Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 20
Filtrer
Plus de filtres










Gamme d'année
1.
Front Plant Sci ; 15: 1421170, 2024.
Article de Anglais | MEDLINE | ID: mdl-39100089

RÉSUMÉ

Saccharum complex includes genera Saccharum, Miscanthus, Erianthus, Narenga, and Tripidium. Since the Saccharum complex/Saccharinae constitutes the gene pool used by sugarcane breeders to introduce useful traits into sugarcane, studying the genomic characterization of the Saccharum complex has become particularly important. Here, we assembled graph-based mitochondrial genomes (mitogenomes) of four Saccharinae species (T. arundinaceum, E. rockii, M. sinensis, and N. porphyrocoma) using Illumina and PacBio sequencing data. The total lengths of the mitogenomes of T. arundinaceum, M. sinensis, E. rockii and N. porphyrocoma were 549,593 bp, 514,248 bp, 481,576 bp and 513,095 bp, respectively. Then, we performed a comparative mitogenomes analysis of Saccharinae species, including characterization, organelles transfer sequence, collinear sequence, phylogenetics analysis, and gene duplicated/loss. Our results provided the mitogenomes of four species closely related to sugarcane breeding, enriching the mitochondrial genomic resources of the Saccharinae. Additionally, our study offered new insights into the evolution of mitogenomes at the family and genus levels and enhanced our understanding of organelle evolution in the highly polyploid Saccharum genus.

2.
Sci Rep ; 14(1): 16372, 2024 07 16.
Article de Anglais | MEDLINE | ID: mdl-39013977

RÉSUMÉ

The aim of the experiment was to determine the yield of Miscanthus × giganteus M 19 in the first three years of cultivation and its bioaccumulation of Zn and Ni in aboveground and underground parts in response to different doses of sewage sludge and substrate left after the production of white mushrooms. Miscanthus × giganteus is a grass species that adapts to different environmental conditions and can be grown in various climatic zones of Europe and North America. In April 2018 the experiment was established in a randomized block design and with four replications in central-eastern Poland. Waste organic materials (municipal sewage sludge and mushroom substrate) were applied to the soil in 2018 in the spring before the rhizomes of giant miscanthus were planted. Each year (from 2018 to 2020) biomass was harvested in December. The yield of fresh and dry matter and the total content of Zn and Ni, after wet mineralization of plant samples, were determined by optical emission spectrometry (ICP-OES). After the third year of cultivation, the content of Zn and Ni in rhizomes and in the soil was determined again. In relation to control, an increase in the yield of miscanthus biomass in response to organic waste materials was noted. Plants responded to mushroom substrate (SMS) with the highest average yield (16.89 Mgha-1DM), while on the control plot it was 13.86 Mg  ha-1DM. After the third year of cultivation, rhizomes of Miscanthus x giganteus contained higher amounts of Zn (63.3 mg kg-1) and Ni (7.54 mg kg-1) than aboveground parts (40.52 and 2.07 mg kg-1), which indicated that heavy metals were retained in underground parts.


Sujet(s)
Biomasse , Nickel , Poaceae , Eaux d'égout , Sol , Zinc , Poaceae/métabolisme , Nickel/analyse , Zinc/analyse , Zinc/métabolisme , Sol/composition chimique , Agaricales/métabolisme , Agaricales/composition chimique , Rhizome/métabolisme , Rhizome/composition chimique , Pologne
3.
Bioresour Technol ; 402: 130804, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38718904

RÉSUMÉ

Lignin, a complex phenolic polymer crucial for plant structure, is mostly used as fuel but it can be harnessed for environmentally friendly applications. This article explores ozonation as a green method for lignin extraction from lignocellulosic biomass, aiming to uncover the benefits of the extracted lignin. A pilot-scale ozonation reactor was employed to extract lignin from Miscanthus giganteus (a grass variety) and vine shoots (a woody biomass). The study examined the lignin extraction and modification of the fractions and identified the generation of phenolic and organic acids. About 48 % of lignin was successfully extracted from both biomass types. Phenolic monomers were produced, vine shoots yielding fewer monomers than Miscanthus giganteus. Ozonation generated homogeneous lignin oligomers, although their molecular weight decreased during ozonation, with vine shoot oligomers exhibiting greater resistance to ozone. Extracted fractions were stable at 200 °C, despite the low molecular weight, outlining the potential of these phenolic fractions.


Sujet(s)
Lignine , Ozone , Pousses de plante , Poaceae , Lignine/composition chimique , Poaceae/composition chimique , Ozone/composition chimique , Ozone/pharmacologie , Projets pilotes , Pousses de plante/composition chimique , Biomasse , Bioréacteurs , Masse moléculaire , Phénols
4.
Water Sci Technol ; 89(9): 2523-2537, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38747965

RÉSUMÉ

Miscanthus sacchariflorus is previously demonstrated to be a potential candidate for remediation of cadmium (Cd) pollution. To explore its resistance strategy to Cd, a hydroponic experiment was conducted to determine the variations of photosynthetic activity in leaves and physiological response in roots of this plant. Results showed that the root of M. sacchariflorus was the primary location for Cd accumulation. The bioconcentration factor in the roots and rhizomes was >1, and the translocation factor from underground to aboveground was <1. Throughout the experimental period, treatment with 0.06 mM Cd2+ did not significantly alter the contents of chlorophyll a, chlorophyll b, or carotenoid. By contrast, treatment with 0.15 and 0.30 mM Cd2+ decreased the contents of chlorophyll a, chlorophyll b, and carotenoid; caused the deformation of the chlorophyll fluorescence transient curve; reduced the photochemical efficiency of photosystem II; and increased the contents of non-protein thiols, total flavone, and total phenol. These results indicate that M. sacchariflorus has good adaptability to 0.06 mM Cd2+. Moreover, the accumulation of the non-protein thiols, total flavone, and total phenol in roots may promote the chelation of Cd2+, thus alleviating Cd toxicity. This study provides theoretical support for using M. sacchariflorus to remediate Cd-polluted wetlands.


Sujet(s)
Cadmium , Photosynthèse , Poaceae , Thiols , Cadmium/toxicité , Cadmium/métabolisme , Photosynthèse/effets des médicaments et des substances chimiques , Poaceae/métabolisme , Poaceae/effets des médicaments et des substances chimiques , Thiols/métabolisme , Chlorophylle/métabolisme , Racines de plante/métabolisme , Racines de plante/effets des médicaments et des substances chimiques , Dépollution biologique de l'environnement
5.
Glob Change Biol Bioenergy ; 16(1): e13114, 2024 Jan.
Article de Anglais | MEDLINE | ID: mdl-38711671

RÉSUMÉ

Perennial bioenergy crops are a key tool in decarbonizing global energy systems, but to ensure the efficient use of land resources, it is essential that yields and crop longevity are maximized. Remedial shallow surface tillage is being explored in commercial Miscanthus plantations as an approach to reinvigorate older crops and to rectify poor establishment, improving yields. There are posited links, however, between tillage and losses in soil carbon (C) via increased ecosystem C fluxes to the atmosphere. As Miscanthus is utilized as an energy crop, changes in field C fluxes need to be assessed as part of the C balance of the crop. Here, for the first time, we quantify the C impacts of remedial tillage at a mature commercial Miscanthus plantation in Lincolnshire, United Kingdom. Net ecosystem C production based on eddy covariance flux observations and exported yield totalled 12.16 Mg C ha-1 over the 4.6 year period after tillage, showing the site functioned as a net sink for atmospheric carbon dioxide (CO2). There was no indication of negative tillage induced impacts on soil C stocks, with no difference 3 years post tillage in the surface (0-30 cm) or deep (0-70 cm) soil C stocks between the tilled Miscanthus field and an adjacent paired untilled Miscanthus field. Comparison to historic samples showed surface soil C stocks increased by 11.16 ± 3.91 Mg C ha-1 between pre (October 2011) and post tillage sampling (November 2016). Within the period of the study, however, the tillage did not result in the increased yields necessary to "pay back" the tillage induced yield loss. Rather the crop was effectively re-established, with progressive yield increases over the study period, mirroring expectations of newly planted sites. The overall impacts of remedial tillage will depend therefore, on the longer-term impacts on crop longevity and yields.

6.
Environ Sci Pollut Res Int ; 31(20): 28922-28938, 2024 Apr.
Article de Anglais | MEDLINE | ID: mdl-38565816

RÉSUMÉ

Miscanthus has good tolerance to multi-metal(loid)s and has received increasing attention in remediated studies of metal(loid)s-contaminated soil. In this study, we conducted phytoextraction techniques to investigate the synergic effects of remediation of multi-metal(loid)s-contaminated soil by Miscanthus floridulus (Lab.) and two plant growth-promoting bacteria (PGPB), TS8 and MR2, affiliated to Enterobacteriaceae. The results exhibited a decrease of arsenic (15.27-21.50%), cadmium (8.64-15.52%), plumbum (5.92-12.76%), and zinc (12.84-24.20%) except for copper contents in the soil in bacterial inoculation groups, indicating that MR2 and TS8 could enhance the remediation of metal(loid)s. Moreover, increased fresh/dry weight and height indicated that inoculated bacteria could promote Miscanthus growth. Although the activities of antioxidant enzymes and the content of chlorophyll in the overground tissues showed no significant increase or even decrease, the activities of antioxidant enzymes in the underground tissues and soil were elevated by 48.95-354.17%, available P by 19.07-23.02%, and available K by 15.34-17.79% (p < 0.05). Bacterial inoculants could also decrease the soil pH. High-throughput sequencing analysis showed that the bacterial inoculant affected the rhizosphere bacterial community and reduced community diversity, but the relative abundance of some PGPB was found to increase. Phylogenetic molecular ecological networks indicated that bacterial inoculants reduced interactions between rhizosphere bacteria and thereby led to a simpler network structure but increased the proportion of positive-correlation links and enhanced the metabiosis and symbiosis of those bacteria. Spearman's test showed that OTUs affiliated with Enterobacteriaceae and soil nutrients were critical for metal(loid) remediation and Miscanthus growth. The results of this study provide a basis for the synergic remediation of multi-metal(loid)s-contaminated soils by Miscanthus and PGPB and provide a reference for the subsequent regulation of Miscanthus remediation efficiency by the other PGPB or critical bacteria.


Sujet(s)
Dépollution biologique de l'environnement , Poaceae , Polluants du sol , Sol , Sol/composition chimique , Microbiologie du sol , Bactéries/métabolisme , Métaux lourds
7.
Int J Mol Sci ; 25(6)2024 Mar 13.
Article de Anglais | MEDLINE | ID: mdl-38542226

RÉSUMÉ

The homeodomain-leucine zipper (HD-ZIP) transcription factors, representing one of the largest plant-specific superfamilies, play important roles in the response to various abiotic stresses. However, the functional roles of HD-ZIPs in abiotic stress tolerance and the underlying mechanisms remain relatively limited in Miscanthus sinensis. In this study, we isolated an HD-ZIP TF gene, MsHDZ23, from Miscanthus and ectopically expressed it in Arabidopsis. Transcriptome and promoter analyses revealed that MsHDZ23 responded to salt, alkali, and drought treatments. The overexpression (OE) of MsHDZ23 in Arabidopsis conferred higher tolerance to salt and alkali stresses compared to wild-type (WT) plants. Moreover, MsHDZ23 was able to restore the hb7 mutant, the ortholog of MsHDZ23 in Arabidopsis, to the WT phenotype. Furthermore, MsHDZ23-OE lines exhibited significantly enhanced drought stress tolerance, as evidenced by higher survival rates and lower water loss rates compared to WT. The improved drought tolerance may be attributed to the significantly smaller stomatal aperture in MsHDZ23-OE lines compared to WT. Furthermore, the accumulation of the malondialdehyde (MDA) under abiotic stresses was significantly decreased, accompanied by dramatically enhanced activities in several antioxidant enzymes, including superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) in the transgenic plants. Collectively, these results demonstrate that MsHDZ23 functions as a multifunctional transcription factor in enhancing plant resistance to abiotic stresses.


Sujet(s)
Arabidopsis , Facteurs de transcription , Facteurs de transcription/génétique , Facteurs de transcription/métabolisme , Arabidopsis/métabolisme , Protéines végétales/génétique , Protéines végétales/métabolisme , Régulation de l'expression des gènes végétaux , Poaceae/génétique , Poaceae/métabolisme , Végétaux génétiquement modifiés/métabolisme , Stress physiologique/génétique , Alcalis , Sécheresses
8.
Sci Rep ; 14(1): 5522, 2024 03 06.
Article de Anglais | MEDLINE | ID: mdl-38448638

RÉSUMÉ

Miscanthus is an emerging sustainable bioenergy crop whose growing environment is subject to many abiotic and biological stresses. WRKY transcription factors play an important role in stress response and growth of biotic and abiotic. To clarify the distribution and expression of the WRKY genes in Miscanthus, it is necessary to classify and phylogenetically analyze the WRKY genes in Miscanthus. The v7.1 genome assembly of Miscanthus was analyzed by constructing an evolutionary tree. In Miscanthus, there are 179 WRKY genes were identified. The 179 MsWRKYs were classified into three groups with conserved gene structure and motif composition. The tissue expression profile of the WRKY genes showed that MsWRKY genes played an essential role in all growth stages of plants. At the early stage of plant development, the MsWRKY gene is mainly expressed in the rhizome of plants. In the middle stage, it is mainly expressed in the leaf. At the end stage, mainly in the stem. According to the results, it showed significant differences in the expression of the MsWRKY in different stages of Miscanthus sinensis. The results of the study contribute to a better understanding of the role of the MsWRKY gene in the growth and development of Miscanthus.


Sujet(s)
Régulation de l'expression des gènes , Facteurs de transcription , Facteurs de transcription/génétique , Poaceae/génétique , Évolution biologique , Développement des plantes
9.
Heliyon ; 10(6): e27788, 2024 Mar 30.
Article de Anglais | MEDLINE | ID: mdl-38515730

RÉSUMÉ

There are few studies related to the radionuclide remediation options, which comply to the demands of the environmentally non-destructive physical remediation methods. So far, most of the research was conducted on the phytoremediation capacity of different energy crops, as well as the established miscanthus hybrids which involved metal and heavy metal contaminants. Hence, the objective of this research was the radioecological characterization of the examined agroecosystem, including the initial source of the radionuclides (soil) as well as different miscanthus hybrids grown on the same soil. The results have shown that the radioactive content of soil was similar to the global averages. All measurements of the activity concentration of 137Cs in miscanthus samples were below the detection limits. There is also an indication that 210Pb is leaching into the lower layers (or is being taken up by miscanthus plant from the upper layers). Moreover, transfer factors (TFs) for radionuclides, as a more precise parameter for evaluating the phytoremediation potential, were calculated; the TFs were found to be very low for 226Ra (≤0.07), TFs for 40K (≤0.39) and for 232Th (≤0.21) were in the lower limits, whereas the TFs for 238U were found to be the highest (≤0.92). For 210Pb, the TFs were not calculated, since the expectation was that a significant part of the measured quantity came from the air, and not through the soil. Having in mind the sustainability and the circularity aspect of the radionuclide phytoremediation system, the appropriate management method should be applied for the disposal and utilization of the biomass contaminated with radionuclides. This research has shown that the radiological content in miscanthus is high enough and the ash content is low enough that miscanthus ash could be considered as a NORM (Naturally Occurring Radioactive Material), and it can be further used for the construction industry (i.e. concrete, tiles), in mixtures with other materials with certain limitations, similar to the utilization of ash from other sources such as coal or wood.

10.
Front Plant Sci ; 15: 1364826, 2024.
Article de Anglais | MEDLINE | ID: mdl-38504893

RÉSUMÉ

Marginal lands, such as those with saline soils, have potential as alternative resources for cultivating dedicated biomass crops used in the production of renewable energy and chemicals. Optimum utilization of marginal lands can not only alleviate the competition for arable land use with primary food crops, but also contribute to bioenergy products and soil improvement. Miscanthus sacchariflorus and M. lutarioriparius are prominent perennial plants suitable for sustainable bioenergy production in saline soils. However, their responses to salt stress remain largely unexplored. In this study, we utilized 318 genotypes of M. sacchariflorus and M. lutarioriparius to assess their salt tolerance levels under 150 mM NaCl using 14 traits, and subsequently established a mini-core elite collection for salt tolerance. Our results revealed substantial variation in salt tolerance among the evaluated genotypes. Salt-tolerant genotypes exhibited significantly lower Na+ content, and K+ content was positively correlated with Na+ content. Interestingly, a few genotypes with higher Na+ levels in shoots showed improved shoot growth characteristics. This observation suggests that M. sacchariflorus and M. lutarioriparius adapt to salt stress by regulating ion homeostasis, primarily through enhanced K+ uptake, shoot Na+ exclusion, and Na+ sequestration in shoot vacuoles. To evaluate salt tolerance comprehensively, we developed an assessment value (D value) based on the membership function values of the 14 traits. We identified three highly salt-tolerant, 50 salt-tolerant, 127 moderately salt-tolerant, 117 salt-sensitive, and 21 highly salt-sensitive genotypes at the seedling stage by employing the D value. A mathematical evaluation model for salt tolerance was established for M. sacchariflorus and M. lutarioriparius at the seedling stage. Notably, the mini-core collection containing 64 genotypes developed using the Core Hunter algorithm effectively represented the overall variability of the entire collection. This mini-core collection serves as a valuable gene pool for future in-depth investigations of salt tolerance mechanisms in Miscanthus.

11.
Heliyon ; 10(4): e25943, 2024 Feb 29.
Article de Anglais | MEDLINE | ID: mdl-38384526

RÉSUMÉ

Miscanthus x giganteus is often considered as a suitable plant species for phytomanagement of heavy metal polluted sites. Nevertheless, its physiological behavior in response to the level of metal toxicity throughout the growing season remains poorly documented. Miscanthus x giganteus was cultivated on three sites in Belgium (BSJ: non-polluted control; CAR: slightly contaminated; VM strongly polluted by Cd, Pb, Cu, Zn, Ni and As). The presence of Miscanthus improved soil biological parameters assessed by measurement of enzyme activity and basal soil respiration on the three considered sites, although to a lower level on VM site. Heavy metal accumulation in the shoot was already recorded in spring. It displayed a contrasting distribution in the summer leaves since heavy metals and As metalloid accumulated mainly in the older leaves of CAR plants while showing a uniform distribution among leaves of different ages in VM plants. Comparatively to plants growing on BSJ, net photosynthesis decreased in plants growing on CAR and VM sites. The recorded decrease was mainly related to stomatal factors in CAR plants (decrease in stomatal conductance and in Ci) but to non-stomatal factors such as decrease in carboxylation efficiency and non-photochemical quenching in VM plants. Stomata remained open in VM plants which presented lower instantaneous and intrinsic water use efficiencies than CAR and BSJ plants. High proportions of heavy metals accumulated in CAR plants were bound to the cell wall fraction while the soluble and organelle-rich fractions were proportionally higher in VM plants, leading to a decrease in cell viability and cell membrane damages. It is concluded that not only the intensity but also the nature of physiological responses in Miscanthus x giganteus may drastically differ depending on the pollution level.

12.
J Trace Elem Med Biol ; 83: 127391, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38219458

RÉSUMÉ

BACKGROUND: Currently, mercury pollution is a widespread problem in the world. As mercury is difficult to remove from the environment, it has long-term negative effects on soil health and human life. One of the techniques to stabilise Hg is phytostabilisation, which can be supported by arbuscular mycorrhizal fungi (AMF). METHODS: In a 4-month pot experiment, we investigated the suitability of three seed-based Miscanthus hybrids (GNT3, GNT34, GNT43) for growth on soils heavily polluted with mercury (6795.7 mg kg-1). During the experiment, the effects of high soil contamination with mercury on physiological parameters and colonisation of roots of seed-based Miscanthus hybrids by indigenous AMF from Hg-contaminated and uncontaminated soils were investigated. RESULTS: A high pseudo-total Hg concentration (6795.75 mg kg-1) in soil was found. The Hg content in the aerial part of GNT34 grown on Hg-contaminated soil was 1.5 times and 3 times higher than GNT3 and GNT43, respectively. The Hg content in the roots of GNT3 on Hg-contaminated soil was 25% and 10% lower than that of GNT34 and GNT43, respectively. The N content in the aboveground part of GNT34 in the Hg variant was 13.5% lower compared to the control soil. The P and K content in the shoots of the Miscanthus hybrids was lower in the plants grown on Hg-contaminated soil. The P content in GNT43 in the Hg variant was 33% and 19% lower than in GNT34 and GNT3, respectively. The K content in GNT34 in the Hg variant was 24.7% and 31.4% higher than in GNT43 and GNT3, respectively. The dry weight of the shoots and roots as well as the shoot height of the Miscanthus hybrids were lower in Hg-contaminated soil. Lower values of AMF root colonisation parameters (F, M) were observed in the plants in the Hg variant. In the Hg variant, a lower photosynthetic rate and a decrease in chlorophyll content were observed in the leaves of the Miscanthus hybrids. In the Hg variant, an increase in the content of flavonols was observed. The strongest toxic effect of mercury on the light phase of photosynthesis was measured in GNT34. CONCLUSION: Soils heavily contaminated with mercury negatively affected the physiological parameters of Miscanthus, as evidenced by a decrease in photosynthetic rate and biomass. The ability of indigenous AMF from Hg-contaminated soils to colonise the roots of seed-based Miscanthus hybrids was limited.


Sujet(s)
Mercure , Mycorhizes , Polluants du sol , Humains , Mercure/toxicité , Mercure/analyse , Polluants du sol/toxicité , Polluants du sol/analyse , Poaceae , Sol , Plantes , Graines/composition chimique , Dépollution biologique de l'environnement
13.
Sci Total Environ ; 912: 169527, 2024 Feb 20.
Article de Anglais | MEDLINE | ID: mdl-38135075

RÉSUMÉ

The need of biofuels from biomass, including sustainable aviation fuel, without using agricultural land dedicated to food crops, is in constant demand. Strategies to intensify biomass production using mycorrhizal fungi, biostimulants and their combinations could be solutions for improving the cultivation of lignocellulosic plants but still lack well-established validation on metal-contaminated soils. This study aimed to assess the yield of Miscanthus x giganteus J.M. Greef & Deuter and Cannabis sativa L. grown on a metal-contaminated agricultural soil (11 mg Cd, 536 mg Pb and 955 mg Zn kg-1) amended with biostimulants and/or arbuscular mycorrhizal fungi, and the shoot Cd, Pb and Zn uptake. A pot trial was carried out with soil collected from a field near a former Pb/Zn smelter in France and six treatments: control (C), protein hydrolysate (a mixture of peptides and amino acids, PH), humic/fulvic acids (HFA), arbuscular mycorrhizae fungi (AMF), PH combined with AMF (PHxAMF), and HFA combined with AMF (HFAxAMF). Metal concentrations in the soil pore water (SPW), pH and electrical conductivity were measured over time. Miscanthus and hemp shoots were harvested on day 90. Both PH and PHxAMF treatments increased SPW Cd, Pb, and Zn concentrations (e.g. by 26, 1.9, and 22.9 times for miscanthus and 9.7, 4.7, and 19.3 times for hemp in the PH and PHxAMF treatments as compared to the control one, respectively). This led to phytotoxicity and reduced shoot yield for miscanthus. Conversely, HFA and HFAxAMF treatments decreased SPW Cd and Zn concentrations, increasing shoot yields for hemp and miscanthus. Shoot Cd, Pb, and Zn uptakes peaked for PH and PHxAMF hemp plants (in µg plant-1, Cd: 310-334, Pb: 34-38, and Zn: 232-309 for PHxAMF and PH, respectively), while lowest values occurred for PH miscanthus plants mainly due to low shoot yield. Overall, this study suggested that humic/fulvic acids can be an effective biostimulant for increasing shoot biomass production in a metal-contaminated soil. These results warrant further investigations of the HFAxAMF in field trials.


Sujet(s)
Cannabis , Mycorhizes , Polluants du sol , Mycorhizes/métabolisme , Cannabis/métabolisme , Cadmium/analyse , Biocarburants/analyse , Biomasse , Plomb/analyse , Poaceae/métabolisme , Sol/composition chimique , Polluants du sol/analyse , Racines de plante/métabolisme , Dépollution biologique de l'environnement
14.
Int J Phytoremediation ; 26(1): 143-150, 2024.
Article de Anglais | MEDLINE | ID: mdl-37405370

RÉSUMÉ

Phytoremediation is a biological soil remediation technique using plants and their associated microorganisms to clean-up contaminated soils and improve soils' quality. We tested whether a co-culture between Miscanthus x giganteus (MxG) and Trifolium repens L. would enhance the soil biological quality. The objective was to determine the influence of MxG in mono- and in co-culture with white clover on the soil microbial activity, biomass and density. MxG was tested in mono- and in co-culture with white clover in a mesocosm over 148 days. The microbial respiration (CO2 production), the microbial biomass and the microbial density of the technosol were measured. Results showed that MxG induced an increase in microbial activity in the technosol compared to the non-planted condition with the co-culture having a greater impact. Regarding the bacterial density, MxG in mono- and in co-culture significantly increased the 16S rDNA gene copy number. The co-culture increased the microbial biomass, the fungal density and stimulated the degrading bacterial population, contrary to the monoculture and the non-planted condition. We can conclude the co-culture between MxG and white clover was more interesting than MxG monoculture in regards to the technosol biological quality and its potential for PAH remediation improvement.


Our precedent results have shown the benefits of using Miscanthus x giganteus in association with Trifolium repens L. to improve polycyclic aromatic hydrocarbons dissipation and decrease soil ecotoxicity compared to monocultures. In this study we focused on the plant species' influence on the soil's biological quality to improve MxG biomass productivity in the long term and phytoremediation. Many bioindicators were used such as microbial activity, microbial biomass as well as bacteria, fungi and PAH-degrading bacteria density.We showed it was more beneficial to use co-culture instead of MxG monoculture to improve biological technosol quality and in particular microbial activity and biomass as well as fungi and PAH-degrading bacteria density.


Sujet(s)
Polluants du sol , Trifolium , Dépollution biologique de l'environnement , Biomasse , Techniques de coculture , Polluants du sol/analyse , Poaceae , Sol , Microbiologie du sol
15.
Biology (Basel) ; 12(12)2023 Dec 14.
Article de Anglais | MEDLINE | ID: mdl-38132351

RÉSUMÉ

High-yield potential perennial crops, such as Miscanthus spp. and Arundo donax are amongst the most promising sources of sustainable biomass for bioproducts and bioenergy. Although several studies assessed the agronomic performance of these species on diverse marginal lands, research to date on drought and zinc (Zn) resistance is scarce. Thus, the objective of this study was to investigate the drought and Zn stress tolerance of seven novel Miscanthus hybrids and seven Arundo clones originating from different parts of Italy. We subjected both species to severe drought (less than 30%), and Zn stress (400 mg/kg-1 of ZnSO4) separately, after one month of growth. All plants were harvested after 28 days of stress, and the relative drought and Zn stress tolerance were determined by using a set of morpho-physio-biochemical and biomass attributes in relation to stress tolerance indices (STI). Principal component analysis (PCA), hierarchical clustering analysis (HCA) and stress tolerance indices (STI) were performed for each morpho-physio-biochemical and biomass parameters and showed significant relative differences among the seven genotypes of both crops. Heatmaps of these indices showed how the different genotypes clustered into four groups. Considering PCA ranking value, Miscanthus hybrid GRC10 (8.11) and Arundo clone PC1 (11.34) had the highest-ranking value under both stresses indicating these hybrids and clones are the most tolerant to drought and Zn stress. In contrast, hybrid GRC3 (-3.33 lowest ranking value) and clone CT2 (-5.84) were found to be the most sensitive to both drought and Zn stress.

16.
Glob Change Biol Bioenergy ; 15(4): 444-461, 2023 Apr.
Article de Anglais | MEDLINE | ID: mdl-38505760

RÉSUMÉ

New biomass crop hybrids for bioeconomic expansion require yield projections to determine their potential for strategic land use planning in the face of global challenges. Our biomass growth simulation incorporates radiation interception and conversion efficiency. Models often use leaf area to predict interception which is demanding to determine accurately, so instead we use low-cost rapid light interception measurements using a simple laboratory-made line ceptometer and relate the dynamics of canopy closure to thermal time, and to measurements of biomass. We apply the model to project the European biomass potentials of new market-ready hybrids for 2020-2030. Field measurements are easier to collect, the calibration is seasonally dynamic and reduces influence of weather variation between field sites. The model obtained is conservative, being calibrated by crops of varying establishment and varying maturity on less productive (marginal) land. This results in conservative projections of miscanthus hybrids for 2020-2030 based on 10% land use conversion of the least (productive) grassland and arable for farm diversification, which show a European potential of 80.7-89.7 Mt year-1 biomass, with potential for 1.2-1.3 EJ year-1 energy and 36.3-40.3 Mt year-1 carbon capture, with seeded Miscanthus sacchariflorus × sinensis displaying highest yield potential. Simulated biomass projections must be viewed in light of the field measurements on less productive land with high soil water deficits. We are attempting to model the results from an ambitious and novel project combining new hybrids across Europe with agronomy which has not been perfected on less productive sites. Nevertheless, at the time of energy sourcing issues, seed-propagated miscanthus hybrids for the upscaled provision of bioenergy offer an alternative source of renewable energy. If European countries provide incentives for growers to invest, seeded hybrids can improve product availability and biomass yields over the current commercial miscanthus variety.

17.
Polymers (Basel) ; 16(1)2023 Dec 21.
Article de Anglais | MEDLINE | ID: mdl-38201707

RÉSUMÉ

This study is focused on exploring the feasibility of simultaneously producing the two products, cellulose nitrates (CNs) and bacterial cellulose (BC), from Miscanthus × giganteus. The starting cellulose for them was isolated by successive treatments of the feedstock with HNO3 and NaOH solutions. The cellulose was subjected to enzymatic hydrolysis for 2, 8, and 24 h. The cellulose samples after the hydrolysis were distinct in structure from the starting sample (degree of polymerization (DP) 1770, degree of crystallinity (DC) 64%) and between each other (DP 1510-1760, DC 72-75%). The nitration showed that these samples and the starting cellulose could successfully be nitrated to furnish acetone-soluble CNs. Extending the hydrolysis time from 2 h to 24 h led to an enhanced yield of CNs from 116 to 131%, with the nitrogen content and the viscosity of the CN samples increasing from 11.35 to 11.83% and from 94 to 119 mPa·s, respectively. The SEM analysis demonstrated that CNs retained the fiber shape. The IR spectroscopy confirmed that the synthesized material was specifically CNs, as evidenced by the characteristic frequencies of 1657-1659, 1277, 832-833, 747, and 688-690 cm-1. Nutrient media derived from the hydrolyzates obtained in 8 h and 24 h were of good quality for the synthesis of BC, with yields of 11.1% and 9.6%, respectively. The BC samples had a reticulate structure made of interlaced microfibrils with 65 and 81 nm widths and DPs of 2100 and 2300, respectively. It is for the first time that such an approach for the simultaneous production of CNs and BC has been employed.

18.
Article de Anglais | WPRIM (Pacifique Occidental) | ID: wpr-691378

RÉSUMÉ

<p><b>OBJECTIVES</b>To investigate the hair growth-promoting effect of Miscanthus sinensis var. purpurascens (MSP) flower extracton on in vitro and in vivo models.</p><p><b>METHODS</b>MSP flower extract was extracted in 99.9% methanol and applied to examine the proliferation of human dermal papilla cells (hDPCs) in vitro at the dose of 3.92-62.50 μg/mL and hair growth of C57BL/6 mice in vivo at the dose of 1000 μg/mL. The expression of transforming growth factor β1 (TGF-β1), hepatocyte growth factor (HGF), β-catenin, substance P was measured by relative quantitative realtime polymerase chain reaction. Histopathological and immunohistochemical analysis were performed.</p><p><b>RESULTS</b>MSP (7.81 μg/mL) down-regulated TGF-β1 and up-regulated HGF and β-catenin in hDPCs (P<0.01). MSP (1000 μg/mL)-treated mice showed the earlier transition of hair follicles from the telogen to the anagen phase. The number of mast cells was lower in the MSP-treated mice than in other groups (P<0.05 vs. NCS group). Substance P and TGF-β1 were expressed in hair follicles and skin of the MSP group lower than that in negative control. Stem cell factor in hair follicles was up-regulated in the MSP-treated mice (P<0.01).</p><p><b>CONCLUSIONS</b>The MSP flower extract may have hair growth-promotion activities.</p>


Sujet(s)
Animaux , Femelle , Humains , Antioxydants , Pharmacologie , Numération cellulaire , Prolifération cellulaire , Extracellular Signal-Regulated MAP Kinases , Métabolisme , Fleurs , Chimie , Follicule pileux , Biologie cellulaire , Facteur de croissance des hépatocytes , Métabolisme , Mastocytes , Biologie cellulaire , Souris de lignée C57BL , Phosphorylation , Extraits de plantes , Pharmacologie , Poaceae , Chimie , ARN messager , Génétique , Métabolisme , Peau , Métabolisme , Facteur de croissance des cellules souches , Métabolisme , Stress psychologique , Anatomopathologie , Substance P , Métabolisme , Facteur de croissance transformant bêta , Génétique , Métabolisme , Facteur de croissance endothéliale vasculaire de type A , Génétique , Métabolisme , bêta-Caténine , Métabolisme
19.
Article de Chinois | WPRIM (Pacifique Occidental) | ID: wpr-335854

RÉSUMÉ

The study aims to explore the main differential characteristics of Phragmites Rhizoma and its counterfeits (rhizomes of Arundo donax, Triarrhena lutarioriparia and Miscanthus sinensis) and provide experimental basis for the reasonable applications of gramineous plants through system research and comparison of plant morphogenesis, character, transverse organization characteristics and powder microscopic characteristics.

20.
Mycobiology ; : 68-73, 2003.
Article de Anglais | WPRIM (Pacifique Occidental) | ID: wpr-729348

RÉSUMÉ

Roots of Glycine max and Miscanthus sinensis and soil samples were collected from various field sites at Goesan, Chungbuk in Korea. Microscopic observations of the roots indicated high colonization rates of both arbuscular mycorrhizal fungi (AMF) and other fungi. The partial small subunit of ribosomal DNA genes were amplified with the genomic DNA extracted from their roots by nested polymerase chain reaction (PCR) with universal primer NS1 and fungal specific primers AM1. Restriction fragment length polymorphism (RFLP) was analyzed using the combinations of three restriction enzymes, HinfI, AluI and AsuC21. Nucleotides sequence analysis revealed that ten sequences from Miscanthus sinensis and one sequence from Glycine max were close to those of arbuscular mycorrhizal fungi. Also, 33% of total clones amplified with NS31-AM1 primers from M. sinensis and 97% from G. max were close to Fusarium oxysporum or other pathogenic fungi, and they were successfully distinguished from AMF. Results suggested that these techniques could help to distinguish arbuscular mycorrhizal fungi from root pathogenic fungi in the plant roots. Especially, DNA amplified by these primers showed distinct polymorphisms between AMF and plant pathogenic species of Fusarium when digested with AsuC21.


Sujet(s)
Clones cellulaires , Côlon , ADN , ADN ribosomique , Champignons , Fusarium , Corée , Nucléotides , Racines de plante , Plantes , Réaction de polymérisation en chaîne , Polymorphisme de restriction , Analyse de séquence , Sol , Glycine max
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE