Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 237
Filtrer
1.
Plant J ; 2024 Sep 12.
Article de Anglais | MEDLINE | ID: mdl-39264984

RÉSUMÉ

Lupinus mutabilis is an under-domesticated legume species from the Andean region of South America. It belongs to the New World lupins clade, which groups several lupin species displaying large genetic variation and adaptability to highly different environments. L. mutabilis is attracting interest as a potential multipurpose crop to diversify the European supply of plant proteins, increase agricultural biodiversity, and fulfill bio-based applications. This study reports the first high-quality L. mutabilis genome assembly, which is also the first sequenced assembly of a New World lupin species. Through comparative genomics and phylogenetics, the evolution of L. mutabilis within legumes and lupins is described, highlighting both genomic similarities and patterns specific to L. mutabilis, potentially linked to environmental adaptations. Furthermore, the assembly was used to study the genetics underlying important traits for the establishment of L. mutabilis as a novel crop, including protein and quinolizidine alkaloids contents in seeds, genomic patterns of classic resistance genes, and genomic properties of L. mutabilis mycorrhiza-related genes. These analyses pointed out copy number variation, differential genomic gene contexts, and gene family expansion through tandem duplications as likely important drivers of the genomic diversity observed for these traits between L. mutabilis and other lupins and legumes. Overall, the L. mutabilis genome assembly will be a valuable resource to conduct genetic research and enable genomic-based breeding approaches to turn L. mutabilis into a multipurpose legume crop.

2.
Plants (Basel) ; 13(15)2024 Jul 29.
Article de Anglais | MEDLINE | ID: mdl-39124218

RÉSUMÉ

Restoring native plant species on degraded landscapes is challenging. Symbiotic partners in the plant rhizosphere can aid in nutrient acquisition, pathogen protection, stress tolerance, and many other processes. However, these microbes are often absent in altered landscapes and need to be re-integrated to improve restoration efforts. We evaluated, within a laboratory setting, the ability of commercial and indigenous rhizobia strains to form nodules on lupine species used for rangeland seedings in the Great Basin region of the Western United States and ascertained if these strains could be applied through a seed coating. We also evaluated if a compost amendment applied via seed coating could further enhance the performance of the rhizobia strains. Our analysis showed that successful nodulation could occur using commercial and wildland-collected indigenous strains through either a liquid culture applied to seedlings or as a dry seed coating. However, the number of root nodules and the presence of a pink color (indicating nitrogen fixation) were typically higher in the commercial product than in the indigenous strains. Compost did not improve nodulation or the performance of the nodules; however, this treatment alone improved shoot growth. Overall, these results suggest that commercial rhizobium may be more effective in improving plant growth, and future research with native rhizobia may want to consider identifying strains compatible with seed-coating delivery. Longer-term studies are now merited for assessing how the rhizobia strains evaluated in this study influence plant growth, particularly in a field setting.

3.
Toxicon ; 248: 108053, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-39084529

RÉSUMÉ

Lupines (Lupinus spp.) are a common plant species on western U.S. rangelands with several lupine species containing alkaloids that can be toxic and/or teratogenic to livestock. In North America, more than 150 lupine species are recognized with some ranches or grazing allotments containing multiple species. One or more of these lupine species may contain alkaloids that are teratogenic to cattle. Previous work has shown that lupine alkaloids can be detected in earwax of cattle grazing lupine infested rangelands. Our hypothesis is that earwax can be used to determine if cattle have been exposed to teratogenic alkaloids from multiple lupine species. Two lupine species, L. sericeus and L. polyphyllus, were present on a rangeland in east-central Idaho. The teratogen, anagyrine, was detected in L. sericeus and the teratogen, ammodendrine, was detected in L. polyphyllus plants collected on this rangeland. In this study, earwax was collected from 69 pregnant cows that had previously grazed a rangeland containing two different lupine species containing alkaloids that cause crooked calf syndrome (CCS). Anagyrine was detected in the earwax of all 69 cows sampled. Ammodendrine, was detected in the earwax of 28 of the 69 cows sampled. Earwax is a good non-invasive sample to aid in the diagnosis of cattle that have consumed lupine and does appear, in this case, to be a good diagnostic tool to differentiate between more than one lupine species that may be the cause of CCS. Concentrations of anagyrine or ammodendrine did not correlate with the incidence of CCS.


