Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 24
Filtrer
Plus de filtres










Gamme d'année
1.
Food Chem ; 456: 139940, 2024 Oct 30.
Article de Anglais | MEDLINE | ID: mdl-38870807

RÉSUMÉ

The MobileNetV3-based improved sine-cosine algorithm (ISCA-MobileNetV3) was combined with an artificial olfactory sensor (AOS) to address the redundancy in olfactory arrays, thereby achieving low-cost and high-precision detection of mycotoxin-contaminated maize. Specifically, volatile organic compounds of maize interacted with unoptimized AOS containing eight porphyrins and eight dye-attached nanocomposites to obtain the scent fingerprints for constructing the initial data set. The optimal decision model was MobileNetV3, with more than 98.5% classification accuracy, and its output training loss would be input into the optimizer ISCA. Remarkably, the number of olfactory arrays was reduced from 16 to 6 by ISCA-MobileNetV3 with about a 1% decrease in classification accuracy. Additionally, the developed system showed that each online evaluation was less than one second on average, demonstrating outstanding real-time performance for ensuring food safety. Therefore, AOS combined with ISCA-MobileNetV3 will encourage the development of an affordable and on-site platform for maize quality detection.


Sujet(s)
Contamination des aliments , Mycotoxines , Zea mays , Zea mays/composition chimique , Mycotoxines/analyse , Contamination des aliments/analyse , Composés organiques volatils/composition chimique , Algorithmes
2.
J Pathol Inform ; 15: 100377, 2024 Dec.
Article de Anglais | MEDLINE | ID: mdl-38706514

RÉSUMÉ

Accurate surgical pathological assessment of breast biopsies is essential to the proper management of breast lesions. Identifying histological features, such as nuclear pleomorphism, increased mitotic activity, cellular atypia, patterns of architectural disruption, as well as invasion through basement membranes into surrounding stroma and normal structures, including invasion of vascular and lymphatic spaces, help to classify lesions as malignant. This visual assessment is repeated on numerous slides taken at various sections through the resected tumor, each at different magnifications. Computer vision models have been proposed to assist human pathologists in classification tasks such as these. Using MobileNetV3, a convolutional architecture designed to achieve high accuracy with a compact parameter footprint, we attempted to classify breast cancer images in the BreakHis_v1 breast pathology dataset to determine the performance of this model out-of-the-box. Using transfer learning to take advantage of ImageNet embeddings without special feature extraction, we were able to correctly classify histopathology images broadly as benign or malignant with 0.98 precision, 0.97 recall, and an F1 score of 0.98. The ability to classify into histological subcategories was varied, with the greatest success being with classifying ductal carcinoma (accuracy 0.95), and the lowest success being with lobular carcinoma (accuracy 0.59). Multiclass ROC assessment of performance as a multiclass classifier yielded AUC values ≥0.97 in both benign and malignant subsets. In comparison with previous efforts, using older and larger convolutional network architectures with feature extraction pre-processing, our work highlights that modern, resource-efficient architectures can classify histopathological images with accuracy that at least matches that of previous efforts, without the need for labor-intensive feature extraction protocols. Suggestions to further refine the model are discussed.

3.
Heliyon ; 10(8): e29501, 2024 Apr 30.
Article de Anglais | MEDLINE | ID: mdl-38681580

RÉSUMÉ

Target detection in Unmanned Aerial Vehicle (UAV) aerial images has gained significance within UAV application scenarios. However, UAV aerial images present challenges, including large-scale changes, small target sizes, complex scenes, and variable external factors, resulting in missed or false detections. This study proposes an algorithm for small target detection in UAV images based on an enhanced YOLOv8 model termed YOLOv8-MPEB. Firstly, the Cross Stage Partial Darknet53 (CSPDarknet53) backbone network is substituted with the lightweight MobileNetV3 backbone network, consequently reducing model parameters and computational complexity, while also enhancing inference speed. Secondly, a dedicated small target detection layer is intricately designed to optimize feature extraction for multi-scale targets. Thirdly, the integration of the Efficient Multi-Scale Attention (EMA) mechanism within the Convolution to Feature (C2f) module aims to enhance the extraction of vital features and suppress superfluous ones. Lastly, the utilization of a bidirectional feature pyramid network (BiFPN) in the Neck segment serves to ameliorate detection errors stemming from scale variations and complex scenes, thereby augmenting model generalization. The study provides a thorough examination by conducting ablation experiments and comparing the results with alternative algorithms to substantiate the enhanced effectiveness of the proposed algorithm, with a particular focus on detection performance. The experimental outcomes illustrate that with a parameter count of 7.39 M and a model size of 14.5 MB, the algorithm attains a mean Average Precision (mAP) of 91.9 % on the custom-made helmet and reflective clothing dataset. In comparison to standard YOLOv8 models, this algorithm elevates average accuracy by 2.2 percentage points, reduces model parameters by 34 %, and diminishes model size by 32 %. It outperforms other prevalent detection algorithms in terms of accuracy and speed.

4.
Article de Chinois | WPRIM (Pacifique Occidental) | ID: wpr-1003443

RÉSUMÉ

Objective@#To research the effectiveness of deep learning techniques in intelligently diagnosing dental caries and periapical periodontitis and to explore the preliminary application value of deep learning in the diagnosis of oral diseases@*Methods@#A dataset containing 2 298 periapical films, including healthy teeth, dental caries, and periapical periodontitis, was used for the study. The dataset was randomly divided into 1 573 training images, 233 validation images, and 492 test images. By comparing various neural network models, the MobileNetV3 network model with better performance was selected for dental disease diagnosis, and the model was optimized by tuning the network hyperparameters. The accuracy, precision, recall, and F1 score were used to evaluate the model's ability to recognize dental caries and periapical periodontitis. Class activation map was used to visualization analyze the performance of the network model@*Results@#The algorithm achieved a relatively ideal intelligent diagnostic effect with precision, recall, and accuracy of 99.42%, 99.73%, and 99.60%, respectively, and the F1 score was 99.57% for classifying healthy teeth, dental caries, and periapical periodontitis. The visualization of the class activation maps also showed that the network model can accurately extract features of dental diseases.@*Conclusion@#The tooth lesion detection algorithm based on the MobileNetV3 network model can eliminate interference from image quality and human factors and has high diagnostic accuracy, which can meet the needs of dental medicine teaching and clinical applications.

5.
PeerJ Comput Sci ; 9: e1702, 2023.
Article de Anglais | MEDLINE | ID: mdl-38077616

RÉSUMÉ

Background and Objective: Parkinson's disease (PD) is a progressive neurological condition that manifests motor and non-motor symptoms. Early in the course of the disease, PD patients frequently experience vocal difficulties. In the beginning, preprocessing procedures were used with multi-focus image fusion to enhance the quality of input images. It is essential to diagnose and treat PD early to ensure that patients live healthy and productive lives. Methods: Tremors, rigidity in the muscles, slow movement, difficulty balance, and other psychological symptoms are some of the disease's symptoms. One of the critical mechanisms supporting PD identification and assessment is the dynamics of handwritten records. Several machine-learning techniques have been researched for the early detection of this disease. Yet the main problem with most of these manual feature extraction methods is their poor performance and accuracy. Results: This cannot be acceptable when discovering such a chronic condition. For this purpose, a powerful deep learning model is suggested to help with the early diagnosis of Parkinson's disease. Therefore, we proposed MobileNetV3-based classification. To enhance the classification performances even more, the MobileNetV3-based approach was optimized by the Improved Dwarf Mongoose Optimization algorithm (IDMO). Conclusion: The Pyramid channel-based feature attention network (PCFAN) chooses the critical features. The efficiency of the approaches is tested using the PPMI and NTUA datasets. Our proposed approach obtains 99.34% accuracy, 98.53% sensitivity, 97.78% specificity, and 99.12% F-score compared to previous methods.

6.
Sensors (Basel) ; 23(23)2023 Nov 29.
Article de Anglais | MEDLINE | ID: mdl-38067865

RÉSUMÉ

This paper discusses the application of deep learning technology in recognizing vehicle black smoke in road traffic monitoring videos. The use of massive surveillance video data imposes higher demands on the real-time performance of vehicle black smoke detection models. The YOLOv5s model, known for its excellent single-stage object detection performance, has a complex network structure. Therefore, this study proposes a lightweight real-time detection model for vehicle black smoke, named MGSNet, based on the YOLOv5s framework. The research involved collecting road traffic monitoring video data and creating a custom dataset for vehicle black smoke detection by applying data augmentation techniques such as changing image brightness and contrast. The experiment explored three different lightweight networks, namely ShuffleNetv2, MobileNetv3 and GhostNetv1, to reconstruct the CSPDarknet53 backbone feature extraction network of YOLOv5s. Comparative experimental results indicate that reconstructing the backbone network with MobileNetv3 achieved a better balance between detection accuracy and speed. The introduction of the squeeze excitation attention mechanism and inverted residual structure from MobileNetv3 effectively reduced the complexity of black smoke feature fusion. Simultaneously, a novel convolution module, GSConv, was introduced to enhance the expression capability of black smoke features in the neck network. The combination of depthwise separable convolution and standard convolution in the module further reduced the model's parameter count. After the improvement, the parameter count of the model is compressed to 1/6 of the YOLOv5s model. The lightweight vehicle black smoke real-time detection network, MGSNet, achieved a detection speed of 44.6 frames per second on the test set, an increase of 18.9 frames per second compared with the YOLOv5s model. The mAP@0.5 still exceeded 95%, meeting the application requirements for real-time and accurate detection of vehicle black smoke.

7.
Front Plant Sci ; 14: 1308528, 2023.
Article de Anglais | MEDLINE | ID: mdl-38143571

RÉSUMÉ

In this paper, we address the question of achieving high accuracy in deep learning models for agricultural applications through edge computing devices while considering the associated resource constraints. Traditional and state-of-the-art models have demonstrated good accuracy, but their practicality as end-user available solutions remains uncertain due to current resource limitations. One agricultural application for deep learning models is the detection and classification of plant diseases through image-based crop monitoring. We used the publicly available PlantVillage dataset containing images of healthy and diseased leaves for 14 crop species and 6 groups of diseases as example data. The MobileNetV3-small model succeeds in classifying the leaves with a test accuracy of around 99.50%. Post-training optimization using quantization reduced the number of model parameters from approximately 1.5 million to 0.93 million while maintaining the accuracy of 99.50%. The final model is in ONNX format, enabling deployment across various platforms, including mobile devices. These findings offer a cost-effective solution for deploying accurate deep-learning models in agricultural applications.

8.
Front Plant Sci ; 14: 1247156, 2023.
Article de Anglais | MEDLINE | ID: mdl-38023833

RÉSUMÉ

Introduction: Nut quality detection is of paramount importance in primary nut processing. When striving to maintain the imperatives of rapid, efficient, and accurate detection, the precision of identifying small-sized nuts can be substantially compromised. Methods: We introduced an optimized iteration of the YOLOv5s model designed to swiftly and precisely identify both good and bad walnut nuts across multiple targets. The M3-Net network, which is a replacement for the original C3 network in MobileNetV3's YOLOv5s, reduces the weight of the model. We explored the impact of incorporating the attention mechanism at various positions to enhance model performance. Furthermore, we introduced an attentional convolutional adaptive fusion module (Acmix) within the spatial pyramid pooling layer to improve feature extraction. In addition, we replaced the SiLU activation function in the original Conv module with MetaAconC from the CBM module to enhance feature detection in walnut images across different scales. Results: In comparative trials, the YOLOv5s_AMM model surpassed the standard detection networks, exhibiting an average detection accuracy (mAP) of 80.78%, an increase of 1.81%, while reducing the model size to 20.9 MB (a compression of 22.88%) and achieving a detection speed of 40.42 frames per second. In multi-target walnut detection across various scales, the enhanced model consistently outperformed its predecessor in terms of accuracy, model size, and detection speed. It notably improves the ability to detect multi-target walnut situations, both large and small, while maintaining the accuracy and efficiency. Discussion: The results underscored the superiority of the YOLOv5s_AMM model, which achieved the highest average detection accuracy (mAP) of 80.78%, while boasting the smallest model size at 20.9 MB and the highest frame rate of 40.42 FPS. Our optimized network excels in the rapid, efficient, and accurate detection of mixed multi-target dry walnut quality, accommodating lightweight edge devices. This research provides valuable insights for the detection of multi-target good and bad walnuts during the walnut processing stage.

9.
Heliyon ; 9(11): e21603, 2023 Nov.
Article de Anglais | MEDLINE | ID: mdl-38027597

RÉSUMÉ

Sports image classification using image processing and machine vision is a growing area of research that involves the use of algorithms and techniques to identify and analyze objects in sports images and videos. This technology has a wide range of applications, including detecting illegal plays, analyzing team performance, and creating highlight reels. Additionally, it can provide valuable visual feedback during training and competition. In this paper, we propose a novel deep learning and optimization hybrid framework for sports image classification. Specifically, we use a modified version of the Battle Royal optimization algorithm as a feature selector to reduce the dimensionality of the images and achieve higher accuracy with only the essential features. We evaluate the proposed framework using sports images and demonstrate that our WOA-based framework outperforms other methods in terms of both classification accuracy and dimensionality reduction. Our results highlight the effectiveness of the proposed approach and its potential to improve sports image classification.

10.
Sensors (Basel) ; 23(17)2023 Sep 03.
Article de Anglais | MEDLINE | ID: mdl-37688098

RÉSUMÉ

In recent years, parking lot management systems have garnered significant research attention, particularly concerning the application of deep learning techniques. Numerous approaches have emerged for tackling parking lot occupancy challenges using deep learning models. This study contributes to the field by addressing a critical aspect of parking lot management systems: accurate vehicle occupancy determination in specific parking spaces. We propose an advanced solution by harnessing an optimized MobileNetV3 model with custom architectural enhancements, trained on the CNRPark-EXT and PKLOT datasets. The model processes individual parking space patches from real-time video feeds, providing occupancy classification for each patch, identifying occupied or available spaces. Our architectural modifications include the integration of a convolutional block attention mechanism in place of the native attention module and the adoption of blueprint separable convolutions instead of the traditional depth-wise separable convolutions. In terms of performance, our proposed model exhibits superior results when benchmarked against state-of-the-art methods. Achieving an exceptional area under the ROC curve (AUC) value of 0.99 for most experiments with the PKLot dataset, our enhanced MobileNetV3 showcases its exceptional discriminatory power in binary classification. Benchmarked against the CarNet and mAlexNet models, representative of previous state-of-the-art solutions, our proposed model showcases exceptional performance. During evaluations using the combined CNRPark-EXT and PKLot datasets, the proposed model attains an impressive average accuracy of 98.01%, while CarNet achieves 97.03%. Beyond achieving high accuracy and precision comparable to previous models, the proposed model exhibits promise for real-time applications. This work contributes to the advancement of parking lot occupancy detection by offering a robust and efficient solution with implications for urban mobility enhancement and resource optimization.

11.
Front Plant Sci ; 14: 1153226, 2023.
Article de Anglais | MEDLINE | ID: mdl-37731985

RÉSUMÉ

Maize is widely cultivated and planted all over the world, which is one of the main food resources. Accurately identifying the defect of maize seeds is of great significance in both food safety and agricultural production. In recent years, methods based on deep learning have performed well in image processing, but their potential in the identification of maize seed defects has not been fully realized. Therefore, in this paper, a lightweight and effective network for maize seed defect identification is proposed. In the proposed network, the Convolutional Block Attention Module (CBAM) was integrated into the pretrained MobileNetv3 network for extracting important features in the channel and spatial domain. In this way, the network can be focused on useful feature information, and making it easier to converge. To verify the effectiveness of the proposed network, a total of 12784 images was collected, and 7 defect types were defined. Compared with other popular pretrained models, the proposed network converges with the least number of iterations and achieves the true positive rate is 93.14% and the false positive rate is 1.14%.

12.
Front Med (Lausanne) ; 10: 1151996, 2023.
Article de Anglais | MEDLINE | ID: mdl-37601798

RÉSUMÉ

Objective: Non-invasive methods for hemoglobin (Hb) monitoring can provide additional and relatively precise information between invasive measurements of Hb to help doctors' decision-making. We aimed to develop a new method for Hb monitoring based on mask R-CNN and MobileNetV3 with eye images as input. Methods: Surgical patients from our center were enrolled. After image acquisition and pre-processing, the eye images, the manually selected palpebral conjunctiva, and features extracted, respectively, from the two kinds of images were used as inputs. A combination of feature engineering and regression, solely MobileNetV3, and a combination of mask R-CNN and MobileNetV3 were applied for model development. The model's performance was evaluated using metrics such as R2, explained variance score (EVS), and mean absolute error (MAE). Results: A total of 1,065 original images were analyzed. The model's performance based on the combination of mask R-CNN and MobileNetV3 using the eye images achieved an R2, EVS, and MAE of 0.503 (95% CI, 0.499-0.507), 0.518 (95% CI, 0.515-0.522) and 1.6 g/dL (95% CI, 1.6-1.6 g/dL), which was similar to that based on MobileNetV3 using the manually selected palpebral conjunctiva images (R2: 0.509, EVS:0.516, MAE:1.6 g/dL). Conclusion: We developed a new and automatic method for Hb monitoring to help medical staffs' decision-making with high efficiency, especially in cases of disaster rescue, casualty transport, and so on.

13.
Sensors (Basel) ; 23(13)2023 Jun 26.
Article de Anglais | MEDLINE | ID: mdl-37447762

RÉSUMÉ

The detection algorithm commonly misses obscured pedestrians in traffic scenes with a high pedestrian density because mutual occlusion among pedestrians reduces the prediction box score of the concealed pedestrians. The paper uses the YOLOv7 algorithm as the baseline and makes the following three improvements by investigating the variables influencing the detection method's performance: First, the backbone network of the YOLOv7 algorithm is replaced with the lightweight feature extraction network Mobilenetv3 since the pedestrian detection algorithm frequently needs to be deployed in driverless mobile, which requires a fast operating speed of the algorithm; second, a high-resolution feature pyramid structure is suggested for the issue of missed detection of hidden pedestrians, which upscales the feature maps generated from the feature pyramid to increase the resolution of the output feature maps and introduces shallow feature maps to strengthen the distinctions between adjacent sub-features to enhance the network's ability to extract features for the visible area of hidden pedestrians and small-sized pedestrians in order to produce deeper features with greater differentiation for pedestrians; and the third is to suggest a detection head based on an attention mechanism that is employed to lower the confidence level of target neighboring sub-features, lower the quantity of redundant detection boxes, and lower the following NMS computation. The mAP of the suggested approach in this work achieves 89.75%, which is 9.5 percentage points better than the YOLOv7 detection algorithm, according to experiments on the CrowdHuman pedestrian-intensive dataset. The algorithm proposed in this paper can considerably increase the detection performance of the detection algorithm, particularly for obscured pedestrians and small-sized pedestrians in the dataset, according to the experimental effect plots.


Sujet(s)
Piétons , Humains , Algorithmes
14.
Front Plant Sci ; 14: 1198650, 2023.
Article de Anglais | MEDLINE | ID: mdl-37360727

RÉSUMÉ

Blueberries are grown worldwide because of their high nutritional value; however, manual picking is difficult, and expert pickers are scarce. To meet the real needs of the market, picking robots that can identify the ripeness of blueberries are increasingly being used to replace manual operators. However, they struggle to accurately identify the ripeness of blueberries because of the heavy shading between the fruits and the small size of the fruit. This makes it difficult to obtain sufficient information on characteristics; and the disturbances caused by environmental changes remain unsolved. Additionally, the picking robot has limited computational power for running complex algorithms. To address these issues, we propose a new YOLO-based algorithm to detect the ripeness of blueberry fruits. The algorithm improves the structure of YOLOv5x. We replaced the fully connected layer with a one-dimensional convolution and also replaced the high-latitude convolution with a null convolution based on the structure of CBAM, and finally obtained a lightweight CBAM structure with efficient attention-guiding capability (Little-CBAM), which we embedded into MobileNetv3 while replacing the original backbone structure with the improved MobileNetv3. We expanded the original three-layer neck path by one to create a larger-scale detection layer leading from the backbone network. We added a multi-scale fusion module to the channel attention mechanism to build a multi-method feature extractor (MSSENet) and then embedded the designed channel attention module into the head network, which can significantly enhance the feature representation capability of the small target detection network and the anti-interference capability of the algorithm. Considering that these improvements will significantly extend the training time of the algorithm, we used EIOU_Loss instead of CIOU_Loss, whereas the k-means++ algorithm was used to cluster the detection frames such that the generated predefined anchor frames are better adapted to the scale of the blueberries. The algorithm in this study achieved a final mAP of 78.3% on the PC terminal, which was 9% higher than that of YOLOv5x, and the FPS was 2.1 times higher than that of YOLOv5x. By translating the algorithm into a picking robot, the algorithm in this study ran at 47 FPS and achieved real-time detection well beyond that achieved manually.

15.
World Wide Web ; : 1-16, 2023 May 26.
Article de Anglais | MEDLINE | ID: mdl-37361139

RÉSUMÉ

The COVID-19 is still spreading today, and it has caused great harm to human beings. The system at the entrance of public places such as shopping malls and stations should check whether pedestrians are wearing masks. However, pedestrians often pass the system inspection by wearing cotton masks, scarves, etc. Therefore, the detection system not only needs to check whether pedestrians are wearing masks, but also needs to detect the type of masks. Based on the lightweight network architecture MobilenetV3, this paper proposes a cascaded deep learning network based on transfer learning, and then designs a mask recognition system based on the cascaded deep learning network. By modifying the activation function of the MobilenetV3 output layer and the structure of the model, two MobilenetV3 networks suitable for cascading are obtained. By introducing transfer learning into the training process of two modified MobilenetV3 networks and a multi-task convolutional neural network, the ImagNet underlying parameters of the network models are obtained in advance, which reduces the computational load of the models. The cascaded deep learning network consists of a multi-task convolutional neural network cascaded with these two modified MobilenetV3 networks. A multi-task convolutional neural network is used to detect faces in images, and two modified MobilenetV3 networks are used as the backbone network to extract the features of masks. After comparing with the classification results of the modified MobilenetV3 neural network before cascading, the classification accuracy of the cascading learning network is improved by 7%, and the excellent performance of the cascading network can be seen.

16.
BMC Med Imaging ; 23(1): 83, 2023 06 15.
Article de Anglais | MEDLINE | ID: mdl-37322450

RÉSUMÉ

BACKGROUND: The medical profession is facing an excessive workload, which has led to the development of various Computer-Aided Diagnosis (CAD) systems as well as Mobile-Aid Diagnosis (MAD) systems. These technologies enhance the speed and accuracy of diagnoses, particularly in areas with limited resources or remote regions during the pandemic. The primary purpose of this research is to predict and diagnose COVID-19 infection from chest X-ray images by developing a mobile-friendly deep learning framework, which has the potential for deployment in portable devices such as mobile or tablet, especially in situations where the workload of radiology specialists may be high. Moreover, this could improve the accuracy and transparency of population screening to assist radiologists during the pandemic. METHODS: In this study, the Mobile Networks ensemble model called COV-MobNets is proposed to classify positive COVID-19 X-ray images from negative ones and can have an assistant role in diagnosing COVID-19. The proposed model is an ensemble model, combining two lightweight and mobile-friendly models: MobileViT based on transformer structure and MobileNetV3 based on Convolutional Neural Network. Hence, COV-MobNets can extract the features of chest X-ray images in two different methods to achieve better and more accurate results. In addition, data augmentation techniques were applied to the dataset to avoid overfitting during the training process. The COVIDx-CXR-3 benchmark dataset was used for training and evaluation. RESULTS: The classification accuracy of the improved MobileViT and MobileNetV3 models on the test set has reached 92.5% and 97%, respectively, while the accuracy of the proposed model (COV-MobNets) has reached 97.75%. The sensitivity and specificity of the proposed model have also reached 98.5% and 97%, respectively. Experimental comparison proves the result is more accurate and balanced than other methods. CONCLUSION: The proposed method can distinguish between positive and negative COVID-19 cases more accurately and quickly. The proposed method proves that utilizing two automatic feature extractors with different structures as an overall framework of COVID-19 diagnosis can lead to improved performance, enhanced accuracy, and better generalization to new or unseen data. As a result, the proposed framework in this study can be used as an effective method for computer-aided diagnosis and mobile-aided diagnosis of COVID-19. The code is available publicly for open access at https://github.com/MAmirEshraghi/COV-MobNets .


Sujet(s)
COVID-19 , Apprentissage profond , Humains , COVID-19/imagerie diagnostique , Dépistage de la COVID-19 , Rayons X , SARS-CoV-2
17.
Entropy (Basel) ; 25(3)2023 Mar 03.
Article de Anglais | MEDLINE | ID: mdl-36981335

RÉSUMÉ

Traditional identification methods for Papaver somniferum and Papaver rhoeas (PSPR) consume much time and labor, require strict experimental conditions, and usually cause damage to the plant. This work presents a novel method for fast, accurate, and nondestructive identification of PSPR. First, to fill the gap in the PSPR dataset, we construct a PSPR visible capsule image dataset. Second, we propose a modified MobileNetV3-Small network with transfer learning, and we solve the problem of low classification accuracy and slow model convergence due to the small number of PSPR capsule image samples. Experimental results demonstrate that the modified MobileNetV3-Small is effective for fast, accurate, and nondestructive PSPR classification.

18.
Sensors (Basel) ; 23(2)2023 Jan 09.
Article de Anglais | MEDLINE | ID: mdl-36679564

RÉSUMÉ

In view of the fact that the aerial images of UAVs are usually taken from a top-down perspective, there are large changes in spatial resolution and small targets to be detected, and the detection method of natural scenes is not effective in detecting under the arbitrary arrangement of remote sensing image direction, which is difficult to apply to the detection demand scenario of road technology status assessment, this paper proposes a lightweight network architecture algorithm based on MobileNetv3-YOLOv5s (MR-YOLO). First, the MobileNetv3 structure is introduced to replace part of the backbone network of YOLOv5s for feature extraction so as to reduce the network model size and computation and improve the detection speed of the target; meanwhile, the CSPNet cross-stage local network is introduced to ensure the accuracy while reducing the computation. The focal loss function is improved to improve the localization accuracy while increasing the speed of the bounding box regression. Finally, by improving the YOLOv5 target detection network from the prior frame design and the bounding box regression formula, the rotation angle method is added to make it suitable for the detection demand scenario of road technology status assessment. After a large number of algorithm comparisons and data ablation experiments, the feasibility of the algorithm was verified on the Xinjiang Altay highway dataset, and the accuracy of the MR-YOLO algorithm was as high as 91.1%, the average accuracy was as high as 92.4%, and the detection speed reached 96.8 FPS. Compared with YOLOv5s, the p-value and mAP values of the proposed algorithm were effectively improved. It can be seen that the proposed algorithm improves the detection accuracy and detection speed while greatly reducing the number of model parameters and computation.


Sujet(s)
Algorithmes , Technologie de télédétection , , Rotation , Rachis
19.
Multimed Tools Appl ; : 1-24, 2022 Dec 10.
Article de Anglais | MEDLINE | ID: mdl-36532597

RÉSUMÉ

The texture is the most fundamental aspect of a picture that contributes to its recognition. Computer vision challenges such as picture identification and segmentation are built on the foundation of texture analysis. Various images of satellite, forestry, medical etc. have been identifiable because of textures. This work aims to offer texture classification models that will outperform previously presented methods. In this work, transfer learning was applied to attain this goal. MobileNetV3 and InceptionV3 are the two pre-trained models employed. Brodatz, Kylberg, and Outex texture datasets were used to evaluate the models. The models achieved excellent results and achieved the objective in most cases. Classification accuracy obtained for the Kylberg dataset were 100% and 99.89%. For the Brodatz dataset, the classification accuracy obtained was 99.83% and 99.94%. For the Outex datasets, the classification accuracy obtained was 99.48% and 99.48%. The model outputs the corresponding label of the texture of the image.

20.
Sensors (Basel) ; 22(24)2022 Dec 15.
Article de Anglais | MEDLINE | ID: mdl-36560265

RÉSUMÉ

Magnetic rings are widely used in automotive, home appliances, and consumer electronics. Due to the materials used, processing techniques, and other factors, there will be top cracks, internal cracks, adhesion, and other defects on individual magnetic rings during the manufacturing process. To find such defects, the most sophisticated YOLOv5 target identification algorithm is frequently utilized. However, it has problems such as high computation, sluggish detection, and a large model size. This work suggests an enhanced lightweight YOLOv5 (MR-YOLO) approach for the identification of magnetic ring surface defects to address these issues. To decrease the floating-point operation (FLOP) in the feature channel fusion process and enhance the performance of feature expression, the YOLOv5 neck network was added to the Mobilenetv3 module. To improve the robustness of the algorithm, a Mosaic data enhancement technique was applied. Moreover, in order to increase the network's interest in minor defects, the SE attention module is inserted into the backbone network to replace the SPPF module with substantially more calculations. Finally, to further increase the new network's accuracy and training speed, we substituted the original CIoU-Ioss for SIoU-Loss. According to the test, the FLOP and Params of the modified network model decreased by 59.4% and 47.9%, respectively; the reasoning speed increased by 16.6%, the model's size decreased by 48.1%, and the mAP only lost by 0.3%. The effectiveness and superiority of this method are proved by an analysis and comparison of examples.


Sujet(s)
Algorithmes , Commerce , Électronique , Cou , Phénomènes magnétiques
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE