Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 546
Filtrer
1.
Nat Prod Res ; : 1-6, 2024 Aug 02.
Article de Anglais | MEDLINE | ID: mdl-39092521

RÉSUMÉ

This study aims to assess hepatoprotective properties of M. rotundifolia. Decoction was used to prepare the aqueous extract. The preliminary cytotoxicity evaluated against Caco 2 and RAW 264 cells demonstrate no cytotoxic effect. The preventive impact of the extract against liver damage was evaluated by examining blood levels of AST, ALT, ALP, total proteins, and histological alterations in liver tissues. Thirty albino rats were separated into five groups: the first served as normal group, the second was injected by olive oil (3 ml/kg), and the third was injected by CCL4 (3 ml/kg). However, groups IV and V received daily doses of 250 and 500 mg extract/kg bw, respectively before CCL4 injection. The results showed that the administration of the extract led to a marked improvement in plasma biochemical markers and a reduction in symptoms of CCL4-induced liver damage. The extract exhibits hepatoprotective activity, which may be attributed to its phytochemical components.

2.
Int J Cosmet Sci ; 2024 Jul 25.
Article de Anglais | MEDLINE | ID: mdl-39049707

RÉSUMÉ

OBJECTIVES: To achieve a more beautiful and younger appearance, reducing wrinkles is a key concern. The process of wrinkle formation is complex and the development of truly effective cosmetic ingredients to reduce wrinkles remains a challenge. Recent studies have revealed a close relationship between wrinkles and skin thinning, suggesting that preventing skin thinning could also prevent wrinkle formation. In this study, we examined the role of extracellular adenosine triphosphate (eATP) in the progression of thinning, as eATP reportedly increases skin ageing factors, such as senescence-associated secreted phenotype (SASP) factors in epidermal cells. We determined the effects of Mentha piperita leaf extract on suppressing eATP to reduce thinning and wrinkles. METHODS: Adenosine triphosphate (ATP) levels were measured in normal human epidermal keratinocytes (NHEK) in the presence of M. piperita leaf extract. Dryness, high pH, and UVB radiation were used as extrinsic ageing factors. Intrinsic skin ageing was evaluated by comparing cells from adults (AD-NHEK) and newborns (NB-NHEK). A placebo-controlled in vivo study was carried out with a formulation containing 1% M. piperita leaf extract. RESULTS: The eATP levels were significantly higher in AD-NHEK compared with that in NB-NHEK cells. M. piperita leaf extract significantly decreased eATP levels in adult cells. Extrinsic ageing factors increased eATP levels in NHEK, whereas M. piperita leaf extract significantly suppressed eATP under all conditions. The active components of M. piperita leaf extract, luteolin glucuronide and rosmarinic acid, also decreased eATP. Moreover, compared with placebo lotion, M. piperita leaf extract-formulated lotion markedly increased dermal thickness and reduced wrinkles associated with crow's feet and the neck area. CONCLUSION: We demonstrated for the first time that M. piperita leaf extract containing rosmarinic acid and luteolin-7-O-glucuronide has the potential to reduce eATP release from epidermal keratinocytes. An increase in eATP was observed not only during inflammation but also during natural ageing. Furthermore, the in vivo experiment revealing that 1% M. piperita leaf extract-containing lotion improved dermal thinning and wrinkles across multiple areas is attributed to the amelioration of dermal thinning. Thus, our data suggest the possibility of a novel cosmetic approach for reducing skin ageing by reducing eATP-mediated dermal thinning.


OBJECTIFS: Pour obtenir une apparence plus belle et plus jeune, réduire les rides est une préoccupation clé. Le processus de formation des rides est complexe et le développement d'ingrédients cosmétiques réellement efficaces pour réduire les rides reste un défi. Des études récentes ont révélé une relation étroite entre les rides et l'amincissement de la peau, suggérant que la prévention de l'amincissement de la peau pourrait également prévenir la formation de rides. Dans cette étude, nous avons examiné le rôle de l'adénosine triphosphate extracellulaire (eATP) dans la progression de l'amincissement, car l'eATP augmente apparemment les facteurs de vieillissement de la peau, tels que les facteurs du phénotype sécrétoire associé à la sénescence (SASP) dans les cellules épidermiques. Nous avons déterminé les effets de l'extrait de feuille de Mentha piperita sur la suppression de l'eATP pour réduire l'amincissement et les rides. MÉTHODES: Les niveaux d'adénosine triphosphate (ATP) ont été mesurés dans les kératinocytes épidermiques humains normaux (NHEK) en présence d'extrait de feuille de M. piperita. La sécheresse, le pH élevé et les radiations UVB ont été utilisés comme facteurs de vieillissement extrinsèque. Le vieillissement intrinsèque de la peau a été évalué en comparant les cellules des adultes (AD­NHEK) et des nouveau­nés (NB­NHEK). Une étude in vivo contrôlée par placebo a été réalisée avec une formulation contenant 1% d'extrait de feuille de M. piperita. RÉSULTATS: Les niveaux d'eATP étaient significativement plus élevés dans les AD­NHEK comparés à ceux des cellules NB­NHEK. L'extrait de feuille de M. piperita a significativement diminué les niveaux d'eATP dans les cellules adultes. Les facteurs de vieillissement extrinsèque ont augmenté les niveaux d'eATP dans les NHEK, tandis que l'extrait de feuille de M. piperita a significativement supprimé l'eATP dans toutes les conditions. Les composants actifs de l'extrait de feuille de M. piperita, la lutéoline glucuronide et l'acide rosmarinique, ont également diminué l'eATP. De plus, comparée à la lotion placebo, la lotion formulée avec de l'extrait de feuille de M. piperita a considérablement augmenté l'épaisseur dermique et réduit les rides associées aux pattes d'oie et à la région du cou. CONCLUSION: Nous avons démontré pour la première fois que l'extrait de feuille de M. piperita contenant de l'acide rosmarinique et de la lutéoline­7­O­glucuronide a le potentiel de réduire la libération d'eATP des kératinocytes épidermiques. Une augmentation de l'eATP a été observée non seulement pendant l'inflammation mais aussi pendant le vieillissement naturel. En outre, l'expérience in vivo révélant que la lotion contenant 1% d'extrait de feuille de M. piperita a amélioré l'amincissement dermique et les rides sur plusieurs zones est attribuée à l'amélioration de l'amincissement dermique. Ainsi, nos données suggèrent la possibilité d'une nouvelle approche cosmétique pour réduire le vieillissement de la peau en réduisant l'amincissement dermique médié par l'eATP.

3.
Plants (Basel) ; 13(13)2024 Jun 24.
Article de Anglais | MEDLINE | ID: mdl-38999586

RÉSUMÉ

In plants, secondary metabolites change in response to environmental conditions. These changes co-regulate resilience to stressful environmental conditions, plant growth and development, and interactions between plants and the wider ecosystem, while also affecting soil carbon storage and atmospheric and climatic conditions. The objective of this study was to determine the association between UV exposure and the contents of key metabolites, including amino acids, phenolics, flavonoids, terpenoids, carotenoids, tocopherols, and phytosterols. Mentha spicata plantlets were grown in tissue culture boxes for 30 days and then exposed to a low dose of broadband UV-B (291-315 nm; 2.8 kJm-2 biologically effective UV) enriched light for eight days. Metabolite contents were quantified either immediately after the final UV exposure, or after seven days of recovery under photosynthetically active radiation. It was found that UV promoted the production of flavonoids (1.8-fold) ahead of phenolic acids (unchanged). Furthermore, the majority of monoterpenes and sesquiterpenes, constituents of valuable mint essential oil, were significantly increased through UV treatment (up to 90-fold for α-linalool). In contrast, the contents of carotenoids and tocopherols did not increase following UV exposure. A comparison between plants sampled immediately after UV exposure and after seven days of recovery showed that there was an overall increase in the content of carotenoids, mono- and sesquiterpenes, phenolics, and amino acids following recovery, while the contents of sterols and tocopherols decreased. These UV-induced changes in metabolite profile may have important consequences for agriculture, ecology, and even the global climate, and they also provide an exciting opportunity to enhance crop value, facilitating the development of improved products with higher levels of essential oils and added benefits of enhanced flavour, colour, and bioactive content.

4.
J Toxicol Environ Health A ; : 1-12, 2024 Jul 10.
Article de Anglais | MEDLINE | ID: mdl-38984907

RÉSUMÉ

Dental caries is a highly prevalent oral disease affecting billions of individuals globally. The disease occurs chemically as a result of breakdown of the tooth surface attributed to metabolic activity in colonizing biofilm. Biofilms, composed of exopolysaccharides and proteins, protect bacteria like Streptococcus mutans, which is notable for its role in tooth decay due to its acid-producing abilities. While various antimicrobial agents may prevent biofilm formation, these drugs often produce side effects including enamel erosion and taste disturbances. This study aimed to examine utilization of the Mentha piperita essential oil as a potential antibiofilm activity agent against S. mutans. M. piperita oil significantly (1) reduced bacterial biofilm, (2) exhibited a synergistic effect when combined with chlorhexidine, and (3) did not induce cell toxicity. Chemical analysis identified the essential oil with 99.99% certainty, revealing menthol and menthone as the primary components, constituting approximately 42% and 26%, respectively. Further, M. piperita oil eradicated preformed biofilms and inhibited biofilm formation at sub-inhibitory concentrations. M. piperita oil also interfered with bacterial quorum sensing communication and did not produce any apparent cell toxicity in immortalized human keratinocytes (HaCaT). M. piperita represented an alternative substance for combating S. mutans and biofilm formation and a potential combination option with chlorhexidine to minimize side effects. An in-situ performance assessment requires further studies.

5.
Int J Mol Sci ; 25(14)2024 Jul 10.
Article de Anglais | MEDLINE | ID: mdl-39062813

RÉSUMÉ

Increasing demand for functional beverages is attracting consumers' attention and driving research to expand our knowledge of fermentation using symbiotic culture of bacteria and yeast (SCOBY) and demonstrate the health effects of consuming kombucha. The objective of this study was to develop innovative recipes for unpasteurized mint/nettle kombucha analogs, and to compare the products obtained under varying conditions in terms of chemical composition, bioactive polyphenols and health-promoting activity. Four variants of kombucha beverages (K1-K4), differing in the addition of sucrose and fermentation temperature, were formulated. The fermentation process provided data indicating the increase of antidiabetic, anti-inflammatory and anticholinergic properties, while a decrease in antioxidant capacity was observed. The content of polyphenolics was the highest on the seventh day of fermentation. A higher fermentation temperature and a larger amount of sucrose accelerated the fermentation process, which may be crucial for shortening the production time of kombucha drinks.


Sujet(s)
Fermentation , Polyphénols , Polyphénols/composition chimique , Polyphénols/analyse , Antioxydants/composition chimique , Boissons/analyse , Thé kombucha/analyse , Mentha spicata/composition chimique , Humains , Saccharose/métabolisme , Saccharose/composition chimique
6.
Life (Basel) ; 14(7)2024 Jun 27.
Article de Anglais | MEDLINE | ID: mdl-39063571

RÉSUMÉ

Essential oils (EOs) extracted from aromatic and medicinal plants have the potential to inhibit the growth of various pathogens and, thus, be useful in the control of dangerous diseases. The application of environmentally friendly approaches to protect agricultural and forestry ecosystems from invasive and hazardous species has become more significant in last decades. Therefore, the identification and characterization of essential oils with a strong inhibitory activity against aggressive and widespread pathogens are of key importance in plant protection research. The main purpose of our study is to evaluate the impact of essential oils originating from different genotypes of bee balm, mint, and marigold on Botrytis cinerea, Fusarium solani, and Phytophthora pseudocryptogea. Twelve essential oils, including five EOs originating from Monarda fistulosa, one oil each from Monarda russeliana, Mentha longifolia, Mentha piperita, Tagetes patula, and Tagetes erecta, and two EOs from Tagetes tenuifolia were derived by steam or water distillation. The chemical composition of the tested EOs was determined by GS-MS analyses and their corresponding chemotypes were identified. The most effective against all three pathogens were determined to be the EOs originating from M. fistulosa and M. russeliana. B. cinerea, and P. pseudocryptogea were also significantly affected by the M. piperita essential oil. The most efficient EOs involved in this investigation and their potential to control plant pathogens are discussed.

7.
Acta Med Philipp ; 58(3): 47-54, 2024.
Article de Anglais | MEDLINE | ID: mdl-38966836

RÉSUMÉ

Introduction: Folkloric claims have surrounded essential oils, including their enhancement of learning and memory through inhalational exposure. Few studies in humans have shown a benefit in cognition, albeit incremental. However, this benefit may not be entirely attributable to the essential oil aroma but may be confounded by psychological associations. We investigated rosemary, peppermint, lemon, and coffee aromas in a learning and memory model of Drosophila melanogaster to eliminate this confounder. Methods: We screened for concentrations of the four treatments that are non-stimulatory for altered locomotory behavior in the flies. At these concentrations, we determined if they were chemoneutral (i.e., neither chemoattractant nor chemorepellent) to the flies. Learning and memory of the flies exposed to these aromas were determined using an Aversive Phototaxis Suppression (APS) assay. Results: The aromas of rosemary, peppermint, and lemon that did not elicit altered mobility in the flies were from dilute essential oil solutions that ranged from 0.2 to 0.5% v/v; whereas for the aroma in coffee, it was at a higher concentration of 7.5% m/v. At these concentrations, the aromas used were found to be chemoneutral towards the flies. We observed no improvement in both learning and memory in the four aromas tested. While a significant reduction (p < 0.05) in learning was observed when flies were treated with the aromas of rosemary, peppermint, and coffee, a significant reduction (p < 0.05) in memory was only observed in the peppermint aroma treatment. Conclusion: This study demonstrated that in the absence of psychological association, the four aromas do not enhance learning and memory.

8.
Nat Prod Res ; : 1-9, 2024 Jul 31.
Article de Anglais | MEDLINE | ID: mdl-39084312

RÉSUMÉ

In this study, three different ecotypes of M. longifolia collected from Lorestan province, Iran. three habitats including Khorramabad (ecotype 1), Aleshtar (ecotype 2), and Delfan (ecotype 3) counties (ecotype 3) were selected. In addition to analysing the chemical composition of the essential oils, for the first time, the effects of essential oils of these ecotypes against plant pathogenic bacterial including Erwinia amylovora and Pseudomonas syringae together with Bacillus subtilis, a biocontrol agent, and viability of colon tumour cell (SW742) was evaluated. Results showed that ecotype 1 had the highest concentration of the essential oil. All three bacteria showed the same level of sensitivity to the essential oils of M. longifolia extracted from three different ecotypes. Considering the findings of the effects of essential oils on SW742 tumour cell viability, we can suggest that M. longifolia essential oil obtained from ecotype 3 can be used to reduce the cell viability of SW742 tumour cells. It can be concluded that M. longifolia essential oil can be used to reduce tumour cell viability and their anti-microbial activity against plant pathogens.

9.
Int J Biol Macromol ; : 134214, 2024 Jul 26.
Article de Anglais | MEDLINE | ID: mdl-39069055

RÉSUMÉ

Our research addresses the challenge of low concentrations of viridiflorol, a unique and highly valuable sesquiterpene found in various Mentha species. We employed biotechnological strategies to enhance viridiflorol production, which could significantly boost export revenue. Mentha piperita L. sesquiterpene synthase (MpTPS4) was the focus of our study because it is a key enzyme in the biosynthesis of viridiflorol. Through biochemical characterization, we confirmed that MpTPS4 exclusively synthesizes viridiflorol. By overexpressing MpTPS4 in M. ×piperita L. using a glandular trichome-specific promoter, we achieved a notable increase (9-25 %) in viridiflorol content. Additionally, we explored the practical application of viridiflorol as a deterrent against the herbivore Helicoverpa armigera. The RNAi-mediated knockdown of MpTPS4 resulted in a significant reduction in viridiflorol levels in the essential oil. More importantly, these results show how relevant MpTPS4 is for making viridiflorol and how biotechnology could be used to increase viridiflorol biosynthesis. Our research provides valuable insights into enhancing the production of this commercially important sesquiterpene, offering promising opportunities for the mentha industry.

10.
Nutrients ; 16(14)2024 Jul 09.
Article de Anglais | MEDLINE | ID: mdl-39064624

RÉSUMÉ

Diabetes mellitus is a spreading global pandemic. Type 2 diabetes mellitus (T2DM) is the predominant form of diabetes, in which a reduction in blood glucose uptake is caused by impaired glucose transporter 4 (GLUT4) translocation to the plasma membrane in adipose and muscle cells. Antihyperglycemic drugs play a pivotal role in ameliorating diabetes symptoms but often are associated with side effects. Hence, novel antidiabetic compounds and nutraceutical candidates are urgently needed. Phytogenic therapy can support the prevention and amelioration of impaired glucose homeostasis. Using total internal reflection fluorescence microscopy (TIRFM), 772 plant extracts of an open-access plant extract library were screened for their GLUT4 translocation activation potential, resulting in 9% positive hits. Based on commercial interest and TIRFM assay-based GLUT4 translocation activation, some of these extracts were selected, and their blood glucose-reducing effects in ovo were investigated using a modified hen's egg test (Gluc-HET). To identify the active plant part, some of the available candidate plants were prepared in-house from blossoms, leaves, stems, or roots and tested. Acacia catechu (catechu), Pulmonaria officinalis (lungwort), Mentha spicata (spearmint), and Saponaria officinalis (common soapwort) revealed their potentials as antidiabetic nutraceuticals, with common soapwort containing GLUT4 translocation-activating saponarin.


Sujet(s)
Transporteur de glucose de type 4 , Hypoglycémiants , Insuline , Microscopie de fluorescence , Extraits de plantes , Extraits de plantes/pharmacologie , Transporteur de glucose de type 4/métabolisme , Hypoglycémiants/pharmacologie , Animaux , Insuline/métabolisme , Souris , Glycémie/effets des médicaments et des substances chimiques , Glycémie/métabolisme , Diabète de type 2/traitement médicamenteux , Humains , Transport des protéines/effets des médicaments et des substances chimiques
11.
Article de Anglais | MEDLINE | ID: mdl-38874619

RÉSUMÉ

The present study optimized pre-treatment conditions for bioenzyme-mediated hydro-distillation (BMHD) for extraction of mint oil from mentha leaves and the results were compared with those of traditional hydro-distillation (HD) method using response surface methodology. The bio-enzymes produced from moringa leaves had maximum pectinase activity (287.04 µg of sugar/min/ml) followed by xylanase (87.78 µg of sugar/min/ml) while endoglucanase, exoglucanase and amylase activities were comparatively low. The optimized conditions for HD were 69.08 temperature for 173.70 min with water:sample of 10.0. The optimized conditions for enzyme pre-treatment of mentha leaves by BMHD were enzyme concentration of 8%, for a period of 120 min at an incubation period of 40 â„ƒ. The yield (%) and menthol content (%) of the oil at optimized conditions by HD were 1.55 ml/100 g of sample and 56.40% menthol content, respectively, and for BMHD the yield and menthol content (%) of the oil at optimized conditions were 3.69% and 72.80%, respectively. It was found that BMHD leads to a 130% increase in the yield of mint oil and a 10% increase in menthol content as compared to the HD method. No significant difference in physical parameters was observed in mint oil extracted via both methods. Therefore, BMHD is a cost-effective and sustainable approach having an edge over the HD method without compromising the quality and could be a viable approach for commercial purposes.

12.
Microbiol Res ; 286: 127792, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-38852300

RÉSUMÉ

Botrytis cinerea is the phytopathogenic fungus responsible for the gray mold disease that affects crops worldwide. Essential oils (EOs) have emerged as a sustainable tool to reduce the adverse impact of synthetic fungicides. Nevertheless, the scarce information about the physiological mechanism action and the limitations to applying EOs has restricted its use. This study focused on elucidating the physiological action mechanisms and prospection of lipid nanoparticles to apply EO of Mentha piperita. The results showed that the EO of M. piperita at 500, 700, and 900 µL L-1 inhibited the mycelial growth at 100 %. The inhibition of spore germination of B. cinerea reached 31.43 % at 900 µL L-1. The EO of M. piperita decreased the dry weight and increased pH, electrical conductivity, and cellular material absorbing OD260 nm of cultures of B. cinerea. The fluorescence technique revealed that EO reduced hyphae width, mitochondrial activity, and viability, and increased ROS production. The formulation of EO of M. piperita loaded- solid lipid nanoparticles (SLN) at 500, 700, and 900 µL L-1 had particle size ∼ 200 nm, polydispersity index < 0.2, and stability. Also, the thermogravimetric analysis indicated that the EO of M. piperita-loaded SLN has great thermal stability at 50 °C. EO of M. piperita-loaded SLN reduced the mycelial growth of B. cinerea by 70 %, while SLN formulation (without EO) reached 42 % inhibition. These results supported that EO of M. piperita-loaded SLN is a sustainable tool for reducing the disease produced by B. cinerea.


Sujet(s)
Botrytis , Mentha piperita , Nanoparticules , Huile essentielle , Spores fongiques , Botrytis/effets des médicaments et des substances chimiques , Botrytis/croissance et développement , Huile essentielle/pharmacologie , Huile essentielle/composition chimique , Nanoparticules/composition chimique , Mentha piperita/composition chimique , Spores fongiques/effets des médicaments et des substances chimiques , Spores fongiques/croissance et développement , Fongicides industriels/pharmacologie , Fongicides industriels/composition chimique , Mycelium/effets des médicaments et des substances chimiques , Mycelium/croissance et développement , Maladies des plantes/prévention et contrôle , Maladies des plantes/microbiologie , Lipides/composition chimique , Lipides/pharmacologie , Taille de particule , Espèces réactives de l'oxygène/métabolisme , Huiles végétales/pharmacologie , Hyphae/effets des médicaments et des substances chimiques , Hyphae/croissance et développement , Tests de sensibilité microbienne , Antifongiques/pharmacologie , Liposomes
13.
Chem Biodivers ; : e202401367, 2024 Jun 24.
Article de Anglais | MEDLINE | ID: mdl-38923285

RÉSUMÉ

This study explored the composition of essential oil (EO) and the first phytotoxic screening of EO obtained from the stems and leaves of Mentha vagans Boriss (MVEO) via hydro-distillation technique. The EO ingredients were detected through Gas Chromatography-Mass Spectrometry (GC-MS). GC-MS analysis revealed that MVEO contained 49 constituents, constituting 93.95 % of the total oil. Among MVEO constituents, dihydrocarvone was observed as the dominant constituent (24.14%), followed by D-carvone (16.28%) and piperitone (18.14%). The phytotoxic effects of MVEO and its dominant compounds were examined against Amaranthus retroflexus, Lolium perenne, and Poa annua. Significant inhibition was observed by MVEO in comparison with the major constituents and their mixture, suppressing the seedling growth of tested species at the lowest dosage (0.01 mg/mL); in general, seedling growth of all tested species was markedly inhibited when applied concentration of the EO and its constituents reached 0.05 mg/mL. Our results also indicated that constituents other than the dominant compounds of MVEO possessed considerable phytotoxic effects because the EO's activity was stronger than its major constituents and their mixture. Thus, additional studies are required to investigate MVEO and its constituents and commercialize them as environment-friendly bio-herbicides.

14.
Chem Biodivers ; : e202401209, 2024 Jun 12.
Article de Anglais | MEDLINE | ID: mdl-38865194

RÉSUMÉ

This research aimed to evaluate the antidiabetic, dermatoprotective, and antibacterial activities of Mentha viridis L. essential oil (MVEO) collected in the province of Ouezzane (Northwest Morocco). Gas chromatography-mass spectrometry (GC-MS) analysis revealed that the main constituents of MVEO were carvone (37.26 %), 1,8-cineole (11.82 %), limonene (5.27 %), α-terpineol (4.16 %), and ß-caryophyllene (4.04 %). MVEO showed strong inhibitory effects on α-amylase and α-glucosidase activities, exceeding those of acarbose, but weak anti-elastase activity. The main compounds, ß-caryophyllene (IC50=79.91±2.24 and 62.08±2.78 µg/mL) and limonene (IC50=90.73±3.47 and 68.98±1, 60 µg/mL), demonstrated the strongest inhibitory effects on both digestive enzymes (α-glucosidase and α-amylase, respectively). In silico investigations, using molecular docking, also showed the inhibitory potential of these bioactive compounds against the enzymes tested. In conclusion, MVEO, due to its main components such as limonene, 1,8-cineole, ß-caryophyllene, carvone, and α-terpineol, shows promising prospects for drug discovery and natural therapeutic applications.

15.
Planta ; 260(1): 3, 2024 May 20.
Article de Anglais | MEDLINE | ID: mdl-38767800

RÉSUMÉ

MAIN CONCLUSION: Transcription factors MhMYB1 and MhMYB2 correlate with monoterpenoid biosynthesis pathway in l-menthol chemotype of Mentha haplocalyx Briq, which could affect the contents of ( -)-menthol and ( -)-menthone. Mentha haplocalyx Briq., a plant with traditional medicinal and edible uses, is renowned for its rich essential oil content. The distinct functional activities and aromatic flavors of mint essential oils arise from various chemotypes. While the biosynthetic pathways of the main monoterpenes in mint are well understood, the regulatory mechanisms governing different chemotypes remain inadequately explored. In this investigation, we identified and cloned two transcription factor genes from the M. haplocalyx MYB family, namely MhMYB1 (PP236792) and MhMYB2 (PP236793), previously identified by our research group. Bioinformatics analysis revealed that MhMYB1 possesses two conserved MYB domains, while MhMYB2 contains a conserved SANT domain. Yeast one-hybrid (Y1H) analysis results demonstrated that both MhMYB1 and MhMYB2 interacted with the promoter regions of MhMD and MhPR, critical enzymes in the monoterpenoid biosynthesis pathway of M. haplocalyx. Subsequent virus-induced gene silencing (VIGS) of MhMYB1 and MhMYB2 led to a significant reduction (P < 0.01) in the relative expression levels of MhMD and MhPR genes in the VIGS groups of M. haplocalyx. In addition, there was a noteworthy decrease (P < 0.05) in the contents of ( -)-menthol and ( -)-menthone in the essential oil of M. haplocalyx. These findings suggest that MhMYB1 and MhMYB2 transcription factors play a positive regulatory role in ( -)-menthol biosynthesis, consequently influencing the essential oil composition in the l-menthol chemotype of M. haplocalyx. This study serves as a pivotal foundation for unraveling the regulatory mechanisms governing monoterpenoid biosynthesis in different chemotypes of M. haplocalyx.


Sujet(s)
Régulation de l'expression des gènes végétaux , Mentha , Menthol , Monoterpènes , Protéines végétales , Facteurs de transcription , Facteurs de transcription/génétique , Facteurs de transcription/métabolisme , Mentha/génétique , Mentha/métabolisme , Monoterpènes/métabolisme , Protéines végétales/génétique , Protéines végétales/métabolisme , Menthol/métabolisme , Huile essentielle/métabolisme , Voies de biosynthèse/génétique , Régions promotrices (génétique)/génétique
16.
Molecules ; 29(9)2024 Apr 25.
Article de Anglais | MEDLINE | ID: mdl-38731461

RÉSUMÉ

This present study aims to characterize the essential oil compositions of the aerial parts of M. spicata L. and endemic M. longifolia ssp. cyprica (Heinr. Braun) Harley by using GC-FID and GC/MS analyses simultaneously. In addition, it aims to perform multivariate statistical analysis by comparing with the existing literature, emphasizing the literature published within the last two decades, conducted on both species growing within the Mediterranean Basin. The major essential oil components of M. spicata were determined as carvone (67.8%) and limonene (10.6%), while the major compounds of M. longifolia ssp. cyprica essential oil were pulegone (64.8%) and 1,8-cineole (10.0%). As a result of statistical analysis, three clades were determined for M. spicata: a carvone-rich chemotype, a carvone/trans-carveol chemotype, and a pulegone/menthone chemotype, with the present study result belonging to the carvone-rich chemotype. Carvone was a primary determinant of chemotype, along with menthone, pulegone, and trans-carveol. In M. longifolia, the primary determinants of chemotype were identified as pulegone and menthone, with three chemotype clades being pulegone-rich, combined menthone/pulegone, and combined menthone/pulegone with caryophyllene enrichment. The primary determinants of chemotype were menthone, pulegone, and caryophyllene. The present study result belongs to pulegone-rich chemotype.


Sujet(s)
Chromatographie gazeuse-spectrométrie de masse , Mentha spicata , Mentha , Huile essentielle , Huile essentielle/composition chimique , Mentha/composition chimique , Mentha spicata/composition chimique , Analyse multifactorielle , Région méditerranéenne , Cyclohexane monoterpenes/composition chimique , Cyclohexane monoterpenes/analyse , Monoterpènes/composition chimique , Monoterpènes/analyse , Limonène/composition chimique , Terpènes/composition chimique , Terpènes/analyse , Menthol
17.
J Nat Med ; 2024 May 19.
Article de Anglais | MEDLINE | ID: mdl-38764002

RÉSUMÉ

Menthae Herba is an herbal medicine whose name is written with the same kanji characters () in both the Japanese Pharmacopoeia, 18th Edition (JP) and in the Pharmacopoeia of the People's Republic of China (CP). However, the original plant are Mentha arvensis Linné var. piperascens Malinvaud in JP and Mentha haplocalyx Briq. in CP. To clarify the similarities and differences between Menthae Herba in Japan and that in China, morphological observations, essential oil component analysis, and DNA analysis were performed on marketed products of Menthae Herba in Japan and in China. The morphological observations based on the description of JP Menthae Herba showed that most of the samples matched the items listed in the description. Essential oil component analysis by gas chromatography-mass spectrometry showed that the amount of menthol varied among samples and that menthol was not always the principal compound in the oil. The original plant species was confirmed by DNA analysis of the rpl16 intron region in chloroplast DNA and all samples matched the sequence of M. canadensis. The results showed that Menthae Herba products distributed in both Japan and China contained M. canadensis, but they had different compositions of essential oil, with menthol-rich Menthae Herba being dominant in the Japanese market.

18.
Life (Basel) ; 14(5)2024 May 09.
Article de Anglais | MEDLINE | ID: mdl-38792631

RÉSUMÉ

Multidrug-resistant bacterial pathogens, such as E. coli, represent a major human health threat. Due to the critical need to overcome this dilemma, since the drug efflux pump has a vital function in the evolution of antimicrobial resistance in bacteria, we have investigated the potential of Mentha essential oil major constituents (1-19) as antimicrobial agents via their ability to inhibit pathogenic DNA gyrase and, in addition, their potential inhibition of the E. coli AcrB-TolC efflux pump, a potential target to inhibit MDR pathogens. The ligand docking approach was conducted to analyze the binding interactions of Mentha EO constituents with the target receptors. The obtained results proved their antimicrobial activity through the inhibition of DNA gyrase (1kzn) with binding affinity ΔG values between -4.94 and -6.49 kcal/mol. Moreover, Mentha EO constituents demonstrated their activity against MDR E. coli by their ability to inhibit AcrB-TolC (4dx7) with ΔG values ranging between -4.69 and -6.39 kcal/mol. The antimicrobial and MDR activity of Mentha EOs was supported via hydrogen bonding and hydrophobic interactions with the key amino acid residues at the binding site of the active pocket of the targeted receptors.

19.
Heliyon ; 10(7): e28343, 2024 Apr 15.
Article de Anglais | MEDLINE | ID: mdl-38560153

RÉSUMÉ

Current methods of colon cancer treatment, especially chemotherapy, require new treatment methods due to adverse side effects. One important area of interest in recent years is the use of nanoparticles as drug delivery vehicles since several studies have revealed that they can improve the target specificity of the treatment thus lowering the dosage of the drugs while preserving the effectiveness of the treatment thus reducing the side effects. The use of traditional medicine has also been a favorite topic of interest in recent years in medical research, especially cancer research. In this research work, the green synthesis of Fe nanoparticles was carried out using Mentha spicata extract and the synthesized nanoparticles were identified using FT-IR, XRD, FE-SEM and EDS techniques. Then the effect of Mentha spicata, Fe nanoparticles, and Mentha spicata -loaded Fe nanoparticles on LS174t colon cancer cells, and our result concluded that all three, especially Mentha spicata -loaded Fe nanoparticles, have great cytotoxic effects against LS174t cells, and exposure to radiotherapy just further intensified these results. The in vitro condition revealed alterations in the expression of pro-apoptotic BAX and anti-apoptotic Bcl2, suggesting a pro-apoptotic effect from all three components, particularly the Mentha spicata-loaded Fe nanoparticles. After further clinical trials, these nanoparticles can be used to treat colon cancer.

20.
Heliyon ; 10(7): e28125, 2024 Apr 15.
Article de Anglais | MEDLINE | ID: mdl-38560258

RÉSUMÉ

The aim of the present study is the valorization of the essential oil of Mentha suaveolens Ehrh. The research plan and methods included 3-axis: the first axis consists of studying the organoleptic and physicochemical characterization of the essential oil, the second is the chemical analysis carried out by Gas Chromatography/Mass Spectrometry (GC/MS) and the third consists of evaluating its antimicrobial activity against selected microorganisms. The results obtained for the organoleptic and physicochemical properties are as follows: appearance: Liquid, mobile and clear, odor: Strong odor characteristic of Mentha suaveolens Ehrh, color: Pale yellow; relative density (0.92), miscibility with ethanol (1V/2V), freezing point (Tfreezing < -10 °C), refractive index (1.5256), rotating power (+0.825), acid index (1.68), ester index (68.44), saponification index (70.13) and iodine index (12.05).Chemical analysis identified 69 compounds which are mostly oxygenated monoterpenes such as piperitenone oxide (32.55%), pulegone (10.14%), piperitone oxide (8.34%), etc. The microbiological tests were carried out by an agar diffusion test using the essential oil of Mentha suaveolens Ehrh. The microbiological tests were carried out by a diffusion test on agar, these tests are carried out on six microbial strains (five bacteria and one yeast).The inhibitory effect of our oil is well marked against bacteria: Proteus mirabilis (17.50 ± 0.70 mm at 50 µL/mL), Enterococcus faecalis (17.00 ± 1.00 mm at 50 µL/mL) and Staphylococcus coagulase negative (16.33 ± 0.57 mm at 50 µL/mL) while it was moderate against Escherichia coli (14.33 ± 1.15 mm at 50 µL/mL) and Streptococcus spp (13.00 ± 0.00 mm at 50 µL/mL) as well as against yeast, Candida albicans (15.33 ± 1.52 mm at 50 µL/mL). It appears from these results that our oil is of high quality and can be used in several areas. The results obtained are therefore promising and thus open the way for manufacturers to use this essential oil of Mentha suaveolens Ehrh in the pharmaceutical, cosmetic, agricultural and food industries.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE