Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 258
Filtrer
1.
Int J Biol Macromol ; : 133715, 2024 Jul 06.
Article de Anglais | MEDLINE | ID: mdl-38977048

RÉSUMÉ

The fundamental binding of single-stranded (ssDNA) and double-stranded DNA (dsDNA) with graphene oxide-Ag nanocomposites (GO-AgNCPs) has been systematically investigated by multi spectroscopic methods, i.e. ultraviolet-visible (UV-vis) absorption, fluorescence spectroscopy, and circular dichroism (CD). The experimental and theoretical results demonstrate that both ssDNA and dsDNA can be adsorbed onto the GO-AgNCPs surface. All of the evidence indicated that there were relatively strong binding of ssDNA/dsDNA with GO-AgNCPs. The article compares the differences in binding between the two types of DNA and the nanomaterials using spectroscopic and thermodynamic data. UV-vis absorption spectroscopy experiments indicate that the characteristic absorbance intensity of both ss DNA and ds DNA increases, but the rate of change in absorbance is different. The fluorescence results revealed that ss/dsDNA could interact with the GO-AgNCPs surface, in spite of the different binding affinities. The Ka value of ssDNA binding with GO-AgNCPs is greater than that of dsDNA at each constant temperature, indicating that the affinity of dsDNA toward GO-AgNCPs is comparatively weak. Molecular docking studies have corroborated the mentioned experimental results. The calculated thermodynamic parameters showed that the binding process was thermodynamically spontaneous, van der Waals force and hydrogen bonding played predominant roles in the binding process. The mechanism of ss/ds DNA binding with GO-AgNCPs was also investigated, and the results indicated that GO-AgNCPs directly binds to the minor groove of ss/ds DNA by replacing minor groove binders.

2.
Food Chem ; 458: 140263, 2024 Jul 01.
Article de Anglais | MEDLINE | ID: mdl-38981396

RÉSUMÉ

To investigate the effects of heat treatment on the microstructure and digestive behaviors of pork, meat samples were subjected to a 100 °C water bath for 26 min. The inner, medium, and outer layers were assigned and analyzed according to the temperature gradient. Compared to the raw samples, significant changes were observed in the microscopic structure of pork. As the temperature increased, the myofibrillar structure of pork underwent increasingly severe damage and the moisture content decreased significantly (P < 0.05). Moreover, differential peptides were identified in digested products of the inner, middle, and outer layers of cooked pork, which are mainly derived from the structural proteins of pork. The outcomes of molecular docking indicated that a greater number of hydrogen bonds were formed between myosin and the digestive enzyme in the inner layer, rather than other parts, contributing to the transformation of digestive behaviors.

3.
Environ Sci Pollut Res Int ; 31(28): 41069-41083, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38842779

RÉSUMÉ

Triclosan (TCS), an antimicrobial additive in various personal and health care products, has been widely detected in aquatic environment around the world. The present study investigated the impacts of TCS in the gills of the fish, Cyprinus carpio employing histopathological, biochemical, molecular docking and simulation analysis. The 96 h LC50 value of TCS in C. carpio was found to be 0.968 mg/L. Fish were exposed to 1/1000th (1 µg/L), 1/100th (10 µg/L), and 1/10th (100 µg/L) of 96 h LC50 value for a period of 28 days. The histopathological alterations observed in the gills were hypertrophy, hyperplasia, edematous swellings, and fusion of secondary lamellae in TCS exposed groups. The severity of these alterations increased with both the concentration as well as the duration of exposure. The present study revealed that the activity of antioxidant enzymes such as superoxide dismutase, catalase, glutathione-S-transferase, glutathione reductase, glutathione peroxidase, and reduced glutathione content decreased significantly (p < 0.05) in both concentration and duration dependent manner. However, a significant (p < 0.05) increase in the activity of the metabolic enzymes such as acid phosphatase and alkaline phosphatase was observed in all three exposure concentrations of TCS from 7 to 28 days. The activity of acetylcholinesterase declined significantly (p < 0.05) from 7 to 28 days whereas the content of acetylcholine increased significantly at the end of 28 day. The experimental results were further confirmed by molecular docking and simulation analysis that showed strong binding of TCS with acetylcholinesterase enzyme. The study revealed that long-term exposure to sublethal concentrations of TCS can lead to severe physiological and histopathological alterations in the fish.


Sujet(s)
Acetylcholinesterase , Carpes (poisson) , Branchies , Simulation de docking moléculaire , Triclosan , Animaux , Triclosan/toxicité , Branchies/effets des médicaments et des substances chimiques , Branchies/anatomopathologie , Acetylcholinesterase/métabolisme , Polluants chimiques de l'eau/toxicité , Glutathione transferase/métabolisme
4.
Biochem Biophys Res Commun ; 723: 150186, 2024 Sep 03.
Article de Anglais | MEDLINE | ID: mdl-38830298

RÉSUMÉ

The aim of this study was to investigate the anti-cancer effects of resveratrol (RES) against gastric cancer (GC) and explore the potential mechanisms. We first measured the anti-cancer effects of RES on GC cell lines (i.e. AGS and HGC-27). Then protein-protein interaction (PPI) network was constructed, followed by GO and KEGG analysis to screen the possible targets. Molecular docking analysis was given to visualize the pharmacological effects of RES on GC cell lines. For the in vivo experiments, xenograft tumor model was established, and Western blot analysis was performed to determine the expression of protein screened by network pharmacology. Our results showed that RES could promote the apoptosis of GC cells. Five hub targets were identified by network pharmacology, including AKT1, TP53, JUN, ESR1 and MAPK14. GO and KEGG analyses revealed the PI3K/Akt/P53 signaling pathway was the most related signaling pathway. Molecular docking analysis indicated that RES could form 3 hydrogen bonds with AKT1 and 3 hydrogen bonds with TP53. The inhibitory effects of RES on the proliferation and promoting effects of RES on the apoptosis of AGS and HGC-27 cells were significantly reversed when blocking the PI3K-Akt signaling pathway using the LY294002. In vivo results showed that RES induced significant decrease of tumor volume and tumor weight without changing the body weight, or inducing significant cytotoxicities. Western blot analysis proved that RES could induce down-regulation of p-Akt and up-regulation of P53 in vivo. In conclusion, RES showed anti-cancer effects in GC by regulating the PI3K/Akt/P53 signaling pathway.


Sujet(s)
Phosphatidylinositol 3-kinases , Protéines proto-oncogènes c-akt , Resvératrol , Tumeurs de l'estomac , Protéine p53 suppresseur de tumeur , Animaux , Humains , Souris , Antinéoplasiques d'origine végétale/pharmacologie , Apoptose , Lignée cellulaire tumorale , Prolifération cellulaire , Souris de lignée BALB C , Souris nude , Simulation de docking moléculaire , Phosphatidylinositol 3-kinases/métabolisme , Cartes d'interactions protéiques , Protéines proto-oncogènes c-akt/métabolisme , Resvératrol/pharmacologie , Transduction du signal , Stilbènes/pharmacologie , Tumeurs de l'estomac/métabolisme , Tumeurs de l'estomac/anatomopathologie , Tumeurs de l'estomac/traitement médicamenteux , Protéine p53 suppresseur de tumeur/métabolisme , Tests d'activité antitumorale sur modèle de xénogreffe
5.
Heliyon ; 10(11): e31304, 2024 Jun 15.
Article de Anglais | MEDLINE | ID: mdl-38845922

RÉSUMÉ

Plesiomonas shigelloides, an aquatic bacterium belonging to the Enterobacteriaceae family, is a frequent cause of gastroenteritis with diarrhea and gastrointestinal severe disease. Despite decades of research, discovering a licensed and globally accessible vaccine is still years away. Developing a putative vaccine that can combat the Plesiomonas shigelloides infection by boosting population immunity against P. shigelloides is direly needed. In the framework of the current study, the entire proteome of P. shigelloides was explored using subtractive genomics integrated with the immunoinformatics approach for designing an effective vaccine construct against P. shigelloides. The overall stability of the vaccine construct was evaluated using molecular docking, which demonstrated that MEV showed higher binding affinities with toll-like receptors (TLR4: 51.5 ± 10.3, TLR2: 60.5 ± 9.2) and MHC receptors(MHCI: 79.7 ± 11.2 kcal/mol, MHCII: 70.4 ± 23.7). Further, the therapeutic efficacy of the vaccine construct for generating an efficient immune response was evaluated by computational immunological simulation. Finally, computer-based cloning and improvement in codon composition without altering amino acid sequence led to the development of a proposed vaccine. In a nutshell, the findings of this study add to the existing knowledge about the pathogenesis of this infection. The schemed MEV can be a possible prophylactic agent for individuals infected with P. shigelloides. Nevertheless, further authentication is required to guarantee its safeness and immunogenic potential.

6.
Front Pharmacol ; 15: 1387629, 2024.
Article de Anglais | MEDLINE | ID: mdl-38846093

RÉSUMÉ

Despite continuous efforts to develop safer and efficient medications, malaria remains a major threat posing great challenges for new drug discovery. The emerging drug resistance, increased toxicities, and impoverished pharmacokinetic profiles exhibited by conventional drugs have hindered the search for new entities. Plasmepsins, a group of Plasmodium-specific, aspartic acid protease enzymes, are involved in many key aspects of parasite biology, and this makes them interesting targets for antimalarial chemotherapy. Among different isoforms, PlmIX serves as an unexplored antimalarial drug target that plays a crucial role along with PlmV and X in the parasite's survival by digesting hemoglobin in the host's erythrocytes. In this study, fragment-based virtual screening was performed by modeling the three-dimensional structure of PlmIX and predicting its ligand-binding pocket by using the Sitemap tool. Screening identified the fragments with the XP docking score ≤ -3 kcal/mol from the OTAVA General Fragment Library (≈16,397 fragments), and the selected fragments were chosen for ligand breeding. The resulting ligands (≈69,858 ligands) were subsequently subjected to filtering based on the QikProp properties along with carcinogenicity testing performed using CarcinoPred-EL and then docked in the SP (≈14,078 ligands) as well as XP mode (≈3,104 ligands), and compared with that of control ligands 49C and I0L. The top-ranked ligands were taken further for the calculation of the free energy of binding using Prime MM-GBSA. Overall, a total of six complexes were taken further for MD simulation studies performed at 100 ns to attain a better understanding of the binding mechanisms, and compounds 3 and 4 were found to be the most efficient ones in silico. The analysis of compound 3 revealed that the carbonyl group present in position 1 on the isoindoline moiety (Arg554) was responsible for inhibitory activity against PlmIX. However, the analysis of compound 4 revealed that the amide linkage sandwiched between the phenyl ring and isoquinoline moiety (Lys555 and Ser226) as well as carbonyl oxygen of the carbamoyl group present at position 2 of the pyrazole ring (Gln222) were responsible for PlmIX inhibitory activity, owing to their crucial interactions with key amino acid residues.

7.
Curr Pharm Des ; 2024 Jun 11.
Article de Anglais | MEDLINE | ID: mdl-38877861

RÉSUMÉ

INTRODUCTION: The COVID-19 pandemic represents a significant challenge across scientific, medical, and societal dimensions. The unpredictability of the disease progression, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), underscores the urgent need for identifying compounds that target multiple aspects of the virus to ensure swift and effective treatment. Nyctanthes arbortristis L., a delicate, perennial, deciduous shrub found across various Asian regions, has been recognized for its wide range of pharmacological benefits, including hepatoprotective, antimalarial, antibacterial, anti-inflammatory, antioxidant, and antiviral properties. METHODS: Various in vitro studies revealed the therapeutic significance of Nyctanthes arbortristis against COVID-19. However, the exact molecular mechanism remains unclarified. In the present study, a network pharmacology approach was employed to uncover the active ingredients, their potential targets, and signaling pathways in Nyctanthes arbortristis for the treatment of COVID-19. In the framework of this study, we explored the active ingredient-target-pathway network and figured out that naringetol, ursolic acid, betasitosterol, and daucosterol decisively contributed to the development of COVID-19 by affecting IL6, MAPK3, and MDM2 genes. RESULTS: The results of molecular docking analysis indicated that Nyctanthes arbortristis exerted effective binding capacity in COVID-19. Further, we disclosed the targets, biological functions, and signaling pathways of Nyctanthes arbortristis in COVID-19. The analysis indicated that Nyctanthes arbortristis could help treat COVID-19 through the enhancement of immunologic functions, inhibition of inflammatory reactions and regulation of the cellular microenvironment. In short, the current study used a series of network pharmacologybased and computational analyses to understand and characterize the binding capacity, biological functions, pharmacological targets and therapeutic mechanisms of Nyctanthes arbortristis in COVID-19. CONCLUSION: However, the findings were not validated in actual COVID-19 patients, so further investigation is needed to confirm the potential use of Nyctanthes arbortristis for treating COVID-19.

8.
Front Pharmacol ; 15: 1403203, 2024.
Article de Anglais | MEDLINE | ID: mdl-38873424

RÉSUMÉ

Visceral Leishmaniasis (VL) is a serious public health issue, documented in more than ninety countries, where an estimated 500,000 new cases emerge each year. Regardless of novel methodologies, advancements, and experimental interventions, therapeutic limitations, and drug resistance are still challenging. For this reason, based on previous research, we screened natural products (NP) from Nuclei of Bioassays, Ecophysiology, and Biosynthesis of Natural Products Database (NuBBEDB), Mexican Compound Database of Natural Products (BIOFACQUIM), and Peruvian Natural Products Database (PeruNPDB) databases, in addition to structural analogs of Miglitol and Acarbose, which have been suggested as treatments for VL and have shown encouraging action against parasite's N-glycan biosynthesis. Using computer-aided drug design (CADD) approaches, the potential inhibitory effect of these NP candidates was evaluated by inhibiting the Mannosyl-oligosaccharide Glucosidase Protein (MOGS) from Leishmania infantum, an enzyme essential for the protein glycosylation process, at various pH to mimic the parasite's changing environment. Also, computational analysis was used to evaluate the Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) profile, while molecular dynamic simulations were used to gather information on the interactions between these ligands and the protein target. Our findings indicated that Ocotillone and Subsessiline have potential antileishmanial effects at pH 5 and 7, respectively, due to their high binding affinity to MOGS and interactions in the active center. Furthermore, these compounds were non-toxic and had the potential to be administered orally. This research indicates the promising anti-leishmanial activity of Ocotillone and Subsessiline, suggesting further validation through in vitro and in vivo experiments.

9.
Pharmaceuticals (Basel) ; 17(5)2024 Apr 30.
Article de Anglais | MEDLINE | ID: mdl-38794151

RÉSUMÉ

Background: The hunt for naturally occurring antiviral compounds to combat viral infection was expedited when COVID-19 and Ebola spread rapidly. Phytochemicals from Nyctanthes arbor-tristis Linn were evaluated as significant inhibitors of these viruses. Methods: Computational tools and techniques were used to assess the binding pattern of phytochemicals from Nyctanthes arbor-tristis Linn to Ebola virus VP35, SARS-CoV-2 protease, Nipah virus glycoprotein, and chikungunya virus. Results: Virtual screening and AutoDock analysis revealed that arborside-C, beta amyrin, and beta-sitosterol exhibited a substantial binding affinity for specific viral targets. The arborside-C and beta-sitosterol molecules were shown to have binding energies of -8.65 and -9.11 kcal/mol, respectively, when interacting with the major protease. Simultaneously, the medication remdesivir exhibited a control value of -6.18 kcal/mol. The measured affinity of phytochemicals for the other investigated targets was -7.52 for beta-amyrin against Ebola and -6.33 kcal/mol for nicotiflorin against Nipah virus targets. Additional molecular dynamics simulation (MDS) conducted on the molecules with significant antiviral potential, specifically the beta-amyrin-VP35 complex showing a stable RMSD pattern, yielded encouraging outcomes. Conclusions: Arborside-C, beta-sitosterol, beta-amyrin, and nicotiflorin could be established as excellent natural antiviral compounds derived from Nyctanthes arbor-tristis Linn. The virus-suppressing phytochemicals in this plant make it a compelling target for both in vitro and in vivo research in the future.

10.
Bioinform Biol Insights ; 18: 11779322241256459, 2024.
Article de Anglais | MEDLINE | ID: mdl-38812739

RÉSUMÉ

Background: Ameloblastoma (AM) is a benign tumor locally originated from odontogenic epithelium that is commonly found in the jaw. This tumor makes aggressive invasions and has a high recurrence rate. This study aimed to investigate the differentially expressed genes (DEGs), biological function alterations, disease targets, and existing drugs for AM using bioinformatics analysis. Methods: The data set of AM was retrieved from the GEO database (GSE132474) and identified the DEGs using bioinformatics analysis. The biological alteration analysis was applied to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Protein-protein interaction (PPI) network analysis and hub gene identification were screened through NetworkAnalyst. The transcription factor-protein network was constructed via OmicsNet. We also identified candidate compounds from L1000CDS2 database. The target of AM and candidate compounds were verified using docking simulation. Results: Totally, 611 DEGs were identified. The biological function enrichment analysis revealed glycosaminoglycan and GABA (γ-aminobutyric acid) signaling were most significantly up-regulated and down-regulated in AM, respectively. Subsequently, hub genes and transcription factors were screened via the network and showed FOS protein was found in both networks. Furthermore, we evaluated FOS protein to be a therapeutic target in AMs. Candidate compounds were screened and verified using docking simulation. Tanespimycin showed the greatest affinity binding value to bind FOS protein. Conclusions: This study presented the underlying molecular mechanisms of disease pathogenesis, biological alteration, and important pathways of AMs and provided a candidate compound, Tanespimycin, targeting FOS protein for the treatment of AMs.

11.
Comput Biol Chem ; 111: 108097, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-38772048

RÉSUMÉ

A new series of 2H-chromene-based sulfonamide derivatives 3-12 has been synthesized and characterized using different spectroscopic techniques. The synthesized 2H-chromenes were synthesized by reacting activated methylene with 5-(piperidin-1-ylsulfonyl)salicylaldehyde through one-step condensation followed by intramolecular cyclization. Virtual screening of the designed molecules on α-glucosidase enzymes (PDB: 3W37 and 3A4A) exhibited good binding affinity suggesting that these derivatives may be potential α-glucosidase inhibitors. In-vitro α-glucosidase activity was conducted firstly at 100 µg/mL, and the results demonstrated good inhibitory potency with values ranging from 90.6% to 96.3% compared to IP = 95.8% for Acarbose. Furthermore, the IC50 values were determined, and the designed derivatives exhibited inhibitory potency less than 11 µg/mL. Surprisingly, two chromene derivatives 6 and 10 showed the highest potency with IC50 values of 0.975 ± 0.04 and 0.584 ± 0.02 µg/mL, respectively, compared to Acarbose (IC50 = 0.805 ± 0.03 µg/mL). Moreover, our work was extended to evaluate the in-vitro α-amylase and PPAR-γ activity as additional targets for diabetic activity. The results exhibited moderate activity on α-amylase and potency as PPAR-γ agonist making it a multiplet antidiabetic target. The most active 2H-chromenes 6 and 10 exhibited significant activity to PPAR-γ with IC50 values of 3.453 ± 0.14 and 4.653 ± 0.04 µg/mL compared to Pioglitazone (IC50 = 4.884±0.29 µg/mL) indicating that these derivatives improve insulin sensitivity by stimulating the production of small insulin-sensitive adipocytes. In-silico ADME profile analysis indicated compliance with Lipinski's and Veber's rules with excellent oral bioavailability properties. Finally, the docking simulation was conducted to explain the expected binding mode and binding affinity.


Sujet(s)
Benzopyranes , Diabète de type 2 , Conception de médicament , Inhibiteurs des glycoside hydrolases , Hypoglycémiants , Récepteur PPAR gamma , alpha-Amylases , alpha-Glucosidase , Récepteur PPAR gamma/métabolisme , Récepteur PPAR gamma/antagonistes et inhibiteurs , Benzopyranes/composition chimique , Benzopyranes/pharmacologie , Benzopyranes/synthèse chimique , Hypoglycémiants/composition chimique , Hypoglycémiants/pharmacologie , Hypoglycémiants/synthèse chimique , alpha-Glucosidase/métabolisme , Diabète de type 2/traitement médicamenteux , Diabète de type 2/métabolisme , Inhibiteurs des glycoside hydrolases/pharmacologie , Inhibiteurs des glycoside hydrolases/composition chimique , Inhibiteurs des glycoside hydrolases/synthèse chimique , alpha-Amylases/antagonistes et inhibiteurs , alpha-Amylases/métabolisme , Humains , Relation structure-activité , Structure moléculaire , Simulation de docking moléculaire , Évaluation préclinique de médicament , Découverte de médicament , Relation dose-effet des médicaments
12.
Int J Mol Sci ; 25(9)2024 Apr 25.
Article de Anglais | MEDLINE | ID: mdl-38731918

RÉSUMÉ

In the age of information technology and the additional computational search tools and software available, this systematic review aimed to identify potential therapeutic targets for obesity, evaluated in silico and subsequently validated in vivo. The systematic review was initially guided by the research question "What therapeutic targets have been used in in silico analysis for the treatment of obesity?" and structured based on the acronym PECo (P, problem; E, exposure; Co, context). The systematic review protocol was formulated and registered in PROSPERO (CRD42022353808) in accordance with the Preferred Reporting Items Checklist for Systematic Review and Meta-Analysis Protocols (PRISMA-P), and the PRISMA was followed for the systematic review. The studies were selected according to the eligibility criteria, aligned with PECo, in the following databases: PubMed, ScienceDirect, Scopus, Web of Science, BVS, and EMBASE. The search strategy yielded 1142 articles, from which, based on the evaluation criteria, 12 were included in the systematic review. Only seven these articles allowed the identification of both in silico and in vivo reassessed therapeutic targets. Among these targets, five were exclusively experimental, one was exclusively theoretical, and one of the targets presented an experimental portion and a portion obtained by modeling. The predominant methodology used was molecular docking and the most studied target was Human Pancreatic Lipase (HPL) (n = 4). The lack of methodological details resulted in more than 50% of the papers being categorized with an "unclear risk of bias" across eight out of the eleven evaluated criteria. From the current systematic review, it seems evident that integrating in silico methodologies into studies of potential drug targets for the exploration of new therapeutic agents provides an important tool, given the ongoing challenges in controlling obesity.


Sujet(s)
Simulation numérique , Obésité , Humains , Obésité/traitement médicamenteux , Obésité/métabolisme , Animaux , Simulation de docking moléculaire , Agents antiobésité/pharmacologie , Agents antiobésité/usage thérapeutique , Triacylglycerol lipase/métabolisme , Triacylglycerol lipase/antagonistes et inhibiteurs , Thérapie moléculaire ciblée/méthodes
13.
Eur J Pharmacol ; 976: 176661, 2024 Aug 05.
Article de Anglais | MEDLINE | ID: mdl-38795753

RÉSUMÉ

Alzheimer's disease (AD), marked by tau tangles and amyloid-beta plaques, leads to cognitive decline. Despite extensive research, its complex etiology remains elusive, necessitating new treatments. This study utilized machine learning (ML) to analyze compounds with neuroprotective potential. This approach exposed the disease's complexity and identified important proteins, namely MTOR and BCL2, as central to the pathogenic network of AD. MTOR regulates neuronal autophagy and survival, whereas BCL2 regulates apoptosis, both of which are disrupted in AD. The identified compounds, including Armepavine, Oprea1_264702,1-cyclopropyl-7-fluoro-8-methoxy-4-oxoquinoline-3-carboxylic acid,(2S)-4'-Hydroxy-5,7,3'-trimethoxyflavan,Oprea1_130514,Sativanone,5-hydroxy-7,8-dimethoxyflavanone,7,4'-Dihydroxy-8,3'-dimethoxyflavanone,N,1-dicyclopropyl-6,Difluoro-Methoxy-Gatifloxacin,6,8-difluoro-1-(2-fluoroethyl),1-ethyl-6-fluoro-7-(4-methylpiperidin-1-yl),Avicenol C, demonstrated potential modulatory effects on these proteins. The potential for synergistic effects of these drugs in treating AD has been revealed via network pharmacology. By targeting numerous proteins at once, these chemicals may provide a more comprehensive therapeutic approach, addressing many aspects of AD's complex pathophysiology. A Molecular docking, dynamic simulation, and Principle Component Analysis have confirmed these drugs' efficacy by establishing substantial binding affinities and interactions with important proteins such as MTOR and BCL2. This evidence implies that various compounds may interact within the AD pathological framework, providing a sophisticated and multifaceted therapy strategy. In conclusion, our study establishes a solid foundation for the use of these drugs in AD therapy. Thus current study highlights the possibility of multi-targeted, synergistic therapeutic approaches in addressing the complex pathophysiology of AD by integrating machine learning, network pharmacology, and molecular docking simulations. This holistic technique not only advances drug development but also opens up new avenues for developing more effective treatments for this difficult and widespread disease.


Sujet(s)
Maladie d'Alzheimer , Découverte de médicament , Apprentissage machine , Simulation de docking moléculaire , Pharmacologie des réseaux , Sérine-thréonine kinases TOR , Maladie d'Alzheimer/traitement médicamenteux , Maladie d'Alzheimer/métabolisme , Humains , Découverte de médicament/méthodes , Sérine-thréonine kinases TOR/métabolisme , Neuroprotecteurs/pharmacologie , Neuroprotecteurs/usage thérapeutique , Neuroprotecteurs/composition chimique , Protéines proto-oncogènes c-bcl-2/métabolisme , Protéines proto-oncogènes c-bcl-2/antagonistes et inhibiteurs
14.
J Tradit Chin Med ; 44(3): 478-488, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38767631

RÉSUMÉ

OBJECTIVE: To explore the pharmacodynamic effects and potential mechanisms of Shuangling extract against ulcerative colitis (UC). METHODS: The bioinformatics method was used to predict the active ingredients and action targets of Shuangling extract against UC in mice. And the biological experiments such as serum biochemical indexes and histopathological staining were used to verify the pharmacological effect and mechanism of Shuangling extract against UC in mice. RESULTS: The Shuangling extract reduced the levels of seruminterleukin-1ß (IL-1ß), tumor necrosis factor-α (TNF-N), interleukin-6 (IL-6) and other inflammatory factors in UC mice and inhibited the inflammatory response. AKT Serine/threonine Kinase 1 and IL-6 may be the main targets of the anti-UC action of Shuangling extract, and the TNF signaling pathway, Forkhead box O signaling pathway and T-cell receptor signaling pathway may be the main signaling pathways. CONCLUSION: The Shuangling extract could inhibit the inflammatory response induced by UC and regulate intestinal immune function through multiple targets and multiple channels, which provided a new option and theoretical basis for anti-UC.


Sujet(s)
Rectocolite hémorragique , Sulfate dextran , Médicaments issus de plantes chinoises , Pharmacologie des réseaux , Facteur de nécrose tumorale alpha , Animaux , Rectocolite hémorragique/traitement médicamenteux , Rectocolite hémorragique/induit chimiquement , Souris , Médicaments issus de plantes chinoises/administration et posologie , Médicaments issus de plantes chinoises/pharmacologie , Sulfate dextran/effets indésirables , Mâle , Facteur de nécrose tumorale alpha/génétique , Facteur de nécrose tumorale alpha/métabolisme , Humains , Interleukine-1 bêta/génétique , Interleukine-1 bêta/métabolisme , Interleukine-6/génétique , Interleukine-6/métabolisme , Interleukine-6/immunologie , Modèles animaux de maladie humaine , Transduction du signal/effets des médicaments et des substances chimiques
15.
Sci Rep ; 14(1): 7675, 2024 04 01.
Article de Anglais | MEDLINE | ID: mdl-38561470

RÉSUMÉ

A serine protease called prolyl endopeptidase (PEP) hydrolyses the peptide bonds on the carboxy side of the proline ring. The excessive PEP expression in brain results in neurodegenerative illnesses like dementia, Alzheimer's disease, and Parkinson's disease. Results of the prior studies on antioxidant activity, and the non-cytotoxic effect of bi-carbazole-linked triazoles, encouraged us to extend our studies towards its anti-diabetic potential. Hence, for this purpose all compounds 1-9 were evaluated to reveal their anti-prolyl endo peptidase activity. Fortunately, seven compounds resulted into significant inhibitory capability ranging from 26 to 63 µM. Among them six compounds 4-9 exhibited more potent inhibitory activity with IC50 values 46.10 ± 1.16, 42.30 ± 1.18, 37.14 ± 1.21, 26.29 ± 0.76, 28.31 ± 0.64 and 31.11 ± 0.84 µM respectively, while compound 3 was the least active compound in the series with IC50 value 63.10 ± 1.58 µM comparing with standard PEP inhibitor bacitracin (IC50 = 125 ± 1.50 µM). Moreover, mechanistic study was performed for the most active compounds 7 and 8 with Ki values 24.10 ± 0.0076 and 23.67 ± 0.0084 µM respectively. Further, the in silico studies suggested that the compounds exhibited potential interactions and significant molecular conformations, thereby elucidating the structural basis for their inhibitory effects.


Sujet(s)
Peptide hydrolases , Triazoles , Triazoles/pharmacologie , Triazoles/composition chimique , Prolyl-oligopeptidases , Serine endopeptidases , Carbazoles , Relation structure-activité , Simulation de docking moléculaire
16.
Biochem Genet ; 2024 Apr 17.
Article de Anglais | MEDLINE | ID: mdl-38630357

RÉSUMÉ

Respiratory syncytial virus (RSV) is the most common pathogen causing acute lower respiratory tract infection in infants and children. Due to limited knowledge of the pathological and molecular mechanisms of immunodeficiency underlying RSV disease, there is currently a lack of an approved and effective RSV vaccine to combat RSV infections. This study aimed to identify genes associated with immune dysfunction using bioinformatics methods to gain insights into the role of dysregulated immune genes in RSV disease progression, and to predict potential therapeutic drugs by targeting dysregulated immune-related genes. 423 immune-related differential genes (DEIRGs) were filtered from the blood samples of 87 healthy individuals and 170 RSV patients. According to CIBERSORT analysis, the blood of RSV patients showed increased infiltration of various immune cells. Subsequently, ten immune-related hub genes were screened via Protein-Protein Interaction Networks. Six signature immune-related genes (RPS2, RPS5, RPS13, RPS14, RPS18, and RPS4X) as candidate characteristic genes for the diagnostic model were identified by Lasso regression. The AUC value of the ROC curve of the six signature genes was 0.884. This result, intriguingly, suggested that all six immune-related genes with a good internal validation effect were ribosome family genes. Finally, through molecular docking analyses targeting these differential immune genes, ADO and fluperlapine were found to have high stable binding to major proteins of important immune-related genes in nine drug-protein interactions. Overall, the present study screened immune-related genes that are dysregulated in the development of RSV disease to investigate the pathogenesis of RSV infection from the standpoint of immune disorders. Unexpectedly, bioinformatics analysis revealed that ribosome family genes may be involved in the immune dysregulation of RSV disease, and these genes as targets formed the basis for potential drug modification candidates in RSV disease.

17.
Open Life Sci ; 19(1): 20220855, 2024.
Article de Anglais | MEDLINE | ID: mdl-38681731

RÉSUMÉ

Allene oxide synthase (AOS) is a key enzyme involved in the jasmonic acid (JA) synthesis pathway in plants. To explore its function on the regulatory mechanism of JA synthesis, we screened and identified two AOS genes HvnAOS1 and HvnAOS2 in qingke. Both HvnAOS1 and HvnAOS2 contained conserved heme-binding motif, which is most closely related to AtsAOS2, indicating controlled dehydration of fatty acid hydroperoxides to allene oxides. Molecular docking simulations identified the key amino acid sites that were important for heme binding and interaction with 13(S)-HPOT, respectively. The expression pattern also indicated that HvnAOS1 and HvnAOS2 were highly induced by JA, abscisic acid, and salicylic acid. Subcellular localization of HvnAOS1 and HvnAOS2 using transient expression of Agrobacterium tumefaciens showed the green fluorescent protein signal in the cell cytoplasm of the N. benthamiana leaves. Overexpression of HvnAOS1 and HvnAOS2 in Arabidopsis aos mutant restored male fertility and plant resistance to Botrytis cinerea, indicating that HvnAOS1 and HvnAOS2 can restore the functions of AOS in Arabidopsis aos mutant.

18.
Heliyon ; 10(7): e28118, 2024 Apr 15.
Article de Anglais | MEDLINE | ID: mdl-38596094

RÉSUMÉ

In this study, a series of secondary metabolites from Ganoderma sp. were screened against Staphylococcus aureus protein targets, including as phosphotransacetylase, clumping factor A, and dihydrofolate reductase, using molecular docking simulations. The chemicals that showed the strongest binding energy with the targeted proteins were ganodermanontriol, lucidumol B, ganoderic acid J, ergosterol, ergosterol peroxide, 7-oxoganoderic acid Z, ganoderic acid AM1, ganosinoside A, ganoderic acid D, and 24R-ergosta-7,2E-diene-3ß,5α,6ß-triol. Interestingly, ganosinoside A showed the greatest affinity for the protein clumping factor A, a result validated by molecular dynamic simulation. Additionally, three natural Ganoderma sp. Strains as Ganoderma lingzhi VNKKK1903, Ganoderma lingzhi VNKK1905A2, and Amauroderma subresinosum VNKKK1904 were collected from Kon Ka Kinh National Park in central land of Vietnam and evaluated for their antibacterial activity against Staphylococcus aureus using an agar well diffusion technique. These results suggest that the fungal extracts and secondary metabolites may serve as valuable sources of antibiotics against Staphylococcus aureus. These findings provided an important scientific groundwork for further exploration of the antibacterial mechanisms of compounds derived from Ganoderma sp. in future research.

19.
Korean J Pain ; 37(2): 151-163, 2024 Apr 01.
Article de Anglais | MEDLINE | ID: mdl-38557656

RÉSUMÉ

Background: Galangin, commonly employed in traditional Chinese medicine for its diverse medicinal properties, exhibits potential in treating inflammatory pain. Nevertheless, its mechanism of action remains unclear. Methods: Mice were randomly divided into 4 groups for 7 days: a normal control group, a galangin-treated (25 and 50 mg/kg), and a positive control celecoxib (20 mg/kg). Analgesic and anti-inflammatory effects were evaluated using a hot plate test, acetic acid-induced writhing test, acetic acid-induced vascular permeability test, formalininduced paw licking test, and carrageenan-induced paw swelling test. The interplay between galangin, transient receptor potential vanilloid 1 (TRPV1), NF-κB, COX-2, and TNF-α proteins was evaluated via molecular docking. COX- 2, PGE2, IL-1ß, IL-6, and TNF-α levels in serum were measured using ELISA after capsaicin administration (200 nmol/L). TRPV1 expression in the dorsal root ganglion was analyzed by Western blot. The quantities of substance P (SP) and calcitonin gene-related peptide (CGRP) were assessed using qPCR. Results: Galangin reduced hot plate-induced licking latency, acetic acid-induced contortions, carrageenantriggered foot inflammation, and capillary permeability in mice. It exhibited favorable affinity towards TRPV1, NF- κB, COX-2, and TNF-α, resulting in decreased levels of COX-2, PGE2, IL-1ß, IL-6, and TNF-α in serum following capsaicin stimulation. Galangin effectively suppressed the upregulation of TRPV1 protein and associated receptor neuropeptides CGRP and SP mRNA, while concurrently inhibiting the expression of NF-κB, TNF-α, COX-2, and PGE2 mRNA. Conclusions: Galangin exerts its anti-inflammatory pain effects by inhibiting TRPV1 activation and regulating COX-2, NF-κB/TNF-α expression, providing evidence for the use of galangin in the management of inflammatory pain.

20.
J Biomol Struct Dyn ; : 1-12, 2024 Mar 14.
Article de Anglais | MEDLINE | ID: mdl-38486426

RÉSUMÉ

The present study synthesized a series of cobalt (II) metal ion frame hybrid candidates (6a-6f) bearing phyto-flavonol galangin with substituted aryl diazenyl coumarins, and further structural confirmation was validated by various spectral techniques, including NMR, ATR-FTIR, UV-vis, HPLC, XRD, etc. Therapeutic potency was investigated via PASS (prediction of activity spectra for substances), molecular docking, molecular dynamics simulation, prediction of toxicity, pharmacokinetics, and drug-likeness scores, along with the highest occupied molecular orbital (HOMO), the lowest unoccupied molecular orbital (LUMO), with their energy gaps (ΔEH-L) to locate the most potential therapeutic candidates. The PASS prediction (Pa > Pi score) showed that proposed metal complexes have kinase inhibitors, antioxidative, and antischistosomal activities with potential molecular docking scores (> -7 kcal/mol) against selected targeted enzymes. Further, the MD-simulation (RMSD, RMSF, Rg, and H-bonds) of the most potential docking complex, 'HER2-6d', showed a minimum deviation similar to the standard drug (lapatinib) at 100 ns, indicating that 6d could be a potential noncovalent anticancer inhibitor. In addition, metal complexes possess a non-toxic and ideal drug-ability profiles, and positive electron space in an excited state increases the binding affinity towards target enzymes. Among all six ligands, 6c and 6d were the two most multipotent therapeutic agents from the above analyses. In summary, this could be a feasible approach towards the utilization of phytochemicals in mainstream therapeutic applications, where bioinformatics tools help to select a lead drug candidate at an early stage and guide for higher experimental success by proceeding with potential candidates.Communicated by Ramaswamy H. Sarma.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...