Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 6 de 6
Filtrer
Plus de filtres











Gamme d'année
1.
Biomark Res ; 12(1): 60, 2024 Jun 10.
Article de Anglais | MEDLINE | ID: mdl-38858750

RÉSUMÉ

Acute myeloid leukemia (AML) is the most frequent leukemia in adults with a high mortality rate. Current diagnostic criteria and selections of therapeutic strategies are generally based on gene mutations and cytogenetic abnormalities. Chemotherapy, targeted therapies, and hematopoietic stem cell transplantation (HSCT) are the major therapeutic strategies for AML. Two dilemmas in the clinical management of AML are related to its poor prognosis. One is the inaccurate risk stratification at diagnosis, leading to incorrect treatment selections. The other is the frequent resistance to chemotherapy and/or targeted therapies. Genomic features have been the focus of AML studies. However, the DNA-level aberrations do not always predict the expression levels of genes and proteins and the latter is more closely linked to disease phenotypes. With the development of high-throughput sequencing and mass spectrometry technologies, studying downstream effectors including RNA, proteins, and metabolites becomes possible. Transcriptomics can reveal gene expression and regulatory networks, proteomics can discover protein expression and signaling pathways intimately associated with the disease, and metabolomics can reflect precise changes in metabolites during disease progression. Moreover, omics profiling at the single-cell level enables studying cellular components and hierarchies of the AML microenvironment. The abundance of data from different omics layers enables the better risk stratification of AML by identifying prognosis-related biomarkers, and has the prospective application in identifying drug targets, therefore potentially discovering solutions to the two dilemmas. In this review, we summarize the existing AML studies using omics methods, both separately and combined, covering research fields of disease diagnosis, risk stratification, prognosis prediction, chemotherapy, as well as targeted therapy. Finally, we discuss the directions and challenges in the application of multi-omics in precision medicine of AML. Our review may inspire both omics researchers and clinical physicians to study AML from a different angle.

2.
Article de Chinois | WPRIM (Pacifique Occidental) | ID: wpr-1045653

RÉSUMÉ

@#Abstract: The new generation of artificial intelligence technology, represented by deep learning, has emerged as a crucial driving force in the advancement of new drug research and development. This article creatively proposes a workflow named “Molecular Factory” for the design and optimization of drug molecules based on artificial intelligence technology. This workflow integrates intelligent molecular generation models, high-performance molecular docking algorithms, and accurate protein-ligand binding affinity prediction methods. It has been integrated as a core module into DrugFlow, a one-stop drug design software platform, providing a comprehensive set of mature solutions for the discovery and optimization of lead compounds. Utilizing the “Molecular Factory” module, we conducted the research of second-generation inhibitors against Menin that can combat drug resistance. Through the integration of computational and experimental approaches, we rapidly identified multiple promising compounds. Among them, compound RG-10 exhibited the IC50 values of 9.681 nmol/L, 233.2 nmol/L, and 40.09 nmol/L against the wild-type Menin, M327I mutant, and T349M mutant, respectively. Compared to the positive reference molecule SNDX-5613, which has entered Phase II clinical trials, RG-10 demonstrated significantly enhanced inhibitory activity against the M327I and T349M mutants. These findings fully demonstrate the unique advantages of the "Molecular Factory" technology in practical drug design and development scenarios. It can rapidly and efficiently generate high-quality active molecules targeting specific protein structures, holding significant value and profound implications for advancing new drug discovery.

3.
Biomark Res ; 11(1): 105, 2023 Dec 05.
Article de Anglais | MEDLINE | ID: mdl-38053201

RÉSUMÉ

KMT2A-rearranged acute myeloid leukemia (KMT2Ar-AML) is an aggressive subtype of AML with poor response and prognosis. KMT2Ar-AML has been demonstrated to be sensitive to BCL2 inhibitor venetoclax (VEN), but these patients are unable to benefit from current VEN-based regimen (VEN plus azacitidine or low dose-cytarabine), so a novel and KMT2A rearrangement-specific targeting partner is required, and MENIN inhibitor (MEN1i) is a promising one. Herein, we investigated the effect and mechanism of VEN plus MEN1i in KMT2Ar-AML. Our results showed that VEN and MEN1i exhibited a striking synergistic effect in KMT2Ar-AML cell lines (in vitro), primary KMT2Ar-AML cells (ex vivo), and MOLM13 xenotransplantation model (in vivo). Furthermore, we found that VEN plus MEN1i significantly enhanced apoptotic induction in KMT2Ar-AML cell lines. VEN or MEN1i monotherapy disrupted balance of BCL-2/BCL-XL or down-regulated HOXA9/MEIS1, respectively, but these mechanisms were not further strengthened by their combination. RNA-Sequencing identified that HDAC9 was specifically repressed by VEN plus MEN1i rather than monotherapy. We demonstrated that HDAC9 was indispensable for KMT2Ar-AML proliferation and its repression contributed to proliferation inhibition of VEN plus MEN1i. Moreover, we found that hypoxia induced HDAC9 expression in KMT2Ar-AML, and VEN plus MEN1i inhibited hypoxia pathway, especially HIF-1A, and its target HDAC9. As our results indicated, VEN plus MEN1i-mediated HDAC9 down-regulation was partially dependent on HIF-1A repression in KMT2Ar-AML. Hypoxia induction sensitized KMT2Ar-AML to VEN plus MI-503-mediated proliferation inhibition and apoptosis induction. Therefore, repressing HIF-1A-induced HDAC9 contributed to the synergistic effect of VEN and MEN1i in KMT2Ar-AML.

4.
Mol Cells ; 45(4): 202-215, 2022 Apr 30.
Article de Anglais | MEDLINE | ID: mdl-35014621

RÉSUMÉ

The androgen receptor (AR) is an important therapeutic target for treating prostate cancer (PCa). Moreover, there is an increasing need for understanding the AR-independent progression of tumor cells such as neuroendocrine prostate cancer (NEPC). Menin, which is encoded by multiple endocrine neoplasia type 1 (MEN1), serves as a direct link between AR and the mixed-lineage leukemia (MLL) complex in PCa development by activating AR target genes through histone H3 lysine 4 methylation. Although menin is a critical component of AR signaling, its tumorigenic role in AR-independent PCa cells remains unknown. Here, we compared the role of menin in AR-positive and AR-negative PCa cells via RNAi-mediated or pharmacological inhibition of menin. We demonstrated that menin was involved in tumor cell growth and metastasis in PCa cells with low or deficient levels of AR. The inhibition of menin significantly diminished the growth of PCa cells and induced apoptosis, regardless of the presence of AR. Additionally, transcriptome analysis showed that the expression of many metastasis-associated genes was perturbed by menin inhibition in AR-negative DU145 cells. Furthermore, wound-healing assay results showed that menin promoted cell migration in AR-independent cellular contexts. Overall, these findings suggest a critical function of menin in tumorigenesis and provide a rationale for drug development against menin toward targeting high-risk metastatic PCa, especially those independent of AR.


Sujet(s)
Tumeurs de la prostate , Récepteurs aux androgènes , Lignée cellulaire tumorale , Prolifération cellulaire , Humains , Mâle , Tumeurs de la prostate/génétique , Tumeurs de la prostate/métabolisme , Récepteurs aux androgènes/génétique , Récepteurs aux androgènes/métabolisme , Transduction du signal , Facteurs de transcription
5.
Cancer Cell ; 36(6): 660-673.e11, 2019 12 09.
Article de Anglais | MEDLINE | ID: mdl-31821784

RÉSUMÉ

Inhibition of the Menin (MEN1) and MLL (MLL1, KMT2A) interaction is a potential therapeutic strategy for MLL-rearranged (MLL-r) leukemia. Structure-based design yielded the potent, highly selective, and orally bioavailable small-molecule inhibitor VTP50469. Cell lines carrying MLL rearrangements were selectively responsive to VTP50469. VTP50469 displaced Menin from protein complexes and inhibited chromatin occupancy of MLL at select genes. Loss of MLL binding led to changes in gene expression, differentiation, and apoptosis. Patient-derived xenograft (PDX) models derived from patients with either MLL-r acute myeloid leukemia or MLL-r acute lymphoblastic leukemia (ALL) showed dramatic reductions of leukemia burden when treated with VTP50469. Multiple mice engrafted with MLL-r ALL remained disease free for more than 1 year after treatment. These data support rapid translation of this approach to clinical trials.


Sujet(s)
Chromatine/effets des médicaments et des substances chimiques , Régulation de l'expression des gènes dans la leucémie/effets des médicaments et des substances chimiques , Leucémie aigüe myéloïde/traitement médicamenteux , Protéines proto-oncogènes/effets des médicaments et des substances chimiques , Animaux , Apoptose/effets des médicaments et des substances chimiques , Apoptose/génétique , Différenciation cellulaire/effets des médicaments et des substances chimiques , Différenciation cellulaire/génétique , Prolifération cellulaire/effets des médicaments et des substances chimiques , Prolifération cellulaire/génétique , Chromatine/génétique , Régulation de l'expression des gènes dans la leucémie/génétique , Réarrangement des gènes/effets des médicaments et des substances chimiques , Réarrangement des gènes/génétique , Humains , Leucémie aigüe myéloïde/génétique , Souris , Protéines proto-oncogènes/génétique , Facteurs de transcription/effets des médicaments et des substances chimiques , Facteurs de transcription/génétique
6.
Proc Natl Acad Sci U S A ; 116(16): 7957-7962, 2019 04 16.
Article de Anglais | MEDLINE | ID: mdl-30923116

RÉSUMÉ

Diffuse intrinsic pontine glioma (DIPG) remains an incurable childhood brain tumor for which novel therapeutic approaches are desperately needed. Previous studies have shown that the menin inhibitor MI-2 exhibits promising activity in preclinical DIPG and adult glioma models, although the mechanism underlying this activity is unknown. Here, using an integrated approach, we show that MI-2 exerts its antitumor activity in glioma largely independent of its ability to target menin. Instead, we demonstrate that MI-2 activity in glioma is mediated by disruption of cholesterol homeostasis, with suppression of cholesterol synthesis and generation of the endogenous liver X receptor ligand, 24,25-epoxycholesterol, resulting in cholesterol depletion and cell death. Notably, this mechanism is responsible for MI-2 activity in both DIPG and adult glioma cells. Metabolomic and biochemical analyses identify lanosterol synthase as the direct molecular target of MI-2, revealing this metabolic enzyme as a vulnerability in glioma and further implicating cholesterol homeostasis as an attractive pathway to target in this malignancy.


Sujet(s)
Antinéoplasiques/pharmacologie , Tumeurs du tronc cérébral , Gliome , Intramolecular transferases/métabolisme , Protéines proto-oncogènes/antagonistes et inhibiteurs , Tumeurs du tronc cérébral/enzymologie , Tumeurs du tronc cérébral/métabolisme , Cholestérol/métabolisme , Gliome/enzymologie , Gliome/métabolisme , Humains , Voies et réseaux métaboliques/effets des médicaments et des substances chimiques , Protéines proto-oncogènes/métabolisme
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE