa_circ_0102231 in liver cancer was assessed in a subcutaneous xenograft model. RESULTS: The expression of hsa_circ_0102231 increased significantly in HepG2 and Huh-7 cells compared with controls, and hsa_circ_0102231 knockdown inhibited cell proliferation and migration in vitro and in vivo. Bioinformatics analysis, as well as a dual-luciferase reporter and RNA pulldown assay, revealed that miR-873 and SOX4 were hsa_circ_0102231 downstream targets. miR-873 inhibition or SOX4 overexpression rescued the proliferation and migration of HepG2 and Huh-7 cells after hsa_circ_0102231 knockdown. Furthermore, SOX4 overexpression reversed the miR-873-induced inhibition of cell migration and proliferation in vitro. CONCLUSION: These results show that hsa_circ_0102231 knockdown impedes the progression of liver cancer by regulating the miR-873/SOX4 axis. However, further studies are needed to determine whether hsa_circ_0102231 may be a therapeutic target in liver cancer.

11.
Mol Cell Biochem ; 2024 Jul 04.
Article de Anglais | MEDLINE | ID: mdl-38963615

RÉSUMÉ

Gastrointestinal (GI) cancers are a major global health burden, representing 20% of all cancer diagnoses and 22.5% of global cancer-related deaths. Their aggressive nature and resistance to treatment pose a significant challenge, with late-stage survival rates below 15% at five years. Therefore, there is an urgent need to delve deeper into the mechanisms of gastrointestinal cancer progression and optimize treatment strategies. Increasing evidence highlights the active involvement of abnormal arachidonic acid (AA) metabolism in various cancers. AA is a fatty acid mainly metabolized into diverse bioactive compounds by three enzymes: cyclooxygenase, lipoxygenase, and cytochrome P450 enzymes. Abnormal AA metabolism and altered levels of its metabolites may play a pivotal role in the development of GI cancers. However, the underlying mechanisms remain unclear. This review highlights a unique perspective by focusing on the abnormal metabolism of AA and its involvement in GI cancers. We summarize the latest advancements in understanding AA metabolism in GI cancers, outlining changes in AA levels and their potential role in liver, colorectal, pancreatic, esophageal, gastric, and gallbladder cancers. Moreover, we also explore the potential of targeting abnormal AA metabolism for future therapies, considering the current need to explore AA metabolism in GI cancers and outlining promising avenues for further research. Ultimately, such investigations aim to improve treatment options for patients with GI cancers and pave the way for better cancer management in this area.

12.
Data Brief ; 55: 110562, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-38952952

RÉSUMÉ

Despite epidemiological indications, utility of metformin in liver cancer remains debated and the understanding of the mechanism underlying its anti-cancer effects remains incomplete. Particularly, whether it operates via similar mechanism under glucose-sufficient and glucose- deficient environments or whether these effects are reversible remains unexplored. This metabolomic dataset was collected from liver cancer (HepG2) cells treated with metformin or placebo over a period of 3 h to 48 h as well as from cells recovering after metformin withdrawal. Cells were exposed to placebo or 2.5 mM metformin with or without glucose (5 mM) supplementation. The cells were harvested at 3, 6, 12, 24, and 48 h post-treatment. Cells were also harvested after 24 h of treatment under one of these conditions followed by reversal of glucose and/or metformin exposure status for 48 h. Metabolites from six biological replicates of each experimental group were extracted using chilled monophasic metabolite extraction solvent (Water: Acetonitrile: Isopropanol= 2:3:3) containing homovanillic acid as an internal standard. Samples were derivatized using MOX reagent followed by MSTFA. Untargeted metabolomic profiling of derivatized samples were performed using an Agilent 7890B gas chromatograph coupled to a 5977B single quadrupole mass spectrometer. Analytes were injected through a splitless liner and separated on a HP-5MS ultra-inert column using ultrapure helium as the carrier gas. Peak alignment, annotation, and integration were done using Agilent MassHunter Quantitative analysis software. Multivariate analysis was performed using MetaboAnalyst 5.0. These experiments were performed to unravel the longitudinal evolution of cellular metabolome in response to metformin treatment, its glucose dependence, as well as to examine the reversibility of these changes. The dataset can help to identify glucose-independent pathways involved in anti-cancer effect of metformin. The dataset can be used to design experiments to develop novel therapeutic combinations synergistically acting with metformin to cripple the metabolic fitness of cancer cells. It can also help to develop experiments to test the effect of metformin withdrawal in liver cancer.

13.
J Asian Nat Prod Res ; : 1-13, 2024 Jul 03.
Article de Anglais | MEDLINE | ID: mdl-38958633

RÉSUMÉ

Sesquilignans PD is a natural phenylpropanoid compound that was isolated from Zanthoxylum nitidum var. tomentosum. In this study, we assessed the antitumor effect of PD on SK-Hep-1 and HepG2 cells and the underlying molecular mechanisms. The results revealed that PD markedly inhibited the proliferation and migration of both liver cancer cells. Moreover, PD induced apoptosis, autophagy, and reactive oxygen species (ROS) production in liver cancer cells. Notably, PD increased the protein levels of p-p38 MAPK and p-ERK1/2 in liver cancer cells. This is the first report on the anticancer effect of PD, which is mediated via increased ROS production and MAPK signaling activation.

14.
J Cancer Res Clin Oncol ; 150(7): 333, 2024 Jul 02.
Article de Anglais | MEDLINE | ID: mdl-38955827

RÉSUMÉ

OBJECTIVE: To explore the effect and mechanism of relaxin (RLX) in the growth and metastasis of livercancer after combination treatment with transarterial chemoembolization (TACE). MATERIALS AND METHODS: HCCLM3 and Huh-7 cells were adopted to evaluate the effect of tumor proliferation, migration, and invasion after RLX administration in vitro. The rabbit VX2 model was used to evaluate the biosafety, doxorubicin penetration, local tumor response, tumor metastasis, and survival benefit of RLX combined with TACE treatment. RESULTS: RLX did not affect the proliferation, migration, or invasion of HCCLM3 and Huh-7 cells, and the expression of E-cadherin and HIF-1α also remained unchanged while the MMP-9 protein was upregulated in vitro. In the rabbit VX2 model, compared to the normal saline group (NS), RLX group (RLX) and TACE mono-therapy group (TACE), the group that received TACE combined with RLX (TACE + RLX) showed an improved local tumor response and survival benefit. Furthermore, TACE combined with RLX was found to reduce tumor metastasis. This combination therapy reduced the fibrotic extracellular matrix in the tumor microenvironment, allowing for better penetration of doxorubicin, improved infiltration of CD8+ T cells and affected the secretion of cytokines. Additionally, RLX combined with TACE was able to decrease the expression of HIF-1α and PD-L1. The biosafety of TACE combined with RLX was also confirmed. CONCLUSION: RLX synergized with TACE by mitigating the fibrotic extracellular matrix and tumor hypoxic microenvironment, improving the therapeutic effect and inhibiting metastasis during the treatment of liver cancer.


Sujet(s)
Chimioembolisation thérapeutique , Tumeurs du foie , Relaxine , Animaux , Chimioembolisation thérapeutique/méthodes , Lapins , Relaxine/administration et posologie , Tumeurs du foie/secondaire , Tumeurs du foie/thérapie , Tumeurs du foie/anatomopathologie , Tumeurs du foie/traitement médicamenteux , Doxorubicine/administration et posologie , Humains , Association thérapeutique , Prolifération cellulaire/effets des médicaments et des substances chimiques , Lignée cellulaire tumorale , Modèles animaux de maladie humaine , Carcinome hépatocellulaire/thérapie , Carcinome hépatocellulaire/anatomopathologie , Carcinome hépatocellulaire/traitement médicamenteux , Métastase tumorale
15.
ACS Nano ; 2024 Jun 30.
Article de Anglais | MEDLINE | ID: mdl-38946122

RÉSUMÉ

Transarterial chemoembolization (TACE), the mainstay treatment of unresectable primary liver cancer that primarily employs nondegradable drug-loaded embolic agents to achieve synergistic vascular embolization and locoregional chemotherapy effects, suffers from an inferior drug burst behavior lacking long-term drug release controllability that severely limits the TACE efficacy. Here we developed gelatin-based drug-eluting microembolics grafted with nanosized poly(acrylic acid) serving as a biodegradable ion-exchange platform that leverages a counterion condensation effect to achieve high-efficiency electrostatic drug loading with electropositive drugs such as doxorubicin (i.e., drug loading capacity >34 mg/mL, encapsulation efficiency >98%, and loading time <10 min) and an enzymatic surface-erosion degradation pattern (∼2 months) to offer sustained locoregional pharmacokinetics with long-lasting deep-tumor retention capability for TACE treatment. The microembolics demonstrated facile microcatheter deliverability in a healthy porcine liver embolization model, superior tumor-killing capacity in a rabbit VX2 liver cancer embolization model, and stabilized extravascular drug penetration depth (>3 mm for 3 months) in a rabbit ear embolization model. Importantly, the microembolics finally exhibited vessel remodeling-induced permanent embolization with minimal inflammation responses after complete degradation. Such a biodegradable ion-exchange drug carrier provides an effective and versatile strategy for enhancing long-term therapeutic responses of various local chemotherapy treatments.

16.
Cureus ; 16(6): e61844, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38975467

RÉSUMÉ

BACKGROUND: CD147, encoded by the BSGgene, has complex transcripts that encode proteins of different lengths. Total BSG transcription is a prognostic biomarker for patients with liver cancer. This study tried to analyze the expression profile and prognostic significance of BSG transcripts in liver cancer. MATERIALS AND METHODS: RNA sequencing data from The Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression (GTEx) project, survival data from TCGA, and protein expression data from the Human Protein Atlas were systematically analyzed. RESULTS: Among the four protein-coding transcripts of BSG, ENST00000353555 encoding basigin-2 is the dominant transcript isoform. It might be an independent prognostic biomarker for unfavorable overall survival in patients with liver cancer (HR: 1.404, 95% CI: 1.1224-1.754, p = 0.003). CONCLUSIONS: ENST00000353555 might be a prognostic biomarker linking unfavorable overall survival in liver cancer patients.

17.
Int J Pharm ; : 124424, 2024 Jul 04.
Article de Anglais | MEDLINE | ID: mdl-38971510

RÉSUMÉ

Doxorubicin (DOX) is a chemotherapy drug used for hepatocellular carcinoma (HCC) treatment, but its effectiveness can be dramatically dampened by cancer cell chemoresistance. Signal transducer and activator of transcription 3 (STAT3) is implicated with drug resistance in a range of cancers (e.g., HCC), and the STAT3 inhibition can reverse the resistance of cancer cells to chemotherapeutic drugs. In the present study, a combination regimen to improve the efficiency of DOX was provided via the STAT3 blockade using plumbagin (PLB). A poly(lactic-co-glycolic acid) decorated by polyethylene glycol and aminoethyl anisamide was produced in the present study with the hope of generating the nanoparticles for co-delivery of DOX and PLB. The resulting co-formulation suppressed the STAT3 activity and achieved the synergistic chemotherapy, which led to tumor inhibition in the mice with subcutaneous DOX-resistant HCC, without causing any toxicity. The present study reveals the synergism of DOX and PLB, and demonstrates a promising combinatorial approach for treating HCC.

18.
J Hepatocell Carcinoma ; 11: 1235-1249, 2024.
Article de Anglais | MEDLINE | ID: mdl-38974017

RÉSUMÉ

Introduction: We aimed to evaluate the generalizability of retrospective single-center cohort studies on prognosis of hepatocellular carcinoma (HCC) by comparing overall survival (OS) after various treatments between a nationwide multicenter cohort and a single-center cohort of HCC patients. Methods: Patients newly diagnosed with HCC between January 2008 and December 2018 were analyzed using data from the Korean Primary Liver Cancer Registry (multicenter cohort, n=16,443), and the Asan Medical Center HCC registry (single-center cohort, n=15,655). The primary outcome, OS after initial treatment, was compared between the two cohorts for both the entire population and for subcohorts with Child-Pugh A liver function (n=2797 and n=5151, respectively) treated according to the Barcelona-Clinic-Liver-Cancer (BCLC) strategy, using Log rank test and Cox proportional hazard models. Results: Patients of BCLC stages 0 and A (59.3% vs 35.2%) and patients who received curative treatment (42.1% vs 32.1%) were more frequently observed in the single-center cohort (Ps<0.001). Multivariable analysis revealed significant differences between the two cohorts in OS according to type of treatment: the multicenter cohort was associated with higher risk of mortality among patients who received curative (adjusted hazard ratio [95% confidence interval], 1.48 [1.39-1.59]) and non-curative (1.22 [1.17-1.27]) treatments, whereas the risk was lower in patients treated with systemic therapy (0.83 [0.74-0.92]) and best supportive care (0.85 [0.79-0.91]). Subcohort analysis also demonstrated significantly different OS between the two cohorts, with a higher risk of mortality in multicenter cohort patients who received chemoembolization (1.72 [1.48-2.00]) and ablation (1.44 [1.08-1.92]). Conclusion: Comparisons of single-center and multicenter cohorts of HCC patients revealed significant differences in OS according to treatment modality after adjustment for prognostic variables. Therefore, the results of retrospective single-center cohort studies of HCC treatments may not be generalizable to real-world practice.

19.
Front Pharmacol ; 15: 1337179, 2024.
Article de Anglais | MEDLINE | ID: mdl-38974037

RÉSUMÉ

Background: The effectiveness and safety of using Brucea javanica oil (BJO) in combination with Transarterial Chemoembolization (TACE) for liver cancer treatment are subjects of debate. This study aims to assess the comparative effectiveness and safety of BJO-assisted TACE versus TACE alone and quantifies the differences between these two treatment methods. Methods: A systematic search was conducted in multiple databases including PubMed, Cochrane, CNKI, and Wanfang, until 1 July 2023. Meta-analysis was conducted, and the results were presented as mean difference (MD), risk ratio (RR), and 95% confidence intervals (CI). Results: The search yielded 11 RCTs, with a combined sample size of 1054 patients. Meta-analysis revealed that BJO-assisted TACE exhibited superior outcomes compared to standalone TACE. Specific data revealed that BJO-assisted TACE improves clinical benefit rate by 22% [RR = 1.22, 95% CI (1.15, 1.30)], increases the number of people with improved quality of life by 32%, resulting in an average score improvement of 9.53 points [RR = 1.32, 95% CI (1.22, 1.43); MD = 9.53, 95% CI (6.95, 12.10)]. Furthermore, AFP improvement rate improved significantly by approximately 134% [RR = 2.34, 95% CI (1.58, 3.46)], accompanied by notable improvements in liver function indicators, with an average reduction of 27.19 U/L in AST [MD = -27.19, 95% CI (-40.36, -14.02)], 20.77 U/L in ALT [MD = -20.77, 95% CI (-39.46, -2.08)], 12.17 µmol/L in TBIL [MD = -12.17, 95% CI (-19.38, -4.97)], and a decrease of 43.72 pg/mL in VEGF [MD = -43.72, 95% CI (-63.29, -24.15)]. Most importantly, there was a 29% reduction in the occurrence of adverse reactions [RR = 0.71, 95% CI (0.60, 0.84)]. Conclusion: These findings indicate that BJO-assisted TACE may be considered as a potentially beneficial treatment option for liver cancer patients when compared to standalone TACE. It appears to contribute to improved treatment outcomes, enhanced quality of life, and potentially reduced adverse reactions, suggesting it warrants further investigation as a promising approach for liver cancer treatment. Systematic Review Registration: identifier CRD42023428948.

20.
Med Mol Morphol ; 2024 Jul 09.
Article de Anglais | MEDLINE | ID: mdl-38980407

RÉSUMÉ

Digital pathology has enabled the noninvasive quantification of pathological parameters. In addition, the combination of digital pathology and artificial intelligence has enabled the analysis of a vast amount of information, leading to the sharing of much information and the elimination of knowledge gaps. Fibrosis, which reflects chronic inflammation, is the most important pathological parameter in chronic liver diseases, such as viral hepatitis and metabolic dysfunction-associated steatotic liver disease. It has been reported that the quantitative evaluation of various fibrotic parameters by digital pathology can predict the prognosis of liver disease and hepatocarcinogenesis. Liver fibrosis evaluation methods include 1 fiber quantification, 2 elastin and collagen quantification, 3 s harmonic generation/two photon excitation fluorescence (SHG/TPE) microscopy, and 4 Fibronest™.. In this review, we provide an overview of role of digital pathology on the evaluation of fibrosis in liver disease and the characteristics of recent methods to assess liver fibrosis.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...