Sujet(s)
Alcaloïdes , Lupinus , Tératogènes , Animaux , Lupinus/composition chimique , Bovins , Tératogènes/toxicité , Alcaloïdes/toxicité , Alcaloïdes/analyse , Bétail , Maladies des bovins/induit chimiquement , Femelle , Grossesse
4.
Food Chem ; 460(Pt 1): 140520, 2024 Dec 01.
Article de Anglais | MEDLINE | ID: mdl-39047479

RÉSUMÉ

Lupins are an excellent source of protein which can be used to obtain protein isolates with potential use in the food industry. Some studies use supercritical CO2 (SC-CO2) to defat legume flours, but no study analyzes the effect of applying this technology directly to the protein isolate. This article has proposed the use of SC-CO2 to improve lupin protein isolate (LPI) quality. SC-CO2 increased the LPI purity while reducing oil and other antitechnological factors (saponins and polyphenols). The treatment significantly improved the LPI color due to the elimination of the lipid fraction and lipophilic pigments (carotenoids). No changes in amino acid contents or chemical score were observed due to the SC-CO2. Finally, the treatment improved or did not affect the main LPI technofunctional properties. Therefore, SC-CO2 is a promising technique to enhance the quality of protein isolates, without affecting or improving their functional properties.


Sujet(s)
Dioxyde de carbone , Lupinus , Protéines végétales , Lupinus/composition chimique , Dioxyde de carbone/composition chimique , Protéines végétales/composition chimique
5.
Sci Total Environ ; 946: 174277, 2024 Oct 10.
Article de Anglais | MEDLINE | ID: mdl-38944300

RÉSUMÉ

Microorganisms form dynamic communities with plants, providing benefits such as nutrient acquisition and stress resilience. Understanding how these microorganisms are affected by environmental factors such as growth conditions and soil characteristics are essential for harnessing these communities for sustainable agriculture practices and their response to climate change. The microbiome associated to Lupinus angustifolius, a legume native in Europe, with a high protein value and stress resilience was characterized for the first time. Using 16S rRNA gene and ITS amplicon sequencing, we characterized the compositional and temporal changes of the bacterial and fungal communities associated to the soil, rhizosphere, and plant compartments where Lupinus angustifolius grows naturally. Our results suggest that the main difference in the soil microbial communities is related to the edaphic properties, although environmental factors such as temperature, humidity or rainfall also influenced the composition of the soil microbial communities. We also characterized the bacterial communities associated with the rhizosphere, roots, nodules, and leaves of wild plants collected in the field and compared them against plants obtained under greenhouse conditions. In the plant compartments, the bacterial composition appeared to be more affected by the growing conditions (field vs greenhouse), than by soil characteristics or location. These results can be used to identify key taxa that may play crucial roles in the development and adaptation of the host plant and its associated microbiota to environmental changes and highlight the importance of characterizing the plant microbiomes in their natural habitats. Soil, influenced by climatic seasons, shapes the plant microbiome assembly. Lupinus recruits a core microbiome across rhizosphere, roots, nodules, and leaves, that is stable across locations. However, cultivation conditions may alter microbiome dynamics, impacting the adaptability of its components. Wild plants show a resilient and adaptable microbiome while germination and cultivation in greenhouse conditions alter its composition and vulnerability.


Sujet(s)
Lupinus , Microbiote , Rhizosphère , Microbiologie du sol , Lupinus/microbiologie , ARN ribosomique 16S , Bactéries/classification , Bactéries/génétique , Agriculture , Changement climatique , Sol/composition chimique
6.
J Exp Bot ; 2024 Jun 12.
Article de Anglais | MEDLINE | ID: mdl-38864852

RÉSUMÉ

Arsenic contamination of soils threatens the health of millions globally through accumulation in crops. While plants detoxify arsenic via phytochelatin (PC) complexation and efflux of arsenite from roots, arsenite efflux mechanisms are not fully understood. Here, white lupin (Lupinus albus) was grown in semi-hydroponics and exudation of glutathione (GSH) derivatives and PCs in response to arsenic was scrutinised using LC-MS/MS. Inhibiting synthesis of PC precursor GSH with L-buthionine sulfoximine (BSO) or ABC transporters with vanadate drastically reduced (>22%) GSH-derivative and PC2 exudation, but not PC3 exudation. This was accompanied by arsenic hypersensitivity in plants treated with BSO and moderate sensitivity with vanadate treatment. Investigating arsenic-phytochelatin (As-PC) complexation revealed two distinct As-PC complexes, As bound to GSH and PC2 (GS-As-PC2) and As bound to PC3 (As-PC3), in exudates of As-treated lupin. Vanadate inhibited As-PC exudation, while BSO inhibited both the synthesis and exudation of As-PC complexes. These results demonstrate a role of GSH-derivatives and PC exudation in lupin arsenic tolerance and reveal As-PC exudation as a new potential mechanism contributing to active arsenic efflux in plants. Overall, this study uncovers insight into rhizosphere arsenic detoxification with potential to help mitigate pollution and reduce arsenic accumulation in crops.

7.
Food Res Int ; 187: 114426, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38763676

RÉSUMÉ

Germination is a process that enhances the content of health-promoting secondary metabolites. However, the bioaccessibility of these compounds depends on their stability and solubility throughout the gastrointestinal tract. The study aimed to explore how germination time influences the content and bioaccessibility of γ-aminobutyric acid and polyphenols and antioxidant capacity of lupin (Lupinus angustifolius L.) sprouts during simulated gastrointestinal digestion. Gamma-aminobutyric acid showed a decrease following gastrointestinal digestion (GID) whereas phenolic acids and flavonoids exhibited bioaccessibilities of up to 82.56 and 114.20%, respectively. Although the digestion process affected the profile of phenolic acids and flavonoids, certain isoflavonoids identified in 7-day sprouts (G7) showed resistance to GID. Germination not only favored antioxidant activity but also resulted in germinated samples exhibiting greater antioxidant properties than ungerminated counter parts after GID. Intestinal digests from G7 did not show cytotoxicity in RAW 264.7 macrophages, and notably, they showed an outstanding ability to inhibit the production of reactive oxygen species. This suggests potential benefit in mitigating oxidative stress. These findings contribute to understand the dynamic interplay between bioprocessing and digestion in modulating the bioaccessibility of bioactive compounds in lupin, thereby impacting health.


Sujet(s)
Antioxydants , Biodisponibilité , Digestion , Germination , Lupinus , Lupinus/métabolisme , Lupinus/composition chimique , Antioxydants/métabolisme , Germination/effets des médicaments et des substances chimiques , Souris , Cellules RAW 264.7 , Animaux , Polyphénols/métabolisme , Flavonoïdes/analyse , Flavonoïdes/métabolisme , Acide gamma-amino-butyrique/métabolisme , Espèces réactives de l'oxygène/métabolisme , Hydroxybenzoates/métabolisme , Hydroxybenzoates/analyse , Tube digestif/métabolisme
8.
J Exp Bot ; 75(16): 4891-4903, 2024 Aug 28.
Article de Anglais | MEDLINE | ID: mdl-38686677

RÉSUMÉ

During germination plants rely entirely on their seed storage compounds to provide energy and precursors for the synthesis of macromolecular structures until the seedling has emerged from the soil and photosynthesis can be established. Lupin seeds use proteins as their major storage compounds, accounting for up to 40% of the seed dry weight. Lupins are therefore a valuable complement to soy as a source of plant protein for human and animal nutrition. The aim of this study was to elucidate how storage protein metabolism is coordinated with other metabolic processes to meet the requirements of the growing seedling. In a quantitative approach, we analysed seedling growth, as well as alterations in biomass composition, the proteome, and metabolite profiles during germination and seedling establishment in Lupinus albus. The reallocation of nitrogen resources from seed storage proteins to functional seed proteins was mapped based on a manually curated functional protein annotation database. Although classified as a protein crop, Lupinus albus does not use amino acids as a primary substrate for energy metabolism during germination. However, fatty acid and amino acid metabolism may be integrated at the level of malate synthase to combine stored carbon from lipids and proteins into gluconeogenesis.


Sujet(s)
Acides aminés , Germination , Lupinus , Protéines végétales , Protéome , Plant , Lupinus/métabolisme , Lupinus/croissance et développement , Acides aminés/métabolisme , Protéome/métabolisme , Plant/métabolisme , Plant/croissance et développement , Protéines végétales/métabolisme , Graines/métabolisme , Graines/croissance et développement
9.
Plant Dis ; 108(8): 2542-2549, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-38568787

RÉSUMÉ

Stem rot caused by Sclerotinia sclerotiorum is a serious and sometimes devastating disease of lupin (Lupinus spp.). A total of 236 lupin accessions from across 12 Lupinus species were screened against the prevalent S. sclerotiorum isolate MBRS-1 (pathotype 76). L. angustifolius accession 21655 and L. albus var. albus accession 20589 showed immune and "near-immune" responses, respectively. Thirteen accessions of L. angustifolius, three accessions each of L. albus and L. albus var. albus, and a single accession each of L. albus var. graecus, L. mutabilis, L. palaestinus, and L. pilosus (totaling ∼4%) showed a highly resistant (HR) response. A further 19 accessions of L. angustifolius, 2 accessions each of L. albus and L. pilosus, and a single accession of L. mutabilis (totaling ∼10%) showed a resistant (R) response. The reactions of 16 (15 L. angustifolius, 1 L. digitatus) of these 236 accessions were also compared with their reactions to a different isolate, Walkaway-3 (WW-3; pathotype 10). Against this isolate, five L. angustifolius accessions showed an HR response and four showed an R response, and the L. digitatus accession showed a moderate resistance response. Overall, isolate WW-3 caused significantly (P < 0.05) smaller lesions than MBRS-1 across tested accessions in common. In addition, 328 plants in a "wild" naturalized field population of L. cosentinii were screened in situ in the field against isolate MBRS-1. Five (∼1.5%) of the 328 plants of wild lupin showed an immune response, 63 (∼19%) showed an HR response, and 146 (∼45%) showed an R response. We believe this is the first examination of diverse Lupinus spp. germplasm responses to a prevalent pathotype of S. sclerotiorum. Lupin genotypes exhibiting high-level resistance to Sclerotinia stem rot identified in this study can be used as parental lines for crosses in lupin breeding programs and/or directly as improved cultivars to reduce the adverse impact of this disease on lupin crops.


Sujet(s)
Ascomycota , Résistance à la maladie , Lupinus , Maladies des plantes , Lupinus/microbiologie , Ascomycota/physiologie , Maladies des plantes/microbiologie , Maladies des plantes/immunologie
10.
Ecology ; 105(5): e4306, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38590050

RÉSUMÉ

Plants produce an array of defensive compounds with toxic or deterrent effects on insect herbivores. Pollen can contain relatively high concentrations of such defense compounds, but the causes and consequences of this enigmatic phenomenon remain mostly unknown. These compounds could potentially protect pollen against antagonists but could also reduce flower attractiveness to pollinators. We combined field observations of the pollen-rewarding Lupinus argenteus with chemical analysis and laboratory assays to test three hypotheses for the presence of pollen defense compounds: (1) these compounds are the result of spillover from adjacent tissues, (2) they protect against pollen thieves, and (3) they act as antimicrobial compounds. We also tested whether pollen defense compounds affect pollinator behavior. We found a positive relationship between alkaloid concentrations in pollen and petals, supporting the idea that pollen defense compounds partly originate from spillover. However, pollen and petals exhibited quantitatively (but not qualitatively) distinct alkaloid profiles, suggesting that plants can adjust pollen alkaloid composition independently from that of adjacent tissues. We found no relationship between pollen alkaloid concentration and the abundance of pollen thieves in Lupinus flowers. However, pollen alkaloids were negatively associated with bacterial abundance. Finally, plants with more alkaloids in their pollen received more pollinator visits, but these visits were shorter, resulting in no change in the overall number of flowers visited. We propose that pollen defense compounds are partly the result of spillover from other tissues, while they also play an antimicrobial role. The absence of negative effects of these compounds on pollinator visitation likely allows their maintenance in pollen at relatively high concentrations. Taken together, our results suggest that pollen alkaloids affect and are mediated by the interplay of multiple interactions.


Sujet(s)
Lupinus , Pollen , Pollinisation , Pollen/composition chimique , Animaux , Lupinus/composition chimique , Lupinus/physiologie , Alcaloïdes , Fleurs/composition chimique , Abeilles/physiologie , Insectes/physiologie , Insectes/effets des médicaments et des substances chimiques
11.
Heliyon ; 10(7): e28790, 2024 Apr 15.
Article de Anglais | MEDLINE | ID: mdl-38596022

RÉSUMÉ

The identification of crops that simultaneously contribute to the global protein supply and mitigate the effects of climate change is an urgent matter. Lupins are well adapted to nutrient-poor or contaminated soils, tolerate various abiotic stresses, and present relevant traits for acting as ecosystem engineers. Lupins are best studied for their seeds, but their full foraging potential needs further evaluation. This study evaluated the effects of location and sowing date on forage production, proximate composition, and the detailed mineral and alkaloid profiles of three species of Lupinus (L. albus cv. Estoril, L. angustifolius cv. Tango, and L. luteus cv. Cardiga). Sowing date and location and their interaction with the plant species significantly affected the vast majority of measured parameters, emphasizing the effects of climate and soil conditions on these crops. The relatively high crude protein and in vitro digestibility support the potential of the lupin species studied as sustainable forage protein sources in diets for ruminant animals. The content of individual essential macro and trace elements was below the maximum tolerable levels for cattle and sheep. Lupanine, smipine, and sparteine were the most abundant quinolizidine alkaloids in L. albus cv. Estoril, lupanine, and sparteine in L. angustifolius cv. Tango, and lupinine, gramine, ammodendrine, and sparteine in L. luteus cv. Cardiga. Based on the maximum tolerable levels of total quinolizidine alkaloid intake, the dietary inclusion of forages of L. albus cv. Estoril and L. angustifolius cv. Tango does not pose a risk to the animals, but the high alkaloid content of L. luteus cv. Cardiga may compromise its utilization at high levels in the diet. Overall, the results reveal a high potential for lupins as protein forage sources well adapted to temperate regions and soils with lower fertility, with a relevant impact on livestock sustainability in a climate change era.

12.
Plant Dis ; 108(8): 2303-2308, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-38537136

RÉSUMÉ

Sclerotinia sclerotiorum (Lib.) de Bary, an economically devastating soilborne fungal pathogen known to cause disease across a wide range of plants, produces long-term inoculum called sclerotia that can germinate either carpogenically by ascospores infecting aboveground plant parts or myceliogenically to infect stem base and roots. Typically, for research purposes, S. sclerotiorum diseases are initiated by direct contact methods, using S. sclerotiorum mycelium agar plugs wrapped around the stem or sclerotia placed directly beneath root mass. However, reproducible noncontact methods leading to basal stem infection are not currently available. Therefore, the objective of this study was to develop effective noncontact protocols that consistently generate basal plant stem infection from S. sclerotiorum in the soil. Using three host plant species (canola, lupin, and lettuce), we determined two methods that reliably produced basal stem infection. The first method, where mycelial agar plugs were positioned just below the soil surface at a distance of 5 mm from each seedling, led to 100% infection in all plants. The second method used pathogen-infested soil by mixing the soil with dry inoculum in the form of a powder prepared from mycelium-colonized organic substrates. Four substrates consistently produced 100% seedling infection at 4 days after inoculation (DAI): wheat bran, wheat grain, red rice, and hulled millet. In contrast, chia, canary, sesame, and ryegrass seed substrates resulted in less than 50% seedling infection at 10 DAI, and infection levels did not progress further. The two soil inoculation methods outlined in this study will enhance future research on the progression of S. sclerotiorum diseases, with the potential to screen disease-resistant host genotypes to basal S. sclerotiorum infection and, in particular, to test the effectiveness of soil applications of fungicides or biocontrol agents against S. sclerotiorum basal infection.


Sujet(s)
Ascomycota , Maladies des plantes , Tiges de plante , Plant , Ascomycota/physiologie , Maladies des plantes/microbiologie , Maladies des plantes/prévention et contrôle , Plant/microbiologie , Tiges de plante/microbiologie , Lupinus/microbiologie , Lactuca/microbiologie , Brassica napus/microbiologie , Racines de plante/microbiologie
13.
Toxins (Basel) ; 16(3)2024 Mar 21.
Article de Anglais | MEDLINE | ID: mdl-38535829

RÉSUMÉ

Alkaloids play an essential role in protecting plants against herbivores. Humans can also benefit from the pharmacological effects of these compounds. Plants produce an immense variety of structurally different alkaloids, including quinolizidine alkaloids, a group of bi-, tri-, and tetracyclic compounds produced by Lupinus species. Various lupin species produce different alkaloid profiles. To study the composition of quinolizidine alkaloids in lupin seeds, we collected 31 populations of two wild species native to Israel, L. pilosus and L. palaestinus, and analyzed their quinolizidine alkaloid contents. Our goal was to study the alkaloid profiles of these two wild species to better understand the challenges and prospective uses of wild lupins. We compared their profiles with those of other commercial and wild lupin species. To this end, a straightforward method for extracting alkaloids from seeds and determining the quinolizidine alkaloid profile by LC-MS/MS was developed and validated in-house. For the quantification of quinolizidine alkaloids, 15 analytical reference standards were used. We used GC-MS to verify and cross-reference the identity of certain alkaloids for which no analytical standards were available. The results enabled further exploration of quinolizidine alkaloid biosynthesis. We reviewed and re-analyzed the suggested quinolizidine alkaloid biosynthesis pathway, including the relationship between the amino acid precursor l-lysine and the different quinolizidine alkaloids occurring in seeds of lupin species. Revealing alkaloid compositions and highlighting some aspects of their formation pathway are important steps in evaluating the use of wild lupins as a novel legume crop.


Sujet(s)
Lupinus , , Humains , Chromatographie en phase liquide , Spectrométrie de masse en tandem , Graines
14.
Foods ; 13(5)2024 Feb 23.
Article de Anglais | MEDLINE | ID: mdl-38472786

RÉSUMÉ

Seeds of "sweet lupins" have been playing an increasing role in the food industry. Lupin proteins may be used for producing a variety of foods, including pasta, bread, cookies, dairy products, and coffee substitutes. In a small percentage of the population, lupin consumption may elicit allergic reactions, either due to primary sensitization to lupin or due to cross-allergy with other legumes. Thus, lupin has to be declared on commercial food products according to EU food regulations. In this study, we investigated the influence of roasting seeds of the L. angustifolius cultivar "Boregine" on the detectability of lupin by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), ELISAs, LC-MS/MS, and real-time PCR. Seeds were roasted by fluidized bed roasting, and samples were drawn at seed surface temperatures ranging from 98 °C to 242 °C. With increasing roasting temperature, the extractability of proteins and DNA decreased. In addition, roasting resulted in lower detectability of lupin proteins by ELISAs and LC-MS/MS and lower detectability of DNA by real-time PCR. Our results suggest reduced allergenicity of roasted lupin seeds used for the production of "lupin coffee"; however, this has to be confirmed in in vivo studies.

15.
Foods ; 13(5)2024 Mar 06.
Article de Anglais | MEDLINE | ID: mdl-38472920

RÉSUMÉ

The popularity of adding pulse flours to baked goods is growing rapidly due to their recognised health benefits. In this study, increasing amounts (3, 7, 10, and 15%) of white lupin flour (Lupinus albus L.) and of protein concentrate from narrow-leaved lupin (Lupinus angustifolius L.) were used as replacements for durum wheat semolina to prepare bread, and their effects on the physicochemical properties of the flour blends, as well as the technological and sensory qualities of bread, were evaluated. The addition of protein concentrate from narrow-leaved lupin and white lupin flour increased the water binding capacity and the leavening rate compared to pure semolina. A farinograph test indicated that the dough development time had a slight but significant tendency to increase with the addition of lupin flour and protein concentrate of narrow-leaved lupin, while had a negative effect on the stability of dough. The alveograph strength decreased (225, 108, and 76 × 10-4 J for dough made with semolina, 15% of protein concentrate from narrow-leaved lupin, and 15% of white lupin flour, respectively), whereas there was an upward trend in the P/L ratio. Compared to re-milled semolina, the samples with lupin flour and protein concentrate from narrow-leaved lupin had low amylase activity, with falling number values ranging from 439 s to 566 s. The addition of the two different lupin flours lowered the specific volumes of the breads (2.85, 2.39, and 1.93 cm3/g for bread made from semolina, from 15% of protein concentrate from narrow-leaved lupin, and from 15% of white lupin flour, respectively) and increased their hardness values (up to 21.34 N in the bread with 15% of protein concentrate from narrow-leaved lupin). The porosity of the loaves was diminished with the addition of the two lupin flours (range of 5-8). The sensory analysis showed that the addition of white lupin flour or protein concentrate from narrow-leaved lupin did not impart any unpleasant flavours or odours to the bread. To conclude, the use of lupin in breadmaking requires adjustments to strengthen the gluten network but does not require a deflavouring process.

16.
Molecules ; 29(3)2024 Jan 24.
Article de Anglais | MEDLINE | ID: mdl-38338327

RÉSUMÉ

Quinolizidine alkaloids (QAs) are toxic secondary metabolites of the Lupinus species, the presence of which limits the expansion of lupin beans consumption, despite their high protein content. Evaluation of the level of alkaloids in edible Lupinus species is crucial from a food safety point of view. However, quantitation of QAs is complicated by the fact that not all important alkaloids used for quantitation are commercially available. In this context, we developed a method for the simultaneous quantitation of eight major lupin alkaloids using quantitative NMR spectroscopy (qNMR). Quantitation and analysis were performed in 15 different seed extracts of 11 Lupinus spp. some of which belonged to the same species, with different geographical origins and time of harvest, as well as in all aerial parts of L. pilosus. The mature seeds of L. pilosus were found to be a uniquely rich source of multiflorine. Additionally, we developed a protocol using adsorption or ionic resins for easy, fast, and efficient debittering of the lupine seeds. The protocol was applied to L. albus, leading to a decrease of the time required for alkaloids removal as well as water consumption and to a method for QA isolation from the debittering wastewater.


Sujet(s)
Alcaloïdes , Lupinus , , Lupinus/composition chimique , Alcaloïdes/analyse , Graines/composition chimique
17.
Antioxidants (Basel) ; 13(2)2024 Feb 19.
Article de Anglais | MEDLINE | ID: mdl-38397849

RÉSUMÉ

Despite the many beneficial properties of legume plants, their use in diets for poultry is limited by the presence of antinutritional factors. The aim of the study was to determine the activity of DT-diaphorase, ethoxycoumarin O-deethylase, and catalase, and the concentration of malondialdehyde in liver tissue, as well as the activity of SOD and CAT in the serum of Hy-line Brown hens fed a diet supplemented with various doses of Lupinus angustifolius seeds. The results indicate that the use of large amounts of lupin in the diet resulted in an increase in MDA concentration in the liver and the lipid vacuolization of hepatocytes. A significant increase in DTD activity was observed in chickens receiving 15% lupin. Regardless of lupin dose, no increase in SOD activity was observed in chicken serum after 33 days of the experiment. From the 66th day of the experiment, an increase in catalase activity in the serum of laying hens was observed, while low activity of this enzyme was found in the liver. It can be concluded that the short-term use of lupin in the diet of laying hens does not affect the activity of antioxidant enzymes and, therefore, does not affect the oxidative-antioxidant balance of their body.

18.
Nutrients ; 16(1)2024 Jan 02.
Article de Anglais | MEDLINE | ID: mdl-38201979

RÉSUMÉ

Shifts toward increased proteolytic fermentation, such as, for example, in athlete and high-protein weight loss diets, may alter the relative abundance of microbial species in the gut and generate bioactive, potentially deleterious metabolic products. In the current investigation, intestinal (caecal) microbiota composition was studied in rats fed diets differing only in their constituent proteins: milk (casein (CAS), lactalbumin (LA)) or legume (Cicer arietinum, Lupinus angustifolius) protein isolates (chickpea protein isolate (CPI), lupin protein isolate (LI)). ANOSIM and Discriminant Analysis showed significant (p < 0.05) differences at both family and genus levels in both microbiota composition and functionality as a consequence of feeding the different proteins. Differences were also significant (p < 0.05) for predicted functionality parameters as determined by PICRUSt analysis. LA induced a generally healthier microbiota composition than CAS, and higher amounts of Methanobrevibacter spp. and Methanogenic_PWY were found in the LI group. LEfSe analysis of bacterial composition and functional activities revealed a number of groups/functions able to explain the different effects found with milk and legume protein isolates. In conclusion, the mostly beneficial modulation of intestinal microbiota generally found with legume-based diets is likely to be due, at least in part, to their constituent proteins.


Sujet(s)
Cicer , Fabaceae , Microbiome gastro-intestinal , Microbiote , Humains , Animaux , Rats , Lait , Régime alimentaire , Légumes , Caséines , Lactalbumine ,
19.
Food Chem ; 442: 138411, 2024 Jun 01.
Article de Anglais | MEDLINE | ID: mdl-38271901

RÉSUMÉ

Seeds of ten Andean lupin (Lupinus mutabilis Sweet) ecotypes were collected from different regions of Peru and treated with an aqueous debittering method. Both untreated and treated seeds were analyzed by using LC-MS to investigate flavonoid profiles of different ecotypes and impact of debittering process on these compounds. Thirteen isoflavones (mainly as glycosides of genistein and methoxy-genistein) and eight flavones (glycosylated apigenins and methyl-luteolins) were characterized as the main flavonoids in the seed samples. The untreated lupin seeds contained 187-252 mg/100 g (dry weight) of flavonoids. The main difference among lupin ecotypes was observed in the levels of genistein-malonylhexoside, methoxy-genistein-malonylhexoside, and methyl-luteolin-malonylhexoside. After the debittering treatment, the total flavonoid content in the seeds was decreased to 125-203 mg/100 g dry weight, the aglycones of genistein, methoxy-genistein, and methyl-luteolin being the key distinguishing compounds of ecotypes. The aqueous treatment was effective in degrading flavonoid glycosides and releasing the corresponding aglycones.


Sujet(s)
Lupinus , Flavonoïdes , Génistéine , Lutéoline , Graines , Hétérosides
20.
Mol Ecol ; 33(3): e17232, 2024 Feb.
Article de Anglais | MEDLINE | ID: mdl-38205900

RÉSUMÉ

The importance and prevalence of recent ice-age and post-glacial speciation and species diversification during the Pleistocene across many organismal groups and physiographic settings are well established. However, the extent to which Pleistocene diversification can be attributed to climatic oscillations and their effects on distribution ranges and population structure remains debatable. In this study, we use morphologic, geographic and genetic (RADseq) data to document Pleistocene speciation and intra-specific diversification of the unifoliolate-leaved clade of Florida Lupinus, a small group of species largely restricted to inland and coastal sand ridges across the Florida peninsula and panhandle. Phylogenetic and demographic analyses alongside morphological and geographic evidence suggest that recent speciation and intra-specific divergence within this clade were driven by a combination of non-adaptive allopatric divergence caused by edaphic niche conservatism and opportunities presented by the emergence of new post-glacial sand ridge habitats. These results highlight the central importance of even modest geographic isolation and short periods of allopatric divergence following range expansion in the emergence of new taxa and add to the growing evidence that Pleistocene climatic oscillations may contribute to rapid diversification in a myriad of physiographic settings. Furthermore, our results shed new light on long-standing taxonomic debate surrounding the number of species in the Florida unifoliate Lupinus clade providing support for recognition of five species and a set of intra-specific variants. The important conservation implications for the narrowly restricted, highly endangered species Lupinus aridorum, which we show to be genetically distinct from its sister species Lupinus westianus, are discussed.


Sujet(s)
Lupinus , Phylogenèse , Floride , Sable , Écosystème
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE