RÉSUMÉ
Tau is a microtubule-associated protein predominantly expressed in neurons, which participates in microtubule polymerization and axonal transport. Abnormal tau metabolism leads to neurodegenerative diseases named tauopathies, such as Alzheimer's disease and frontotemporal dementia. The alternative splicing of exon 10 (E10) in the primary transcript produces tau protein isoforms with three (3R) or four (4R) microtubule binding repeats, which are found in equal amounts in the normal adult human brain. Several tauopathies are associated with abnormal E10 alternative splicing, leading to an imbalance between 3R and 4R isoforms, which underlies disease. Correction of such imbalance represents a potential disease-modifying therapy for those tauopathies. We have previously optimized a trans-splicing RNA reprogramming strategy to modulate the 3R:4R tau content in a mouse model of tauopathy related to tau mis-splicing (htau mice), and showed that local modulation of E10 inclusion in the prefrontal cortex prevents cognitive decline, neuronal firing impairments and hyperphosphorylated tau accumulation. Furthermore, local shifting of 3R-4R tau into the striatum of htau mice prevented motor coordination deficits. However, a major bottleneck of our previous work is that local splicing regulation was performed in young mice, before the onset of pathological phenotypes. Here we tested whether regulation of tau E10 splicing could rescue tau pathology phenotypes in htau mice, after the onset of cognitive and motor impairments, comparable to early stages of human tauopathies. To determine phenotypic time course and affected brain nuclei, we assessed htau mice using behavioural tests and microPET FDG imaging over time, similarly to diagnosis methods used in patients. Based on these analyses, we performed local delivery of pre-trans splicing molecules to regulate E10 inclusion either into the medial prefrontal cortex (mPFC) or the striatum at 6-month-old once behavioral phenotypes and metabolic changes were detected. Tau isoforms modulation into the mPFC restored cognitive performance in mice that previously showed mild to severe memory impairment while motor coordination deficit was rescued after striatal injection of trans-splicing molecules. Our data suggest that tau regulation could recover pathological phenotypes early after phenotypic onset, raising promising perspectives for the use of RNA based therapies in tauopathies related to MAPT abnormal splicing.
RÉSUMÉ
Allergic asthma is characterized by chronic airway inflammation and is constantly associated with anxiety disorder. Recent studies showed bidirectional interaction between the brain and the lung tissue. However, where and how the brain is affected in allergic asthma remains unclear. We aimed to investigate the neuroinflammatory, neurochemical, and neurometabolic alterations that lead to anxiety-like behavior in an experimental model of allergic asthma. Mice were submitted to an allergic asthma model induced by ovalbumin (OVA) and the control group received only Dulbecco's phosphate-buffered saline (DPBS). Our findings indicate that airway inflammation increases interleukin (IL) -9, IL-13, eotaxin, and IL-1ß release and changes acetylcholinesterase (AChE) and Na+,K+-ATPase activities in the brain of mice. Furthermore, we demonstrate that a higher reactive oxygen species (ROS) formation and antioxidant defense alteration that leads to protein damage and mitochondrial dysfunction. Therefore, airway inflammation promotes a pro-inflammatory environment with an increase of BDNF expression in the brain of allergic asthma mice. These pro-inflammatory environments lead to an increase in glucose uptake in the limbic regions and to anxiety-like behavior that was observed through the elevated plus maze (EPM) test and downregulation of glucocorticoid receptor (GR). In conclusion, the present study revealed for the first time that airway inflammation induces neuroinflammatory, neurochemical, and neurometabolic changes within the brain that leads to anxiety-like behavior. Knowledge about mechanisms that lead to anxiety phenotype in asthma is a beneficial tool that can be used for the complete management and treatment of the disease.
Sujet(s)
Acetylcholinesterase , Asthme , Animaux , Anxiété , Asthme/induit chimiquement , Modèles animaux de maladie humaine , Inflammation/induit chimiquement , Inflammation/métabolisme , SourisRÉSUMÉ
OBJECTIVE: Brain metabolic processes are not fully characterized in the kainic acid (KA)-induced Status Epilepticus (KASE). Thus, we evaluated the usefulness of 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) as an experimental strategy to evaluate in vivo, in a non-invasive way, the glucose consumption in several brain regions, in a semi-quantitative study to compare and to correlate with data from electroencephalography and histology studies. METHODS: Sixteen male Wistar rats underwent FDG-PET scans at basal state and after KA injection. FDG-PET images were normalized to an MRI-based atlas and segmented to locate regions. Standardized uptake values (SUV) were obtained at several time points. EEGs and cell viability by histological analysis, were also evaluated. RESULTS: FDG-PET data showed changes in regions such as: amygdala, hippocampus, accumbens, entorhinal cortex, motor cortex and hypothalamus. Remarkably, hippocampal hypermetabolism was found (mean SUV = 2.66 ± 0.057) 2 h after KA administration, while hypometabolism at 24 h (mean SUV = 1.83 ± 0.056) vs basal values (mean SUV = 2.19 ± 0.057). EEG showed increased spectral power values 2 h post-KA administration. Hippocampal viable-cell counting 24 h after KA was decreased, while Fluoro-Jade B-positive cells were increased, as compared to control rats, coinciding with the hypometabolism detected in the same region by semi-quantitative FDG-PET at 24 h after KASE. CONCLUSIONS: PET is suitable to measure metabolic brain changes in the rat model of status epilepticus induced by KA (KASE) at the first 24 h, compared to that of EEG; PET data may also be sensitive to cell viability.
Sujet(s)
Encéphale/imagerie diagnostique , Encéphale/métabolisme , Antagonistes des acides aminés excitateurs/pharmacologie , Acide kaïnique/pharmacologie , Animaux , Encéphale/effets des médicaments et des substances chimiques , Électroencéphalographie , Fluorodésoxyglucose F18 , Hippocampe/métabolisme , Hippocampe/anatomopathologie , Mâle , Tomographie par émission de positons , Radiopharmaceutiques , Rats , Rat Wistar , État de mal épileptique/induit chimiquement , État de mal épileptique/métabolisme , État de mal épileptique/anatomopathologieRÉSUMÉ
Tauopathies are neurodegenerative diseases caused by the abnormal metabolism of the microtubule associated protein tau (MAPT), which is highly expressed in neurons and critically involved in microtubule dynamics. In the adult human brain, the alternative splicing of exon 10 in MAPT pre-mRNA produces equal amounts of protein isoforms with either three (3R) or four (4R) microtubule binding domains. Imbalance in the 3R:4R tau ratio is associated with primary tauopathies that develop atypical parkinsonism, such as progressive supranuclear palsy and corticobasal degeneration. Yet, the development of effective therapies for those pathologies is an unmet goal. Here we report motor coordination impairments in the htau mouse model of tauopathy which harbour abnormal 3R:4R tau isoforms content, and in contrast to TauKO mice, are unresponsive to l-DOPA. Preclinical-PET imaging, array tomography and electrophysiological analyses indicated the dorsal striatum as the candidate structure mediating such phenotypes. Indeed, local modulation of tau isoforms by RNA trans-splicing in the striata of adult htau mice, prevented motor coordination deficits and restored basal neuronal firing. Together, these results suggest that abnormal striatal tau isoform content might lead to parkinsonian-like phenotypes and demonstrate a proof of concept that modulation of tau mis-splicing is a plausible disease-modifying therapy for some primary tauopathies.
Sujet(s)
Corps strié/métabolisme , Troubles moteurs/métabolisme , Aptitudes motrices/physiologie , Tauopathies/métabolisme , Protéines tau/métabolisme , Épissage alternatif , Animaux , Corps strié/physiopathologie , Modèles animaux de maladie humaine , Mâle , Souris , Souris transgéniques , Troubles moteurs/génétique , Troubles moteurs/physiopathologie , Isoformes de protéines/génétique , Isoformes de protéines/métabolisme , Tauopathies/génétique , Tauopathies/physiopathologie , Protéines tau/génétiqueRÉSUMÉ
Prenatal and early postnatal periods are important for brain development and neural function. Neonatal insults such as hypoxia-ischemia (HI) causes prolonged neural and metabolic dysregulation, affecting central nervous system maturation. There is evidence that brain hypometabolism could increase the risk of adult-onset neurodegenerative diseases. However, the impact of non-pharmacologic strategies to attenuate HI-induced brain glucose dysfunction is still underexplored. This study investigated the long-term effects of early environmental enrichment in metabolic, cell, and functional responses after neonatal HI. Thereby, male Wistar rats were divided according to surgical procedure, sham, and HI (performed at postnatal day 3), and the allocation to standard (SC) or enriched condition (EC) during gestation and lactation periods. In-vivo cerebral metabolism was assessed by means of [18 F]-FDG micro-positron emission tomography, and cognitive, biochemical, and histological analyses were performed in adulthood. Our findings reveal that HI causes a reduction in glucose metabolism and glucose transporter levels as well as hyposynchronicity in metabolic brain networks. However, EC during prenatal or early postnatal period attenuated these metabolic disturbances. A positive correlation was observed between [18 F]-FDG values and volume ratios in adulthood, indicating that preserved tissue by EC is metabolically active. EC promotes better cognitive scores, as well as down-regulation of amyloid precursor protein in the parietal cortex and hippocampus of HI animals. Furthermore, growth-associated protein 43 was up-regulated in the cortex of EC animals. Altogether, results presented support that EC during gestation and lactation period can reduce HI-induced impairments that may contribute to functional decline and progressive late neurodegeneration.
Sujet(s)
Encéphale/métabolisme , Environnement , Hypoxie-ischémie du cerveau/métabolisme , Hypoxie-ischémie du cerveau/prévention et contrôle , Plasticité neuronale/physiologie , Effets différés de l'exposition prénatale à des facteurs de risque/métabolisme , Animaux , Animaux nouveau-nés , Femelle , Hypoxie-ischémie du cerveau/psychologie , Lactation/métabolisme , Lactation/psychologie , Mâle , Apprentissage du labyrinthe/physiologie , Maladies neurodégénératives/métabolisme , Maladies neurodégénératives/prévention et contrôle , Maladies neurodégénératives/psychologie , Tomographie par émission de positons/méthodes , Grossesse , Effets différés de l'exposition prénatale à des facteurs de risque/psychologie , Rats , Rat WistarRÉSUMÉ
BACKGROUND AND PURPOSE: Hypoxia and cerebral ischemia (HI) events are capable of triggering important changes in brain metabolism, including glucose metabolism abnormalities, which may be related to the severity of the insult. Using positron emission microtomography (microPET) with [18F]fluorodeoxyglucose (18F-FDG), this study proposes to assess abnormalities of brain glucose metabolism in adult rats previously submitted to the neonatal HI model. We hypothesize that cerebral metabolic outcomes will be associated with cognitive deficits and magnitude of brain injury. METHODS: Seven-day-old rats were subjected to an HI model, induced by permanent occlusion of the right common carotid artery and systemic hypoxia. 18F-FDG-microPET was used to assess regional and whole brain glucose metabolism in rats at 60 postnatal days (PND 60). An interregional cross-correlation matrix was utilized to construct metabolic brain networks (MBN). Rats were also subjected to the Morris Water Maze (MWM) to evaluate spatial memory and their brains were processed for volumetric evaluation. RESULTS: Brain glucose metabolism changes were observed in adult rats after neonatal HI insult, limited to the right brain hemisphere. However, not all HI animals exhibited significant cerebral hypometabolism. Hippocampal glucose metabolism was used to stratify HI animals into HI hypometabolic (HI-h) and HI non-hypometabolic (HI non-h) groups. The HI-h group had drastic MBN disturbance, cognitive deficit, and brain tissue loss, concomitantly. Conversely, HI non-h rats had normal brain glucose metabolism and brain tissue preserved, but also presented MBN changes and spatial memory impairment. Furthermore, data showed that brain glucose metabolism correlated with cognitive deficits and brain volume outcomes. CONCLUSIONS: Our findings demonstrated that long-term changes in MBN drive memory impairments in adult rats subjected to neonatal hypoxic ischemia, using in vivo imaging microPET-FDG. The MBN analyses identified glucose metabolism abnormalities in HI non-h animals, which were not detected by conventional 18F-FDG standardized uptake value (SUVr) measurements. These animals exhibited a metabolic brain signature that may explain the cognitive deficit even with no identifiable brain damage.
Sujet(s)
Encéphale/métabolisme , Hypoxie-ischémie du cerveau/métabolisme , Troubles de la mémoire/métabolisme , Réseau nerveux/métabolisme , Animaux , Encéphale/imagerie diagnostique , Modèles animaux de maladie humaine , Glucose/métabolisme , Hypoxie-ischémie du cerveau/complications , Hypoxie-ischémie du cerveau/imagerie diagnostique , Mâle , Troubles de la mémoire/imagerie diagnostique , Troubles de la mémoire/étiologie , Réseau nerveux/imagerie diagnostique , Tomographie par émission de positons , Rats , Rat WistarRÉSUMÉ
Imaging studies have shown abnormal amygdala function in patients with posttraumatic stress disorder (PTSD). In addition, alterations in synaptic plasticity have been associated with psychiatric disorders and previous reports have indicated alterations in the amygdala morphology, especially in basolateral (BLA) neurons, are associated with stress-related disorders. Since, some individuals exposed to a traumatic event develop PTSD, the goals of this study were to evaluate the early effects of PTSD on amygdala glucose metabolism and analyze the possible BLA dendritic spine plasticity in animals with different levels of behavioral response. We employed the inescapable footshock protocol as an experimental model of PTSD and the animals were classified according to the duration of their freezing behavior into distinct groups: "extreme behavioral response" (EBR) and "minimal behavioral response". We evaluated the amygdala glucose metabolism at baseline (before the stress protocol) and immediately after the situational reminder using the microPET and the radiopharmaceutical 18F-FDG. The BLA dendritic spines were analyzed according to their number, density, shape and morphometric parameters. Our results show the EBR animals exhibited longer freezing behavior and increased proximal dendritic spines density in the BLA neurons. Neither the amygdaloid glucose metabolism, the types of dendritic spines nor their morphometric parameters showed statistically significant differences. The extreme behavior response induced by this PTSD protocol produces an early increase in BLA spine density, which is unassociated with either additional changes in the shape of spines or metabolic changes in the whole amygdala of Wistar rats.
Sujet(s)
Groupe nucléaire basolatéral/physiopathologie , Épines dendritiques/physiologie , Troubles de stress post-traumatique/physiopathologie , Animaux , Groupe nucléaire basolatéral/métabolisme , Groupe nucléaire basolatéral/anatomopathologie , Épines dendritiques/anatomopathologie , Modèles animaux de maladie humaine , Fluorodésoxyglucose F18 , Glucose/métabolisme , Mâle , Tomographie par émission de positons , Rat Wistar , Troubles de stress post-traumatique/métabolisme , Troubles de stress post-traumatique/anatomopathologieRÉSUMÉ
Stress has been considered as a risk factor for the development and aggravation of several diseases. The hypothalamic-pituitary-adrenal axis (HPA) is one of the main actors for the stress response and homeostasis maintenance. Positron emission tomography (PET) has been used to evaluate neuronal activity and to study brain regions that may be related to the HPA axis response. Since neuroimaging is an important tool in detecting neuroendocrine-related changes, we used fluorodeoxyglucose-18 (18F-FDG) and positron emission microtomography (microPET) to evaluate sexual differences in the glucose brain metabolism after 10, 30 and 40â¯min of acute stress in Balb/c mice. We also investigated the effects of restraint stress in blood, liver and adrenal gland 18F-FDG biodistribution using a gamma counter. A decreased glucose uptake in the whole brain in both females and males was found. Additionally, there were time and sex-dependent alterations in the 18F-FDG uptake after restraint stress in specific brain regions, indicating that males could be more vulnerable to the short-term effects of acute stress. According to the gamma counter biodistribution, only females showed a significant decreased glucose uptake in the blood, liver and right adrenal after restraint stress. In addition, in comparisons between the sexes, males showed a decreased glucose uptake in the whole brain and in several brain regions compared to females. In conclusion, exposure to acute restraint stress resulted in significant decreased glucose metabolism in the brain, with particular effects in different regions and organs in a sex-specific manner.
Sujet(s)
Encéphale/métabolisme , Glucose/métabolisme , Caractères sexuels , Stress psychologique/métabolisme , Animaux , Femelle , Fluorodésoxyglucose F18 , Mâle , Souris de lignée BALB C , Tomographie par émission de positons , Contention physiqueRÉSUMÉ
OBJECTIVE: Temporal lobe epilepsy (TLE) is one of the most common types of epilepsy syndromes in the world. Depression is an important comorbidity of epilepsy, which has been reported in patients with TLE and in different experimental models of epilepsy. However, there is no established consensus on which brain regions are associated with the manifestation of depression in epilepsy. Here, we investigated the alterations in cerebral glucose metabolism and the metabolic network in the pilocarpine-induced rat model of epilepsy and correlated it with depressive behavior during the chronic phase of epilepsy. METHODS: Fluorodeoxyglucose (18 F-FDG) was used to investigate the cerebral metabolism, and a cross-correlation matrix was used to examine the metabolic network in chronically epileptic rats using micro-positron emission tomography (microPET) imaging. An experimental model of epilepsy was induced by pilocarpine injection (320 mg/kg, ip). Forced swim test (FST), sucrose preference test (SPT), and eating-related depression test (ERDT) were used to evaluate depression-like behavior. RESULTS: Our results show an association between epilepsy and depression comorbidity based on changes in both cerebral glucose metabolism and the functional metabolic network. In addition, we have identified a significant correlation between brain glucose hypometabolism and depressive-like behavior in chronically epileptic rats. Furthermore, we found that the epileptic depressed group presents a hypersynchronous brain metabolic network in relation to the epileptic nondepressed group. SIGNIFICANCE: This study revealed relevant alterations in glucose metabolism and the metabolic network among the brain regions of interest for both epilepsy and depression pathologies. Thus it seems that depression in epileptic animals is associated with a more diffuse hypometabolism and altered metabolic network architecture and plays an important role in chronic epilepsy.
Sujet(s)
Encéphale/métabolisme , Dépression/étiologie , Épilepsie/métabolisme , Épilepsie/psychologie , Glucose/métabolisme , Animaux , Encéphale/physiopathologie , Comorbidité , Dépression/métabolisme , Épilepsie/physiopathologie , Interprétation d'images assistée par ordinateur , Mâle , Tomographie par émission de positons , Rats , Rat WistarRÉSUMÉ
Early adverse life stress has been associated to behavioral disorders that can manifest as inappropriate or aggressive responses to social challenges. In this study, we analyzed the effects of artificial rearing on the open field and burial behavioral tests and on GFAP, c-Fos immunoreactivity, and glucose metabolism measured in anxiety-related brain areas. Artificial rearing of male rats was performed by supplying artificial milk through a cheek cannula and tactile stimulation, mimicking the mother's licking to rat pups from the fourth postnatal day until weaning. Tactile stimulation was applied twice a day, at morning and at night, by means of a camel brush on the rat anogenital area. As compared to mother reared rats, greater aggressiveness, and boldness, stereotyped behavior (burial conduct) was observed in artificially reared rats which occurred in parallel to a reduction of GFAP immunoreactivity in somatosensory cortex, c-Fos immunoreactivity at the amygdala and primary somatosensory cortex, and lower metabolism in amygdala (as measured by 2-deoxi-2-[18 fluoro]-d-glucose uptake, assessed by microPET imaging). These results could suggest that tactile and/or chemical stimuli from the mother and littermates carry relevant information for the proper development of the central nervous system, particularly in brain areas involved with emotions and social relationships of the rat. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1413-1429, 2017.
Sujet(s)
Encéphale/croissance et développement , Encéphale/métabolisme , Troubles mentaux/étiologie , Stress psychologique/complications , Stress psychologique/anatomopathologie , Facteurs âges , Animaux , Animaux nouveau-nés , Encéphale/imagerie diagnostique , Encéphale/anatomopathologie , Modèles animaux de maladie humaine , Comportement d'exploration/physiologie , Femelle , Fluorodésoxyglucose F18/pharmacocinétique , Protéine gliofibrillaire acide/métabolisme , Mâle , Troubles mentaux/imagerie diagnostique , Névroglie/métabolisme , Névroglie/anatomopathologie , Neurones/métabolisme , Neurones/anatomopathologie , Stimulation physique , Protéines proto-oncogènes c-fos/métabolisme , Rats , Rat Wistar , Isolement social/psychologie , ToucherRÉSUMÉ
La tomografía por emisión de positrones (PET) es una técnica de imágenes de medicina nuclear ya establecida en México, fundamental en el diagnóstico y seguimiento clínico de enfermedades oncológicas, neurológicas y cardiológicas. Esta modalidad de imagenología molecular está basada en la administración de cantidades muy pequeñas de fármacos marcados con emisores de positrones y en la subsecuente detección de radiación con el fin de obtener imágenes tomográficas que reflejan la distribución del radiofármaco en el paciente. El desarrollo de nuevos radiofármacos para PET requiere de un método para verificar que éstos siguen las rutas metabólicas de interés, que su vida media biológica es suficiente para la realización de un estudio, que no tienen efectos adversos y que es viable para estudios en pacientes. El desarrollo de equipos de microtomografía por emisión de positrones (microPET), dedicados a estudiar animales de laboratorio, ha permitido realizar estas pruebas antes de su aplicación clínica. Además, el microPET es una herramienta de gran utilidad en la investigación preclínica de diversas enfermedades, en el desarrollo de tratamientos innovadores que permite el seguimiento no invasivo en modelos animales. En la Unidad PET/CT-Ciclotrón de la Facultad de Medicina de la UNAM, se cuenta desde hace unos años con un equipo microPET para investigación. En este trabajo se muestran algunos resultados de los estudios que se realizan con mayor frecuencia con el microPET utilizando los radiofármacos de mayor uso en el medio clínico y se muestra la utilidad que puede tener en diversos proyectos de investigación.
Positron emission tomography (PET) is a nuclear medicine imaging technique well established in Mexico, essential for the clinical diagnosis and follow-up of oncological, neurological and cardiac pathologies. This molecular imaging modality is based on the administration of small amounts of drugs labeled with a positron emitting radionuclides and the subsequent radiation detection to obtain tomographic images which reflect the distribution of the radiopharmaceutical in the patient. The development of new radiopharmaceuticals for PET requires a method to verify that they follow the expected metabolic pathways, that they have a long-enough biological half-life for imaging studies, that they have no side effects and that it is viable for use in patients. The development of positron emission microtomography (microPET) systems to be used in small laboratory animale has allowed researchers to perform these tests on radiopharmaceuticals before being used in the clinic. In addition, microPET is a useful tool in preclinical research of different diseases in the development of innovating non-invasive treatments allowing to follow up animal models. At the PET/CT-Ciclotron Unit, Facultad de Medicina, UNAM, a microPET system has been available in the last few years for research purposes. In this work, examples of frequent imaging studies performed with the microPET and in-the-clinic commonly-used radiopharmaceuticals, as well the use it may have in different research projects are shown here.
RÉSUMÉ
Objetivos: Estandarizar un protocolo de adquisición para el estudio del metabolismo glucolítico, oxidativo y de perfusión miocárdicos en un modelo de rata. Métodos: Se realizaron estudios con los tres principales radiotrazadores usados para evaluar la función cardiaca: 18F-FDG para evaluar el metabolismo glucolítico en tres protocolos distintos; 1-11C-acetato para el metabolismo oxidativo y 13NH3 para la perfusión cardiaca. (18F-FDG)- cinco ratas Wistar macho en tres diferentes protocolos: con acceso a libre demanda de comida y agua; con ayuno de ocho horas y con ayuno de ocho horas más carga oral de glucosa al 50%. Se adquirieron imágenes del área torácica durante 30 minutos mediante microPET; 30 y 60 minutos post-administración de 370 - 555 MBq de 18F-FDG vía IP. (1-11C-acetato)- Se estudiaron ocho ratas. Cuatro estudios estáticos de 30 minutos y cuatro adquisiciones dinámicas de 30 minutos tras administración de 370 - 555 MBq de1-11C-acetato por vena caudal.(13NH3)- 10 estudios estáticos de 15 minutos después de una dosis IV de 370 - 555 MBq de 13NH3, bajo anestesia inhalada con isofluorano a 1.5% a 2%. Se realizó análisis comparativo y cualitativo de todas las imágenes obtenidas por dos médicos especialistas en el área y un análisis semi-cuantitativo mediante reconstrucciones 3D y selección de ROIs con el programa AMIDE en el caso de 18F-FDG. Resultados: Se determinó que las mejores imágenes para fines de evaluación metabólica del miocardio fueron las correspondientes a los 60 minutos post-administración de la 18F-FDG del protocolo sin ayuno. Se visualizó sin problemas el miocardio de rata de las imágenes estáticas con 1-11C-acetato, y mediante adquisición dinámica, se pudo apreciar la perfusión miocárdica. Las imágenes con 13NH3 permitieron observar una distribución homogénea del radiotrazador en los diferentes segmentos del ventrículo izquierdo en el eje corto, eje largo vertical y eje largo horizontal. Conclusiones: Se logró la estandarización de protocolos de adquisición de imágenes de los tres principales radiotrazadores utilizados para el estudio del metabolismo y perfusión cardiacos, en un modelo animal. Es factible establecer un protocolo válido para la valoración de perfusión, metabolismo glucolítico y oxidativo miocárdicos, con el fin de utilizarlo como punto de referencia para la evaluación de terapias génica, farmacológica o quirúrgica a nivel experimental.
Objective: To standardize an acquisition protocol for the study of myocardial glucolitic and oxidative metabolism and perfusion in a rat model. Methods: Studies were carried out with the three main radiopharmaceuticals used to assess heart function:[18F]-FDG for glucolitic metabolism; [1-11C]-acetate for oxidative metabolism and [13N]-NH3for myocardial perfusion.[18F]-FDG -Five Wistar adult male rats were studied in three different protocols: non-fasting group, fasting group,8 h before the study with water provided ad libitum, and a fasting group by the same time receiving an oral 50%-glucose solution. Thirty-minute scans were performed with a microPET Focus 120, 30 and 60 min after the administration of 370-555 MBq 18F-FDG. [1-11C]-Acetate -Eight rats were studied. Four static and four dynamic 30 min acquisitions after a 370-555 MBq of [1-11C]-acetate caudal vein administration.[13N]-NH3-Ten static studies were acquired 15 min post-administration of 370555 MBqof13NH3, under 1.5-2% isofluorane anesthesia. Comparative and visual analyses were performed by two experts in the field. A semi-quantitative analysis was performed using 3D reconstructions and ROI selections with AMIDE software. Results: The best images were those obtained from the non-fasting group, especially those taken at 60 min after the [18F]-FDG administration. High quality myocardial, static images were obtained with [1-11C]-acetate, and the dynamic acquisitions allowed the identification of myocardial perfusion. The 13NH3images showed a homogeneous distribution of the radiotracer in different segments of the short, long and horizontal axes in the left ventricle. Conclusions: It is possible to standardize the microPET acquisition protocols for the three main radiopharmaceuticals to evaluate the heart function in a rat model. It is feasible to establish a valid protocol for measuring glucolitic and oxidative myocardial metabolism and perfusion for gene, drug or surgical therapy assessment.