Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 1.113
Filtrer
1.
Nutr Metab Insights ; 17: 11786388241280859, 2024.
Article de Anglais | MEDLINE | ID: mdl-39372559

RÉSUMÉ

Monocyte chemotactic protein-1 (MCP-1), a small inducible cytokine, is involved in obesity-related chronic disorders. Adipocytes produce MCP-1 that is elevated in obese humans and in rodent models of obesity. This study examined the hepatic metabolomic alterations caused by adipose-specific MCP-1 deficiency in a rodent model of obesity. Wide-type (WT) and adipose-specific Mcp-1 knockdown mice (Mcp-1 -/-) were each assigned randomly to 2 groups and fed the standard AIN93G diet or a high-fat diet (HFD) for 12 weeks. Compared to the AIN93G diet, the HFD increased body weight, body fat mass, and plasma concentrations of insulin and leptin, regardless of genotype. There were no differences in these variables between WT and Mcp-1 -/- mice when they were fed the same diet. Eighty-seven of 172 identified metabolites met the criteria for metabolomic comparisons among the 4 groups. Thirty-nine metabolites differed significantly between the 2 dietary treatments and 15 differed when Mcp-1 -/- mice were compared to WT mice. The metabolites that significantly differed in both comparisons included those involved in amino acid, energy, lipid, nucleotide, and vitamin metabolism. Network analysis found that both HFD and adipose Mcp-1 knockdown may considerably impact amino acid metabolism as evidenced by alteration in the aminoacyl-tRNA biosynthesis pathways, in addition to alteration in the phenylalanine, tyrosine, and tryptophan biosynthesis pathway in Mcp-1 -/- mice. However, decreased signals of amino acid metabolites in mice fed the HFD and increased signals of amino acid metabolites in Mcp-1 -/- mice indicate that HFD may have down-regulated and adipose Mcp-1 knockdown may have up-regulated amino acid metabolism.

2.
Antioxidants (Basel) ; 13(9)2024 Aug 29.
Article de Anglais | MEDLINE | ID: mdl-39334711

RÉSUMÉ

Psychosocial stress may alter cortisol and/or affect the normal functioning of the immune system. Curcuminoids can promote beneficial effects in neuropsychiatric diseases. We evaluated whether curcumin supplementation for 15 consecutive days (1800 mg/day) would decrease systemic MCP-1, sCD14, and TNF alpha levels in patients with moderate anxiety (n = 81). A total number of 81 subjects were enrolled in this study, divided into the following groups according to their Hamilton scores: a control group including patients without anxiety who were not taking curcumin (Cont, n = 22) and an anxiety group including patients with moderate anxiety (Anx, n = 22). The curcumin-treated patients experienced moderate anxiety, and they take curcumin for 15 consecutive days (Anx-Cur (after), n = 15, 1800 mg/day). An evaluation of 128 patients was conducted, which allowed for their assignment to the study groups according to their scores on Hamilton scale II. The cortisol levels were quantified in salivary samples through ELISA (ng/mL), and malonaldehyde (MDA) levels were measured in plasma via the TBARS assay as an index of lipoperoxidation. Several systemic proinflammatory cytokines (pg/mL: MCP-1, TNF alpha, IL-1 beta) and mediators were quantified through ELISA (pg/mL), including systemic sCD14 levels as a marker of monocyte activation. A two-way bifactorial ANOVA was conducted to evaluate the contributions of the anxiety factor (Anx) and/or curcumin factor (Cur) in all the tested markers, including interactions between both factors. High systemic MCP-1 and elevated sCD14 levels were observed in patients with moderate anxiety, which were reduced with curcumin supplementation. In addition, curcumin prevented cortisol overexpression and decreased MDA levels as an antioxidant response in these patients. Collectively, curcumin presented anti-chemotactic effects by reducing systemic MCP-1 levels in anxiety. Curcumin decreased systemic MCP-1 as well as sCD14 levels in patients with moderate anxiety.

3.
Adv Exp Med Biol ; 1460: 273-295, 2024.
Article de Anglais | MEDLINE | ID: mdl-39287855

RÉSUMÉ

Obesity is characterized by the chronic low-grade activation of the innate immune system. In this respect, macrophage-elicited metabolic inflammation and adipocyte-macrophage interaction have primary importance in obesity. Large quantity of macrophages is accumulated by different mechanisms in obese adipose tissue. Hypertrophic adipocyte-derived chemotactic monocyte chemoattractant protein-1 (MCP-1)/C-C chemokine receptor 2 (CCR2) pathway promotes more macrophage accumulation into the obese adipose tissue. However, obesity-induced changes in adipose tissue macrophage density are mainly dependent on increases in the triple-positive cluster of differentiation (CD)11b+ F4/80+ CD11c+ adipose tissue macrophage subpopulation. As epigenetic regulators, microRNAs (miRNAs) are one of the most important mediators of obesity. miRNAs are expressed by adipocytes as well as macrophages and regulate inflammation with the expression of target genes. A paracrine loop involving free fatty acids and tumor necrosis factor-alpha (TNF-α) between adipocytes and macrophages establishes a vicious cycle that aggravates inflammatory changes in the adipose tissue. Adipocyte-specific caspase-1 and production of interleukin-1beta (IL-1ß) by macrophages; both adipocyte and macrophage induction by toll-like receptor-4 (TLR4) through nuclear factor-kappaB (NF-κB) activation; free fatty acid-induced and TLR-mediated activation of c-Jun N-terminal kinase (JNK)-related pro-inflammatory pathways in CD11c+ immune cells; are effective in mutual message transmission between adipocyte and macrophage and in the development of adipose tissue inflammation. Thus, the metabolic status of adipocytes and their released exosomes are important determinants of macrophage inflammatory output. However, old adipocytes are removed by macrophages through trogocytosis or sending an "eat me" signal. As a single miRNA can be able to regulate a variety of target genes and signaling pathways, reciprocal transfer of miRNAs between adipocytes and macrophages via miRNA-loaded exosomes reorganizes the different stages of obesity. Changes in the expression of circulating miRNAs because of obesity progression or anti-obesity treatment indicate that miRNAs could be used as potential biomarkers. Therefore, it is believed that targeting macrophage-associated miRNAs with anti-obesity miRNA-loaded nano-carriers may be successful in the attenuation of both obesity and adipose tissue inflammation in clinical practice. Moreover, miRNA-containing exosomes and transferable mitochondria between the adipocyte and macrophage are investigated as new therapeutic targets for obesity-related metabolic disorders.


Sujet(s)
Adipocytes , Macrophages , Obésité , Obésité/métabolisme , Obésité/génétique , Humains , Macrophages/métabolisme , Macrophages/immunologie , Adipocytes/métabolisme , Animaux , microARN/génétique , microARN/métabolisme , Transduction du signal , Tissu adipeux/métabolisme , Inflammation/métabolisme , Inflammation/anatomopathologie , Communication cellulaire
4.
Adv Exp Med Biol ; 1460: 297-327, 2024.
Article de Anglais | MEDLINE | ID: mdl-39287856

RÉSUMÉ

Chronic low-grade inflammation is a central component in the pathogenesis of obesity-related expansion of adipose tissue and complications in other metabolic tissues. Five different signaling pathways are defined as dominant determinants of adipose tissue inflammation: These are increased circulating endotoxin due to dysregulation in the microbiota-gut-brain axis, systemic oxidative stress, macrophage accumulation, and adipocyte death. Finally, the nucleotide-binding and oligomerization domain (NOD) leucine-rich repeat family pyrin domain-containing 3 (NLRP3) inflammasome pathway is noted to be a key regulator of metabolic inflammation. The NLRP3 inflammasome and associated metabolic inflammation play an important role in the relationships among fatty acids and obesity. Several highly active molecules, including primarily leptin, resistin, adiponectin, visfatin, and classical cytokines, are abundantly released from adipocytes. The most important cytokines that are released by inflammatory cells infiltrating obese adipose tissue are tumor necrosis factor-alpha (TNF-α), interleukin 6 (IL-6), monocyte chemoattractant protein 1 (MCP-1) (CCL-2), and IL-1. All these molecules mentioned above act on immune cells, causing local and then general inflammation. Three metabolic pathways are noteworthy in the development of adipose tissue inflammation: toll-like receptor 4 (TLR4)/phosphatidylinositol-3'-kinase (PI3K)/Protein kinase B (Akt) signaling pathway, endoplasmic reticulum (ER) stress-derived unfolded protein response (UPR), and inhibitor of nuclear factor kappa-B kinase beta (IKKß)-nuclear factor kappa B (NF-κB) pathway. In fact, adipose tissue inflammation is an adaptive response that contributes to a visceral depot barrier that effectively filters gut-derived endotoxin. Excessive fatty acid release worsens adipose tissue inflammation and contributes to insulin resistance. However, suppression of adipose inflammation in obesity with anti-inflammatory drugs is not a rational solution and paradoxically promotes insulin resistance, despite beneficial effects on weight gain. Inflammatory pathways in adipocytes are indeed indispensable for maintaining systemic insulin sensitivity. Cannabinoid type 1 receptor (CB1R) is important in obesity-induced pro-inflammatory response; however, blockade of CB1R, contrary to anti-inflammatory drugs, breaks the links between insulin resistance and adipose tissue inflammation. Obesity, however, could be decreased by improving leptin signaling, white adipose tissue browning, gut microbiota interactions, and alleviating inflammation. Furthermore, capsaicin synthesized by chilies is thought to be a new and promising therapeutic option in obesity, as it prevents metabolic endotoxemia and systemic chronic low-grade inflammation caused by high-fat diet.


Sujet(s)
Tissu adipeux , Inflammation , Obésité , Transduction du signal , Humains , Obésité/métabolisme , Obésité/immunologie , Obésité/anatomopathologie , Tissu adipeux/métabolisme , Tissu adipeux/immunologie , Tissu adipeux/anatomopathologie , Animaux , Inflammation/métabolisme , Inflammation/anatomopathologie , Cytokines/métabolisme , Inflammasomes/métabolisme , Protéine-3 de la famille des NLR contenant un domaine pyrine/métabolisme , Médiateurs de l'inflammation/métabolisme
5.
Cancer Immunol Immunother ; 73(11): 212, 2024 Sep 05.
Article de Anglais | MEDLINE | ID: mdl-39235612

RÉSUMÉ

Patients with lung cancer have a high incidence of tumor recurrence even after curative surgical resection. Some reports indicated that immunosuppressive cells induced by surgical stress could contribute to tumor recurrence after surgery; however, the underlying mechanisms are not fully understood. In this study, we found that increased postoperative blood monocytes served as a risk factor for tumor recurrence in 192 patients with non-small cell lung cancer (NSCLC). We established the lung cancer recurrent mouse model after tumor resection and showed that the surgical stress immediately increased the level of serum monocyte chemoattractant protein-1 (MCP-1), which subsequently increased blood monocytes. These blood monocytes were rapidly recruited into distant micrometastases and became tumor growth-promoting tumor associated macrophages (TAMs). Furthermore, even after the blood MCP-1 and monocytes decreased enough 72 h after tumor resection, TAMs in micrometastases remained rich because the MCP-1 secreted by micrometastases themselves continued to recruit monocytes around the tumor. Consequently, tumor resection triggered the outgrowth of distant metastases via the MCP-1-Monocyte-TAM axis. When we administered the MCP-1 inhibitor to the lung cancer recurrent model mice, blood monocytes decreased after tumor resection, and TAMs in micrometastases also dramatically decreased. Finally, peri- and postoperative treatment with the MCP-1 inhibitor suppressed distant metastases after surgery. Targeting the MCP-1-Monocyte-TAM axis may inhibit surgical stress-induced NSCLC recurrence by attenuating postoperative immunosuppressive monocytes in micrometastases.


Sujet(s)
Carcinome pulmonaire non à petites cellules , Chimiokine CCL2 , Tumeurs du poumon , Monocytes , Récidive tumorale locale , Animaux , Tumeurs du poumon/secondaire , Tumeurs du poumon/immunologie , Tumeurs du poumon/anatomopathologie , Tumeurs du poumon/chirurgie , Monocytes/immunologie , Monocytes/métabolisme , Souris , Humains , Récidive tumorale locale/anatomopathologie , Récidive tumorale locale/immunologie , Carcinome pulmonaire non à petites cellules/anatomopathologie , Carcinome pulmonaire non à petites cellules/immunologie , Carcinome pulmonaire non à petites cellules/chirurgie , Mâle , Femelle , Chimiokine CCL2/métabolisme , Souris de lignée C57BL , Métastase tumorale , Adulte d'âge moyen , Macrophages associés aux tumeurs/immunologie , Macrophages associés aux tumeurs/métabolisme , Sujet âgé
6.
Int Immunopharmacol ; 142(Pt B): 113196, 2024 Dec 05.
Article de Anglais | MEDLINE | ID: mdl-39306893

RÉSUMÉ

Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia in clinic, and type 2 diabetes mellitus (T2DM) is an independent risk factor for AF. Salidroside (Sal), the active ingredient of the Rhodiola rosea, has hypoglycemic, anti-inflammatory, anti-fibrotic and anti-arrhythmic effects. The aim of this study is to investigate the effects and underlying molecular mechanisms of Sal on T2DM associated atrial inflammation and the pathogenesis of AF. In the in vivo study, T2DM mice model was established by high-fat diet and intraperitoneal injection of streptozotocin (STZ). Sal (25 mg/kg/d, 50 mg/kg/d, and 100 mg/kg/d) was administered orally for 4 weeks. T2DM caused atrial electrical and structural remodeling and significantly increased the susceptibility of AF. Meanwhile, mTOR-STAT3-MCP-1 signaling and inflammatory markers were also significantly enhanced in diabetic atria. However, Sal dose-dependently ameliorated cardiac dysfunction, mitigated atrial structural and electrical remodeling, and reduced atrial inflammation. Moreover, Sal-treated group exhibited remarkably down-regulated activity of mTOR-STAT3-MCP-1 pathway, and decreased atrial monocyte/macrophage infiltration. In palmitic acid (PA)-challenged HL-1 cells, Sal attenuated cytotoxicity, downregulated the expressions of TNF-α, IL-6, MCP-1, and inhibited the activation of mTOR-STAT3 signaling. However, co-treatment with MHY1485 (a mTOR agonist) reversed these effects. Taken together, the present study demonstrates that Sal treatment decreases the susceptibility of AF in diabetic mice by reducing mTOR-STAT3-MCP-1 signaling and atrial monocyte/macrophage infiltration. Sal treatment may represent a novel preventive therapy for cardiac arrhythmia and atrial fibrillation in diabetic patients.


Sujet(s)
Fibrillation auriculaire , Chimiokine CCL2 , Diabète expérimental , Glucosides , Souris de lignée C57BL , Phénols , Facteur de transcription STAT-3 , Transduction du signal , Sérine-thréonine kinases TOR , Animaux , Glucosides/usage thérapeutique , Glucosides/pharmacologie , Facteur de transcription STAT-3/métabolisme , Phénols/usage thérapeutique , Phénols/pharmacologie , Sérine-thréonine kinases TOR/métabolisme , Diabète expérimental/traitement médicamenteux , Diabète expérimental/métabolisme , Mâle , Transduction du signal/effets des médicaments et des substances chimiques , Fibrillation auriculaire/traitement médicamenteux , Fibrillation auriculaire/métabolisme , Souris , Chimiokine CCL2/métabolisme , Chimiokine CCL2/génétique , Anti-inflammatoires/usage thérapeutique , Anti-inflammatoires/pharmacologie , Diabète de type 2/traitement médicamenteux , Diabète de type 2/métabolisme , Atrium du coeur/effets des médicaments et des substances chimiques , Atrium du coeur/métabolisme , Humains , Rhodiola/composition chimique , Lignée cellulaire , Inflammation/traitement médicamenteux
7.
Tissue Barriers ; : 2392361, 2024 Sep 12.
Article de Anglais | MEDLINE | ID: mdl-39264117

RÉSUMÉ

Impairment of the blood - brain barrier (BBB) and subsequent inflammatory responses contribute to the development of human immunodeficiency virus (HIV)-1-associated neurocognitive disorders (HAND). Apelin-13, the most abundant member of the apelin family, acts as the ligand of the angiotensin receptor-like 1 (APJ). However, its pharmacological function in HAND and its underlying mechanism are unknown. In the current study, we report that the presence of HIV-1 Tat reduced the levels of Apelin-13 and APJ in the cortex tissue of mice. Importantly, Apelin-13 preserved BBB integrity against HIV-1 Tat in mice by increasing the expression of the tight junction protein zonula occludens-1 (ZO-1) and occludin. Interestingly, increased macrophage infiltration, indicated by elevated CD68-positive staining was observed in the cortex after stimulation with HIV-1, which was mitigated by the administration of Apelin-13. Correspondingly, Apelin-13 reduced the expression of monocyte chemoattractant protein-1; (MCP-1). An in vitro two-chamber and two-cell trans-well assay demonstrated that HIV-1 Tat challenge significantly promoted macrophage migration, which was notably attenuated by the introduction of Apelin-13. Accordingly, treatment with Apelin-13 restored the HIV-1 Tat-induced reduction of occludin and ZO-1, while preventing the upregulation of MCP-1 in human brain microvascular endothelial cells (HBMVECs). Our results suggest that Apelin-13 may reduce macrophage infiltration into brain tissues and mitigate BBB dysfunction in patients with HAND.

8.
Acta Biomater ; 2024 Aug 23.
Article de Anglais | MEDLINE | ID: mdl-39182804

RÉSUMÉ

After myocardial infarction (MI), cardiac resident CCR2+ macrophages release various cytokines and chemokines, notably monocyte chemoattractant protein-1 (MCP-1). MCP-1 is instrumental in recruiting CCR2+ monocytes to the damaged region. The excessive arrival of these monocytes, which then become macrophages, perpetuates inflammation at the site of injury. This continuous inflammation leads to adverse tissue remodeling and compromises cardiac function over time. We hypothesized that neutralizing the MCP-1 secreted by cardiac resident CCR2+ macrophages can mitigate post-MI inflammation by curtailing the recruitment of monocytes and their differentiation into macrophages. In this work, we developed nanoparticles that target the infarcted heart, specifically accumulating in the damaged area after intravenous (IV) administration, and docking onto CCR2+ macrophages. These nanoparticles were designed to slowly release an MCP-1 binding peptide, HSWRHFHTLGGG (HSW), which neutralizes the upregulated MCP-1. We showed that the HSW reduced monocyte migration, inhibited pro-inflammatory cytokine upregulation, and suppressed myofibroblast differentiation in vitro. After IV delivery, the released HSW significantly decreased monocyte recruitment and pro-inflammatory macrophage density, increased cardiac cell survival, attenuated cardiac fibrosis, and improved cardiac function. Taken together, our findings support the strategy of MCP-1 neutralization at the acute phase of MI as a promising way to alleviate post-MI inflammation. STATEMENT OF SIGNIFICANCE: After a myocardial infarction (MI), CCR2+ macrophages resident in the heart release various cytokines and chemokines, notably monocyte chemoattractant protein-1 (MCP-1). MCP-1 is instrumental in attracting CCR2+ monocytes to the damaged region. The excessive arrival of these monocytes, which then become macrophages, perpetuates inflammation at the site of injury. This continuous inflammation leads to adverse tissue remodeling and compromises cardiac function over time. In this work, we tested the hypothesis that neutralizing the MCP-1 secreted by cardiac CCR2+ macrophages can mitigate post-MI inflammation by curtailing the recruitment of monocytes.

9.
Reprod Biol ; 24(3): 100926, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-39106594

RÉSUMÉ

The aim of the present study was to determine whether adipokines monocyte chemoattractant protein-1 (MCP-1) and plasminogen activator inhibitor-1 (PAI-1) can affect the functions of ovarian cells in cats. The addition of either MCP-1 or PAI-1 increased viability; promoted the accumulation of proliferation markers and progesterone and estradiol release; and decreased the accumulation of apoptosis markers in cultured feline granulosa cells. The present observations suggest that MCP-1 or PAI-1 can be physiological stimulators of ovarian granulosa cell functions.


Sujet(s)
Chimiokine CCL2 , Cellules de la granulosa , Inhibiteur-1 d'activateur du plasminogène , Animaux , Chats , Femelle , Inhibiteur-1 d'activateur du plasminogène/métabolisme , Cellules de la granulosa/métabolisme , Cellules de la granulosa/physiologie , Cellules de la granulosa/effets des médicaments et des substances chimiques , Chimiokine CCL2/métabolisme , Cellules cultivées , Prolifération cellulaire/physiologie , Oestradiol/métabolisme , Oestradiol/pharmacologie , Progestérone/métabolisme , Progestérone/pharmacologie , Apoptose , Survie cellulaire
10.
Eur J Pharmacol ; 981: 176883, 2024 Oct 15.
Article de Anglais | MEDLINE | ID: mdl-39128809

RÉSUMÉ

Glaucine is an aporphine alkaloid with anti-inflammatory, bronchodilator and anti-cancer activities. However, the effects of glaucine in the regulation of age-related macular degeneration (AMD) remain unclear. Herein, we aimed to investigate the anti-angiogenetic and anti-inflammatory effects of glaucine in ARPE-19 cells. ARPE-19 cells were treated with N-(methoxyoxoacetyl)-glycine, methyl ester (DMOG) and cobalt chloride (CoCl2) for induction of hypoxia, while lipopolysaccharide (LPS) treatment was used for elicitation of inflammatory response. Cell viability was analyzed using 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) assay. The expression of hypoxia-inducible factor (HIF-1α) and vascular endothelial growth factor (VEGF) were measured by Western blot. The secretion of VEGF, interleukin (IL)-6 and monocyte chemoattractant protein-1 (MCP-1) was detected using enzyme-linked immunosorbent assay (ELISA). Human umbilical vein endothelial cells (HUVECs) were used for tube formation analysis. Expression of HIF-1α and secretion of VEGF were significantly increased under DMOG and CoCl2 induction, whereas glaucine significantly attenuated both HIF-1α expression and VEGF secretion by DMOG- and CoCl2-induced ARPE-19 cells. In addition, glaucine suppressed the tube formation by DMOG- and CoCl2-induced HUVEC cells. Moreover, glaucine also attenuated the production of IL-6 and MCP-1 by LPS-induced ARPE-19 cells. This study indicated that glaucine exhibited anti-angiogenic and anti-inflammatory effects, suggesting that glaucine might have benefits for the treatment of AMD.


Sujet(s)
Aporphines , Survie cellulaire , Sous-unité alpha du facteur-1 induit par l'hypoxie , Lipopolysaccharides , Épithélium pigmentaire de la rétine , Facteur de croissance endothéliale vasculaire de type A , Humains , Épithélium pigmentaire de la rétine/effets des médicaments et des substances chimiques , Épithélium pigmentaire de la rétine/métabolisme , Épithélium pigmentaire de la rétine/cytologie , Épithélium pigmentaire de la rétine/anatomopathologie , Facteur de croissance endothéliale vasculaire de type A/métabolisme , Lignée cellulaire , Survie cellulaire/effets des médicaments et des substances chimiques , Sous-unité alpha du facteur-1 induit par l'hypoxie/métabolisme , Aporphines/pharmacologie , Inflammation/traitement médicamenteux , Inflammation/métabolisme , Inflammation/anatomopathologie , Hypoxie cellulaire/effets des médicaments et des substances chimiques , Néovascularisation pathologique/traitement médicamenteux , Anti-inflammatoires/pharmacologie , Cellules endothéliales de la veine ombilicale humaine/effets des médicaments et des substances chimiques , Cellules endothéliales de la veine ombilicale humaine/métabolisme , Inhibiteurs de l'angiogenèse/pharmacologie , Cobalt/toxicité , Cobalt/pharmacologie , Chimiokine CCL2/métabolisme , Angiogenesis
11.
Cancers (Basel) ; 16(16)2024 Aug 12.
Article de Anglais | MEDLINE | ID: mdl-39199602

RÉSUMÉ

PURPOSE: Hepatocellular carcinoma (HCC) is the largest subgroup of primary liver tumors. Ablative therapies, such as selective internal radiation therapy (SIRT), are used in late stages for patients with unresectable liver metastases and no response to other therapies. CCL2 (C-C motif chemokine ligand 2) is a potent monocyte chemoattractant. It is associated with tumor progression and metastasis. The role of circulating CCL2 as a biomarker in HCC undergoing selective internal radiation therapy remains unclear. METHODS: A total of 41 patients (8 female, 33 male) suffering from HCC and undergoing SIRT were enrolled. Pre- and post-therapy changes in circulating CCL2 levels were determined by bead-based immunoassay and compared with clinical laboratory parameters and patient data. RESULTS: A total of 32 patients exhibited survival beyond 60 days. It was observed that levels of CCL2 correlated with scores indicating a higher likelihood of non-survival and with the severity of the disease. Moreover, a significant inverse correlation was discovered between CCL2 levels and the survival of patients over 60 days in relation to counts of leukocytes, granulocytes, monocytes, and C-reactive protein. CONCLUSIONS: CCL2 may serve as a potential marker for patient survival after SIRT. The prediction of which HCC patients are likely to benefit from SIRT may be helpful in guiding therapeutic management.

12.
Diagnostics (Basel) ; 14(15)2024 Jul 24.
Article de Anglais | MEDLINE | ID: mdl-39125467

RÉSUMÉ

Primary focal segmental glomerulosclerosis (FSGS) is a disease of the podocytes and glomerulus, leading to nephrotic syndrome and progressive loss of renal function. One of the most serious aspects is its recurrence of disease in over 30% of patients following allogeneic kidney transplantation, leading to early graft loss. This research investigates the individual genetic predispositions and differences in the immune responses leading to recurrence of FSGS after transplantation. We performed exome sequencing on six patients with recurrent FSGS to identify variants in fifty-one genes and found significant variations in the alpha-2-macroglobulin (A2M). Immunoblotting was used to investigate effects of specific gene variants at the protein level. Further expression analysis identified A2M, exophilin 5 (EXPH5) and plectin (PLEC) as specific proteins linked to podocytes, endothelial cells, and the glomerulus. Subsequent protein array screening revealed the presence of non-HLA-specific antibodies, including TRIM21, after transplantation. Using Metascape for pathway and process enrichment analysis, we focused on the IL-17 signaling and chemotaxis pathways. ELISA measurements showed significantly elevated IL-17 levels in patients with recurrent FSGS (32.30 ± 9.12 pg/mL) compared to individuals with other glomerular diseases (23.16 ± 2.49 pg/mL; p < 0.01) and healthy subjects (22.28 ± 0.94 pg/mL; p < 0.01), with no significant difference in plasma CCL2/MCP-1 levels between groups. This study explores the molecular dynamics underlying recurrence of FSGS after transplantation, offering insights into potential biomarkers and therapeutic targets for the future development of individualized treatments for transplant patients.

13.
Life Sci ; 353: 122902, 2024 Sep 15.
Article de Anglais | MEDLINE | ID: mdl-39004271

RÉSUMÉ

AIMS: MCP-1 has been shown to be elevated in endometriosis. ILK functions in several cellular events and interacts with MCP-1-signaling. In the current study, we evaluated the role of MCP-1-ILK signaling in human endometriotic cell's (Hs832(C).TCs) potential for colonization, invasion, adhesion, etc. and differentiation of macrophage along with inflammation in an endometriosis mouse model. MATERIALS AND METHODS: A mouse model of endometriosis with elevated levels of MCP-1 was developed by injecting MCP-1. We examined the migration, adhesion, colonization and invasion of Hs832(C).TCs in response to MCP-1-ILK signaling. We also examined the differentiation of THP-1 cells to macrophage in response to MCP-1-ILK signaling. KEY FINDINGS: We observed that MCP-1 increased Ser246 phosphorylation of ILK in Hs832(C).TCs and enhanced the migration, adhesion, colonization, and invasion of Hs832(C).TCs. In the mouse model of endometriosis, we found elevated chemokines (CCL-11, CCL-22 and CXCL13) levels. An increased level of MCP-1 mediated ILK activation, leading to increased inflammatory reaction and infiltration of residential and circulatory macrophages, and monocyte differentiation, but suppressed the anti-inflammatory reaction. The inhibitor (CPD22) of ILK reversed the MCP-1-mediated action by restoring Hs832(C).TCs and THP-1 phenotype. ILK inhibition in a mouse model of endometriosis reduced the effects of MCP-1 mediated pro-inflammatory cytokines, but increased anti-inflammatory response along with T-regulatory and T-helper cell restoration. SIGNIFICANCE: Targeting ILK restores MCP-1 milieu in the peritoneal cavity and endometrial tissues, reduces the inflammatory response, improves the T-regulatory and T-helper cells in the endometriosis mouse model and decreases the migration, adhesion, colonization and invasion of endometriotic cells.


Sujet(s)
Chimiokine CCL2 , Modèles animaux de maladie humaine , Endométriose , Inflammation , Protein-Serine-Threonine Kinases , Endométriose/anatomopathologie , Endométriose/métabolisme , Endométriose/immunologie , Femelle , Animaux , Protein-Serine-Threonine Kinases/métabolisme , Humains , Chimiokine CCL2/métabolisme , Souris , Inflammation/métabolisme , Inflammation/anatomopathologie , Macrophages/métabolisme , Macrophages/immunologie , Transduction du signal , Différenciation cellulaire , Mouvement cellulaire , Souris de lignée C57BL
15.
JACC Basic Transl Sci ; 9(5): 593-604, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38984050

RÉSUMÉ

Using a translational approach with an ST-segment myocardial infarction (STEMI) cohort and mouse model of myocardial infarction, we highlighted the role of the secreted IL-6 and MCP-1 cytokines and the STAT3 pathway in heart macrophage recruitment and activation. Cardiac myocytes secrete IL-6 and MCP-1 in response to hypoxic stress, leading to a recruitment and/or polarization of anti-inflammatory macrophages via the STAT3 pathway. In our preclinical model of myocardial infarction, neutralization of IL-6 and MCP-1 or STAT3 pathway reduced infarct size. Together, our data demonstrate that anti-inflammatory macrophages can be deleterious in the acute phase of STEMI.

16.
Article de Anglais | MEDLINE | ID: mdl-38991981

RÉSUMÉ

BACKGROUND: Neuroimmune dysfunction in alcohol use disorder (AUD) is associated with activation of myeloid differentiation primary response 88 (MyD88)-dependent Toll-like receptors (TLR) resulting in overexpression of the chemokine monocyte chemoattractant protein-1 (MCP-1/CCL2). MCP-1 overexpression in the brain is linked to anxiety, higher alcohol intake, neuronal death, and activation of microglia observed in AUD. The neurosteroid [3α,5α][3-hydroxypregnan-20-one (3α,5α-THP) has been reported as an inhibitor of MyD88-dependent TLR activation and MCP-1 overexpression in mouse and human macrophages and the brain of alcohol-preferring (P) rats. METHODS: We investigated how 3α,5α-THP regulates MCP-1 expression at the cellular level in P rat nucleus accumbens (NAc) and central amygdala (CeA). We focused on neurons, microglia, and astrocytes, examining the individual voxel density of MCP-1, neuronal marker NeuN, microglial marker IBA1, astrocytic marker GFAP, and their shared voxel density, defined as intersection. Ethanol-naïve male and female P rats were perfused 1 h after IP injections of 15 mg/kg of 3α,5α-THP, or vehicle. The NAc and CeA were imaged using confocal microscopy following double-immunofluorescence staining for MCP-1 with NeuN, IBA1, and GFAP, respectively. RESULTS: MCP-1 intersected with NeuN predominantly and IBA1/GFAP negligibly. 3α,5α-THP reduced MCP-1 expression in NeuN-labeled cells by 38.27 ± 28.09% in male and 56.11 ± 21.46% in female NAc, also 37.99 ± 19.53% in male and 54.96 ± 30.58% in female CeA. In females, 3α,5α-THP reduced the MCP-1 within IBA1 and GFAP-labeled voxels in the NAc and CeA. Conversely, in males, 3α,5α-THP did not significantly alter the MCP-1 within IBA1 in NAc or with GFAP in the CeA. Furthermore, 3α,5α-THP decreased levels of IBA1 in both regions and sexes with no impact on GFAP or NeuN levels. Secondary analysis performed on data normalized to % control values indicated that no significant sex differences were present. CONCLUSIONS: These data suggest that 3α,5α-THP inhibits neuronal MCP-1 expression and decreases the proliferation of microglia in P rats. These results increase our understanding of potential mechanisms for 3α,5α-THP modulation of ethanol consumption.

17.
J Clin Transl Hepatol ; 12(7): 634-645, 2024 Jul 28.
Article de Anglais | MEDLINE | ID: mdl-38993513

RÉSUMÉ

Background and Aims: Tissue inhibitor of metalloproteinase-1 (TIMP-1) plays a role in the excessive generation of extracellular matrix in liver fibrosis. This study aimed to explore the pathways through which TIMP-1 controls monocyte chemoattractant protein-1 (MCP-1) expression and promotes hepatic macrophage recruitment. Methods: Liver fibrosis was triggered through carbon tetrachloride, and an adeno-associated virus containing small interfering RNA targeting TIMP-1 (siRNA-TIMP-1) was administered to both rats and mice. We assessed the extent of fibrosis and macrophage recruitment. The molecular mechanisms regulating macrophage recruitment by TIMP-1 were investigated through transwell migration assays, luciferase reporter assays, the use of pharmacological modulators, and an analysis of extracellular vesicles (EVs). Results: siRNA-TIMP-1 alleviated carbon tetrachloride-induced liver fibrosis, reducing macrophage migration and MCP-1 expression. Co-culturing macrophages with hepatic stellate cells (HSCs) post-TIMP-1 downregulation inhibited macrophage migration. In siRNA-TIMP-1-treated HSCs, microRNA-145 (miRNA-145) expression increased, while the expression of Friend leukemia virus integration-1 (Fli-1) and MCP-1 was inhibited. Downregulation of Fli-1 led to decreased MCP-1 expression, whereas Fli-1 overexpression increased MCP-1 expression within HSCs. Transfection with miRNA-145 mimics reduced the expression of both Fli-1 and MCP-1, while miRNA-145 inhibitors elevated the expression of both Fli-1 and MCP-1 in HSCs. miRNA-145 bound directly to the 3'-UTR of Fli-1, and miRNA-145-enriched EVs secreted by HSCs after TIMP-1 downregulation influenced macrophage recruitment. Conclusions: TIMP-1 induces Fli-1 expression through miRNA-145, subsequently increasing MCP-1 expression and macrophage recruitment. MiRNA-145-enriched EVs from HSCs can transmit biological information and magnify the function of TIMP-1.

18.
Int Immunopharmacol ; 138: 112659, 2024 Sep 10.
Article de Anglais | MEDLINE | ID: mdl-38996665

RÉSUMÉ

Autoimmune hepatitis (AIH) is a chronic liver disease characterized by immune dysregulation and hepatocyte damage. FKBP38, a member of the immunophilin family, has been implicated in immune regulation and the modulation of intracellular signaling pathways; however, its role in AIH pathogenesis remains poorly understood. In this study, we aimed to investigate the effects of hepatic FKBP38 deletion on AIH using a hepatic FKBP38 knockout (LKO) mouse model created via cre-loxP technology. We compared the survival rates, incidence, and severity of AIH in LKO mice with those in control mice. Our findings revealed that hepatic FKBP38 deletion resulted in an unfavorable prognosis in LKO mice with AIH. Specifically, LKO mice exhibited heightened liver inflammation and extensive hepatocyte damage compared to control mice, with a significant decrease in anti-apoptotic proteins and a marked increase in pro-apoptotic proteins. Additionally, transcriptional and translational levels of pro-inflammatory cytokines and chemokines were significantly increased in LKO mice compared to control mice. Immunoblot analysis showed that MCP-1 expression was significantly elevated in LKO mice. Furthermore, the phosphorylation of p38 was increased in LKO mice with AIH, indicating that FKBP38 deletion promotes liver injury in AIH by upregulating p38 phosphorylation and increasing MCP-1 expression. Immune cell profiling demonstrated elevated populations of T, NK, and B cells, suggesting a dysregulated immune response in LKO mice with AIH. Overall, our findings suggest that FKBP38 disruption exacerbates AIH severity by augmenting the immune response by activating the MCP-1/p38 signaling pathway.


Sujet(s)
Chimiokine CCL2 , Hépatite auto-immune , Protéines de liaison au tacrolimus , p38 Mitogen-Activated Protein Kinases , Animaux , Mâle , Souris , Chimiokine CCL2/métabolisme , Chimiokine CCL2/génétique , Concanavaline A , Modèles animaux de maladie humaine , Hépatite auto-immune/immunologie , Foie/anatomopathologie , Foie/immunologie , Foie/métabolisme , Souris de lignée C57BL , Souris knockout , p38 Mitogen-Activated Protein Kinases/métabolisme , Transduction du signal , Protéines de liaison au tacrolimus/génétique , Protéines de liaison au tacrolimus/métabolisme
19.
Cureus ; 16(6): e62996, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-39050338

RÉSUMÉ

INTRODUCTION: Diabetic retinopathy (DR), a microvascular complication of type 2 diabetes (T2D), results from complex interactions of genetic and environmental factors. Vascular endothelial growth factor (VEGF) and mouse model minute 2 (MDM2)are upregulated in the retina due to diabetes, which increases the risk of DR. VEGFA and MDM2 genetic variations can influence DR risk. The present case-control study was conducted to evaluate the association of VEGFA and MDM2 promoter variants with DR in a population from Punjab, Northwest India. METHODS: A total of 414 DR patients, 425 T2D patients without DR, and 402 healthy controls were screened for VEGFA -2578C/A (rs699947), VEGFA -2549I/D (rs35569394), VEGFA -7C/T (rs25648), and MDM2 rs3730485 polymorphisms using polymerase chain reaction (PCR)-based methods. RESULTS: VEGFA -2549 I allele (OR = 1.35 (1.00-1.81), p = 0.043) and II genotype (OR = 1.78 (1.00-3.15), p = 0.047) were significantly associated with increased risk of DR. VEGFA -7 CT genotype conferred reduced risk of DR (OR = 0.28 (0.20-0.38); p = <0.001). VEGFA -2578 and MDM2 rs3730485 showed no significant association with DR. A-I-T (OR = 0.30 (0.20-0.44); p = <0.001) and C-D-T (OR = 0.33 (0.16-0.65); p = 0.002) haplotypes of rs699947-rs35569394-rs25648 polymorphisms showed decreased risk of DR. CONCLUSIONS: I allele and II genotype of VEGFA -2549, CT genotype of VEGFA -7, and C-I-C and A-D-C haplotypes of rs699947-rs35569394-rs25648 polymorphisms were significantly associated with DR risk in a Northwest Indian population. This is the first study worldwide to report DR risk with VEGFA promoter variants together.

20.
Dokl Biochem Biophys ; 517(1): 228-234, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-39002011

RÉSUMÉ

The pathogenesis of immunoinflammatory rheumatic diseases (IRDs) is based on chronic inflammation, one of the key mechanisms of which may be abnormal activation of macrophages, leading to further disruption of the immune system. OBJECTIVE: . The objective of this study was to evaluate the proinflammatory activation of circulating monocytes in patients with IRDs. MATERIALS AND METHODS: . The study involved 149 participants (53 patients with rheumatoid arthritis (RA), 45 patients with systemic lupus erythematosus (SLE), 34 patients with systemic scleroderma (SSc), and 17 participants without IRDs) 30 to 65 years old. Basal and lipopolysaccharide (LPS)-stimulated secretion of monocytes was studied in a primary culture of monocytes obtained from blood by immunomagnetic separation. Quantitative assessment of the cytokines tumor necrosis factor α (TNF-α), interleukin 1ß (IL-1ß), as well as the chemokine monocyte chemoattractant protein-1 (MCP-1) was carried out in the culture fluid by ELISA. Proinflammatory activation of monocytes was calculated as the ratio of LPS-stimulated and basal secretions. RESULTS: . It was shown that the basal secretion of all studied cytokines was significantly increased in all groups of patients with IRDs, except for the secretion of IL-1ß in the SLE group, compared to the control. LPS-stimulated secretion of TNF-α was increased and MCP-1 was decreased in patients with IRDs compared to the control group; LPS-stimulated IL-1ß secretion only in the SSc group significantly differed from the control group. In the RA group, monocyte activation was reduced for all cytokines compared to the control; in the SLE group, for TNF-α and MCP-1; in the SSc group, for MCP-1. CONCLUSIONS: . The decrease in proinflammatory activation of monocytes in patients with IRDs is due to a high level of basal secretion of cytokines, which can lead to disruption of the adequate immune response in these diseases and is an important link in the pathogenesis of chronic inflammation.


Sujet(s)
Inflammation , Monocytes , Humains , Monocytes/immunologie , Monocytes/métabolisme , Adulte d'âge moyen , Adulte , Femelle , Mâle , Inflammation/immunologie , Inflammation/métabolisme , Lipopolysaccharides/pharmacologie , Sujet âgé , Chimiokine CCL2/métabolisme , Polyarthrite rhumatoïde/immunologie , Rhumatismes/immunologie , Facteur de nécrose tumorale alpha/métabolisme , Interleukine-1 bêta/métabolisme , Sclérodermie systémique/immunologie , Sclérodermie systémique/métabolisme , Lupus érythémateux disséminé/immunologie , Lupus érythémateux disséminé/métabolisme , Cytokines/métabolisme
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE