Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 1.710
Filtrer
1.
Adv Sci (Weinh) ; : e2402792, 2024 Oct 01.
Article de Anglais | MEDLINE | ID: mdl-39352717

RÉSUMÉ

Existing parenteral SARS-CoV-2 vaccines produce only limited mucosal responses, essential for reducing transmission and achieving sterilizing immunity. Appropriately designed mucosal boosters can overcome the shortcomings of parenteral vaccines and enhance pre-existing systemic immunity. Here, a new protein subunit nanovaccine is developed by utilizing dual-adjuvanted (RIG-I: PUUC RNA and TLR-9: CpG DNA) polysaccharide-amino acid-lipid nanoparticles (PAL-NPs) along with SARS-CoV-2 S1 trimer protein, that can be delivered both intramuscularly (IM) and intranasally (IN) to generate balanced mucosal-systemic SARS-CoV-2 immunity. Mice receiving IM-Prime PUUC+CpG PAL subunit nanovaccine, followed by an IN-Boost, developed high levels of IgA, IgG, and cellular immunity in the lungs and showed robust systemic humoral immunity. Interestingly, as a purely intranasal subunit vaccine (IN-Prime/IN-Boost), PUUC+CpG PAL-NPs induced stronger lung-specific T cell immunity than IM-Prime/IN-Boost, and a comparable IgA and neutralizing antibodies, although with a lower systemic antibody response, indicating that a fully mucosal delivery route for SARS-CoV-2 vaccination may also be feasible. The data suggest that PUUC+CpG PAL subunit nanovaccine is a promising candidate for generating SARS-CoV-2 specific mucosal immunity.

2.
IJID Reg ; 12: 100411, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-39220203

RÉSUMÉ

The European Center for Disease Prevention and Control has reported 19 cases of severe echovirus 11 infections in neonates since 2022, nine of which were fatal. We report a new fatal neonatal case that occurred in a male twin for which we evaluated the respiratory and intestinal mucosal innate immune response.

3.
Front Pharmacol ; 15: 1420411, 2024.
Article de Anglais | MEDLINE | ID: mdl-39224776

RÉSUMÉ

Ethnopharmacological relevance: Danggui Buxue decoction (DBD) is a traditional Chinese herbal formula. According to the theory of traditional Chinese medicine, the combination of Astragali Radix (AR) and Angelica sinensis (AS) is a classic prescription of tonifying qi and enriching blood. DBD has the functions of hematopoietic, immune enhancement and inflammation inhibition, usually used to treat qi and blood deficiency symptoms. Aim of the study: Cyclophosphamide (CY) can inhibit humoral and cellular immunity, leading to the overall immune disorder of the body, resulting in immunosuppressive (IS). Pre-laboratory studies confirmed the immunomodulatory effects of DBD, but its mechanisms have not been thoroughly studied. In this study, the main purpose was to determine the effects of DBD on the immune function and intestinal mucosal barrier function of IS mice induced by CY, and initially explored the immunomodulatory mechanism of DBD. Materials and methods: 100 g of AR and 20 g of AS were accurately weighed and 0.5 g/mL of the DBD was obtained by boiling, filtration and rotary evaporation. Then, mice in the DBD group were administered 5 g/kg of DBD by gavage, positive group were administered 40 mg/kg of levamisole hydrochloride, whereas those in the control and model groups were given the corresponding volume of normal saline by gavage for 1 week. At the end of the experiment, blood, spleen, thymus, ileum and cecum contents of all the experimental mice were collected aseptically. IS mouse model induced by intraperitoneal injection of 80 mg/kg CY for three consecutive days. Pathomorphology was used to observe the physical barrier of the intestine, flow cytometry to detect splenic lymphocytes, immunohistochemistry to determine the content of intestinal barrier-associated proteins, ELISA to measure the secretion of ileal SIgA, qRT-PCR to detect the mRNA expression of immune-related genes in the intestine, and high-throughput sequencing and analysis of cecum contents. Results: DBD alleviated spleen tissue damage and restored impaired immune functions, such as increased thymus index and CD4+/CD8+ subsets of spleen lymphocytes. In addition, DBD could increase ileum villi length and the ratio of villi length to crypt depth (V/C), and decrease crypt depth. Moreover, DBD administration up-regulated the expression of ZO-1, Occludin, Claudin-1, MUC-2 mRNA in ileum. And the secretions of sIgA and ZO-1 in ileum were also significantly improved. Furthermore, the administration of DBD can increase the diversity of gut microbiota, improve the composition of intestinal flora and increase the relative abundance of beneficial genus, such as Bacteroides. Conclusion: DBD alleviated CY-induced immune damage by decreasing the ratio of spleen index to CD4+/CD8+ of T lymphocyte subsets. And the intestinal barrier function of mice was by improves improving the intestinal morphology of the ileum and up-regulating the expression levels of ZO-1, MUC-2 and SIgA. DBD regulates CY-induced gut microbiota dysregulation in mice by increasing species diversity and richness, regulating the phylum, class and order levels of Bacteroidetes.

4.
Infect Immun ; : e0018324, 2024 Sep 05.
Article de Anglais | MEDLINE | ID: mdl-39235225

RÉSUMÉ

Naegleria fowleri (N. fowleri) infection via the upper respiratory tract causes a fatal CNS disease known as primary amoebic meningoencephalitis (PAM). The robust in vivo immune response to N. fowleri infection underlies the immunopathology that characterizes the disease. However, little is known about why this pathogen evades immune control. Infections occur in seemingly healthy individuals and effective clinical options are lacking, thus a nearly 98% fatality rate. It is unclear how or if host factors may contribute to susceptibility or disease exacerbation, yet mechanistic studies of the in vivo immune response and disease progression are hampered by a lack of tools. In this study, we have generated monoclonal antibodies to N. fowleri surface antigens and shown them to be excellent tools for studying the in vivo immune response. We also identified one monoclonal, 2B6, with potent inherent anti-amoebastatic activity in vitro. This antibody is also able to therapeutically prolong host survival in vivo and furthermore, recombinant antibodies with an isotype more capable of directing immune effector activity further improved survival when given therapeutically. Thus, we report the generation of a novel monoclonal antibody to N. fowleri that can enhance beneficial immune functions, even when given therapeutically during disease. We believe this provides evidence for the potential of therapeutic antibody treatments in PAM.IMPORTANCENaegleria fowleri (N. fowleri) is a free-living amoeba that is found ubiquitously in warm freshwater. While human exposure is common, it rarely results in pathogenesis. However, when N. fowleri gains access to the upper airway, specifically the olfactory mucosa, infection leads to a lethal disease known as primary amoebic meningoencephalitis (PAM). As a free-living amoeba, N. fowleri does not need a mammalian host; indeed, it can be accurately described as an accidental opportunistic pathogen. While most opportunistic infections occur in humans who are immunocompromised, there are no reported immune dysfunctions associated with N. fowleri infection. Therefore, the basis for N. fowleri opportunism is not known, and the reasons why some humans develop PAM while others do not are simply not well understood. It is reasonable to speculate that local or acute immune failures, potentially even a lack of prior adaptive immunity, are related to disease susceptibility. Careful immune profiling and characterization of the in vivo immune response to N. fowleri in a mammalian host are desperately needed to understand which host factors are critical to defense, and how these responses might be compromised in a way that results in lethal infection. To identify genes and pathways that provide resistance against in vivo N. fowleri infection, we generated surface reactive monoclonal antibodies (Abs) that provide rapid amoeba detection and quantification in vivo. Interestingly, N. fowleri binding Abs have been readily detected in the serum and saliva of humans and animals suggesting that non-lethal exposure drives a humoral immune response against the amoeba. Yet, how Abs might interact with Naegleria in vivo or contribute to preventing lethal infection is not well understood. In this study, we have generated and characterized a monoclonal antibody (Ab), Clone 2B6, that recognizes a glycosylated surface antigen present in cultured in vitro N. fowleri as well as mouse passaged N. fowleri. When clone 2B6 binds to N. fowleri, it inhibits amoeba motility and feeding behavior, leading to strong growth inhibition. Mice treated systemically and intracerebrally with Ab displayed a delayed disease onset and prolonged survival. In addition, we found that enhancing immune-directed effector activity via antibody isotype could further enhance survival without obvious immunopathogenic side effects. These findings show the potential for antibody treatment as an additional therapeutic to those used currently in PAM.

5.
Front Immunol ; 15: 1435702, 2024.
Article de Anglais | MEDLINE | ID: mdl-39221251

RÉSUMÉ

Anticoccidial vaccines comprising living oocysts of Eimeria tenella, Eimeria necatrix, Eimeria maxima, and Eimeria acervulina are used to control coccidiosis. This study explored the potential of IL-1ß to act as a molecular adjuvant for enhancing the immunogenicity of Eimeria necatrix and mucosal immunity. We engineered E. necatrix to express a functional chIL-1ß (EnIL-1ß) and immunized chickens with oocysts of the wild type (EnWT) and tranegenic (EnIL-1ß) strains, respectively. The chickens were then challenged with EnWT oocysts to examine the immunogenicity-enhancing potential of chIL-1ß. As expected, the oocyst output of EnIL-1ß-immunized chickens was significantly reduced compared to those immunized using EnWT. No difference in body weight gain and lesion scores of EnIL-1ß and EnWT groups was observed. The parasite load in the small intestine and caeca showed that the invasion and replication of EnIL-1ß was not affected. However, the markers of immunogenicity and mucosal barrier, Claudin-1 and avian ß-defensin-1, were elevated in EnIL-1ß-infected chickens. Ectopic expression of chIL-1ß in E. necatrix thus appears to improve its immunogenicity and mucosal immunity, without increasing pathogenicity. Our findings support chIL-1ß as a candidate for development of effective live-oocyst-based anticoccidial vaccines.


Sujet(s)
Poulets , Coccidiose , Eimeria , Immunité muqueuse , Interleukine-1 bêta , Maladies de la volaille , Vaccins antiprotozoaires , Animaux , Coccidiose/immunologie , Coccidiose/médecine vétérinaire , Interleukine-1 bêta/immunologie , Interleukine-1 bêta/métabolisme , Poulets/immunologie , Eimeria/immunologie , Vaccins antiprotozoaires/immunologie , Maladies de la volaille/immunologie , Maladies de la volaille/parasitologie , Maladies de la volaille/prévention et contrôle , Immunisation , Oocystes/immunologie , Micro-organismes génétiquement modifiés
6.
Cas Lek Cesk ; 163(4): 131-136, 2024.
Article de Anglais | MEDLINE | ID: mdl-39251369

RÉSUMÉ

SARS-CoV-2 is a virus which infects the respiratory tract and may cause severe, occasionally life-threatening disease COVID-19. In more than 5% of symptomatic patients the infection is associated with post-acute symptoms. The initial contact of the virus with the immune system of the nasopharynx and oropharynx induces a mucosal immune response manifested by the production of secretory IgA (sIgA) antibodies which may contribute to the restriction of the infection to the upper respiratory tract and an asymptomatic or clinically mild disease. The current systemically administered vaccines protected against the severe COVID-19 infection and its post-acute sequelae. However, they do not induce antibodies in mucosal secretions in SARS-CoV-2-naive individuals. In contrast, in those who previously experienced mucosal infection, systemically administered vaccines may stimulate sIgA production. The clinical benefit of systemic vaccination convincingly documented in tens of millions of individuals overshadows the rare, sometimes controversial reports of complications encountered after vaccination. The inability of current SARS-CoV-2 vaccines to induce mucosal immune responses and to prevent the spreading of the virus by external secretions demonstrates the mutual independence of mucosal and systemic compartments of the immune system, and thus emphasizes need for the development of vaccines inducing protective immune responses in both compartments.


Sujet(s)
Vaccins contre la COVID-19 , COVID-19 , SARS-CoV-2 , Humains , COVID-19/prévention et contrôle , COVID-19/immunologie , Vaccins contre la COVID-19/immunologie , SARS-CoV-2/immunologie , Vaccination , Immunité muqueuse
7.
Int J Mol Sci ; 25(17)2024 Sep 05.
Article de Anglais | MEDLINE | ID: mdl-39273567

RÉSUMÉ

Recent evidence indicates that the gut microbiota (GM) has a significant impact on the inflammatory bowel disease (IBD) progression. Our aim was to investigate the GM profiles, the Microbial Dysbiosis Index (MDI) and the intestinal microbiota-associated markers in relation to IBD clinical characteristics and disease state. We performed 16S rRNA metataxonomy on both stools and ileal biopsies, metabolic dysbiosis tests on urine and intestinal permeability and mucosal immunity activation tests on the stools of 35 IBD paediatric patients. On the GM profile, we assigned the MDI to each patient. In the statistical analyses, the MDI was correlated with clinical parameters and intestinal microbial-associated markers. In IBD patients with high MDI, Gemellaceae and Enterobacteriaceae were increased in stools, and Fusobacterium, Haemophilus and Veillonella were increased in ileal biopsies. Ruminococcaceae and WAL_1855D were enriched in active disease condition; the last one was also positively correlated to MDI. Furthermore, the MDI results correlated with PUCAI and Matts scores in ulcerative colitis patients (UC). Finally, in our patients, we detected metabolic dysbiosis, intestinal permeability and mucosal immunity activation. In conclusion, the MDI showed a strong association with both severity and activity of IBD and a positive correlation with clinical scores, especially in UC. Thus, this evidence could be a useful tool for the diagnosis and prognosis of IBD.


Sujet(s)
Marqueurs biologiques , Dysbiose , Microbiome gastro-intestinal , Maladies inflammatoires intestinales , Médecine de précision , Humains , Dysbiose/microbiologie , Enfant , Femelle , Mâle , Maladies inflammatoires intestinales/microbiologie , Adolescent , Médecine de précision/méthodes , ARN ribosomique 16S/génétique , Fèces/microbiologie , Enfant d'âge préscolaire , Muqueuse intestinale/microbiologie , Muqueuse intestinale/anatomopathologie , Muqueuse intestinale/métabolisme , Iléum/microbiologie , Iléum/anatomopathologie , Rectocolite hémorragique/microbiologie
8.
J Clin Med ; 13(17)2024 Sep 05.
Article de Anglais | MEDLINE | ID: mdl-39274468

RÉSUMÉ

Immunoglobulin A nephropathy (IgAN) is the most prevalent primary glomerular disease worldwide and it remains a leading cause of kidney failure. Clinical manifestations of IgA are exacerbated by infections, and emerging data suggest that aberrant mucosal immune responses are important contributors to the immunopathogenesis of this disease. However, the exact stimuli, location and mechanism of nephritis-inducing IgA production remains unclear. In this focused review we explore recent developments in our understanding of the contribution of the mucosal immune system and mucosal-derived IgA-producing cells to the development of IgAN.

9.
Front Immunol ; 15: 1441863, 2024.
Article de Anglais | MEDLINE | ID: mdl-39229266

RÉSUMÉ

This perspective article delves into a novel integration of Yin-Yang theory-an ancient Chinese philosophical cornerstone-with the sophisticated realm of immunology. Given the intricate concepts inherent in immunology, many students find it challenging to comprehend the delicate mechanisms governing immune equilibrium and regulation. Given the deep-rooted understanding of Yin-Yang theory among Chinese students, we advocate for an educational strategy that contextualizes the concept of immune equilibrium within the framework of Yin-Yang, thereby offering a more intuitive and engaging learning experience. This method not only capitalizes on the cultural significance of Yin-Yang, but also corresponds to its principles of equilibrium and harmony, thus mirroring the homeostatic essence of immune responses. This article critically assesses this technique's capacity to bolster immune comprehension amongst Chinese students, while also considering its limitations. Despite these limitations, the fusion of these seemingly divergent fields holds substantial promise for augmenting immunology education, promoting critical thinking, and advancing cross-cultural academic discourse. The amalgamation of age-old philosophical insights with modern scientific exploration prompts a reassessment of educational methodologies within immunology, underscoring a novel pedagogical approach that bridges traditional wisdom with contemporary scientific education.


Sujet(s)
Allergie et immunologie , Yin-yang , Allergie et immunologie/enseignement et éducation , Allergie et immunologie/histoire , Humains , Enseignement , Chine
10.
Int J Biol Macromol ; 279(Pt 3): 135424, 2024 Sep 07.
Article de Anglais | MEDLINE | ID: mdl-39245128

RÉSUMÉ

Oral vaccines are generally perceived to be safe, easy to administer, and have the potential to induce both systemic and mucosal immune responses. However, given the challenges posed by the harsh gastrointestinal environment and mucus barriers, the development of oral vaccines necessitates the employment of a safe and efficient delivery system. In recent years, nanoparticle-based delivery has proven to be an ideal delivery vector for the manufacture of oral vaccines. Hence, considering the above, the sucralfate acidified (SA) encapsulated N-2-Hydroxypropyl trimethyl ammonium chloride chitosan (N-2-HACC)/N,O-carboxymethyl chitosan (CMCS) nanoparticles (SA@N-2-HACC/CMCS NPs) were prepared, and the BSA was used as a model antigen to investigate the immune responses. The SA@N-2-HACC/CMCS NPs had a particle size of 227 ± 7.0 nm and a zeta potential of 8.43 ± 2.62 mV. The NPs displayed slow and sustained release and high stability in simulated gastric juice and intestinal fluid. RAW 264.7 macrophage-like cell line demonstrated enhanced uptake of the SA@N-2-HACC/CMCS/BSA Nps. The vaccine via oral administration markedly enhanced the residence time of BSA in the intestine for more than 12 h and elicited the production of IgG and sIgA. The SA@N-2-HACC/CMCS NPs developed here for oral administration is an excellent technique for delivering antigens and provides a path of mucosal vaccine research.

11.
Microb Cell Fact ; 23(1): 244, 2024 Sep 09.
Article de Anglais | MEDLINE | ID: mdl-39252072

RÉSUMÉ

BACKGROUND: Herpes simplex virus type 1 (HSV-1) is a major cause of viral encephalitis, genital mucosal infections, and neonatal infections. Lactococcus lactis (L. lactis) has been proven to be an effective vehicle for delivering protein antigens and stimulating both mucosal and systemic immune responses. In this study, we constructed a recombinant L. lactis system expressing the protective antigen glycoprotein D (gD) of HSV-1. RESULTS: To improve the stability and persistence of antigen stimulation of the local mucosa, we inserted the immunologic adjuvant interleukin (IL)-2 and the Fc fragment of IgG into the expression system, and a recombinant L. lactis named NZ3900-gD-IL-2-Fc was constructed. By utilizing this recombinant L. lactis strain to elicit an immune response and evaluate the protective effect in mice, the recombinant L. lactis vaccine induced a significant increase in specific neutralizing antibodies, IgG, IgA, interferon-γ, and IL-4 levels in the serum of mice. Furthermore, in comparison to the mice in the control group, the vaccine also enhanced the proliferation levels of lymphocytes in response to gD. Moreover, recombinant L. lactis expressing gD significantly boosted nonspecific immune reactions in mice through the activation of immune-related genes. Furthermore, following the HSV-1 challenge of the murine lung mucosa, mice inoculated with the experimental vaccine exhibited less lung damage than control mice. CONCLUSION: Our study presents a novel method for constructing a recombinant vaccine using the food-grade, non-pathogenic, and non-commercial bacterium L. lactis. The findings indicate that this recombinant vaccine shows promise in preventing HSV-1 infection in mice.


Sujet(s)
Herpès , Herpèsvirus humain de type 1 , Lactococcus lactis , Souris de lignée BALB C , Lactococcus lactis/génétique , Animaux , Souris , Herpèsvirus humain de type 1/immunologie , Herpèsvirus humain de type 1/génétique , Herpès/prévention et contrôle , Herpès/immunologie , Femelle , Anticorps antiviraux/sang , Anticorps antiviraux/immunologie , Vaccins synthétiques/immunologie , Anticorps neutralisants/immunologie , Anticorps neutralisants/sang , Immunoglobuline G/sang , Immunoglobuline G/immunologie
12.
Front Cell Infect Microbiol ; 14: 1449030, 2024.
Article de Anglais | MEDLINE | ID: mdl-39286812

RÉSUMÉ

Short-chain fatty acids (SCFAs), a subset of organic fatty acids with carbon chains ranging from one to six atoms in length, encompass acetate, propionate, and butyrate. These compounds are the endproducts of dietary fiber fermentation, primarily catalyzed by the glycolysis and pentose phosphate pathways within the gut microbiota. SCFAs act as pivotal energy substrates and signaling molecules in the realm of animal nutrition, exerting a profound influence on the intestinal, immune system, and intestinal barrier functions. Specifically, they contibute to 60-70% of the total energy requirements in ruminants and 10-25% in monogastric animals. SCFAs have demonstrated the capability to effectively modulate intestinal pH, optimize the absorption of mineral elements, and impede pathogen invasion. Moreover, they enhance the expression of proteins associated with intestinal tight junctions and stimulate mucus production, thereby refining intestinal tissue morphology and preserving the integrity of the intestinal structure. Notably, SCFAs also exert anti-inflammatory properties, mitigating inflammation within the intestinal epithelium and strengthening the intestinal barrier's defensive capabilities. The present review endeavors to synthesize recent findings regarding the role of SCFAs as crucial signaling intermediaries between the metabolic activities of gut microbiota and the status of porcine cells. It also provides a comprehensive overview of the current literature on SCFAs' impact on immune responses within the porcine intestinal mucosa.


Sujet(s)
Acides gras volatils , Microbiome gastro-intestinal , Immunité muqueuse , Muqueuse intestinale , Animaux , Acides gras volatils/métabolisme , Suidae , Muqueuse intestinale/immunologie , Muqueuse intestinale/métabolisme , Muqueuse intestinale/microbiologie , Phénomènes physiologiques nutritionnels chez l'animal
13.
Immunol Lett ; 270: 106925, 2024 Sep 10.
Article de Anglais | MEDLINE | ID: mdl-39260525

RÉSUMÉ

Vitamin D receptor (VDR) is involved in the pathogenesis of inflammatory bowel disease (IBD). However, the mechanism of VDR in IBD is still unclear. Microfold cells (M cells) mediated antigen-sampling pathway is central in developing immune responses to pathogenic and commensal bacteria and related to IBD. We found that Intestinal epithelial cell-specific knockdown of VDR(VDRIEC-KO) increases the susceptibility of mice to experimental colitis induced by sodium dextran sulfate(DSS) by producing more M cells. Knockdown VDR in intestinal epithelial cells increased RANKL-induced microfold cells and promoted the ability of microfold cells to uptake S. Typhimurium (S. T.). Mechanistically, we demonstrated that knockdown VDR promoted the differentiation and maturation of M cells via the Spi-B-dependent pathway. We conclude that M cells may be a potential target of VDR for treating intestinal mucosal barrier dysfunction in IBD.

14.
Vaccines (Basel) ; 12(9)2024 Aug 23.
Article de Anglais | MEDLINE | ID: mdl-39339987

RÉSUMÉ

Therapeutic vaccination can harness the body's cellular immune system to target and destroy cancerous cells. Several treatment options are available to eliminate pre-cancerous and cancerous lesions caused by human papillomaviruses (HPV), but may not result in a long-term cure. Therapeutic vaccination may offer an effective, durable, and minimally intrusive alternative. We developed mucosally delivered, recombinant, non-replicating human adenovirus type 5 (rAd5)-vectored vaccines that encode HPV16's oncogenic proteins E6 and E7 alongside a molecular dsRNA adjuvant. The induction of antigen-specific T cells and the therapeutic efficacy of rAd5 were evaluated in a mouse model of HPV tumorigenesis where E6E7-transformed cells, TC-1, were implanted subcutaneously in C57BL/6 mice. After tumor growth, mice were treated intranasally with rAd5 vaccines expressing the wildtype form of E6E7 (rAd5-16/E6E7Wt) in combination with an anti-PD-1 antibody or isotype control. Animals treated with rAd5-16/E6E7Wt with and without anti-PD-1 had significant reductions in tumor volume and increased survival compared to controls. Further, animals treated with rAd5-16/E6E7Wt had increased CD4+ and CD8+ tumor-infiltrating lymphocytes (TILs) and produced a cytotoxic tumor microenvironment. In a second study, the immunogenicity of a non-transformative form of E6E7 (rAd5-16/E6E7Mu) and a vaccine encoding predicted T cell epitopes of E6E7 (rAd5-16/E6E7epi) were evaluated. These vaccines elicited significant reductions in TC-1 tumor volume and increased survival of animals. Antigen-specific CD8+ T effector memory cells were observed in the animals treated with E6E7-encoding rAd5, but not in the rAd5-empty group. The work described here demonstrates that this mucosal vaccination can be used therapeutically to elicit specific cellular immunity and further identifies a clinical candidate with great potential for the treatment and prevention of human cervical cancer.

15.
Bioact Mater ; 42: 573-586, 2024 Dec.
Article de Anglais | MEDLINE | ID: mdl-39308551

RÉSUMÉ

Mucosal vaccines offer potential benefits over parenteral vaccines for they can trigger both systemic immune protection and immune responses at the predominant sites of pathogen infection. However, the defense function of mucosal barrier remains a challenge for vaccines to overcome. Here, we show that surface modification of exosomes with the fragment crystallizable (Fc) part from IgG can deliver the receptor-binding domain (RBD) of SARS-CoV-2 to cross mucosal epithelial layer and permeate into peripheral lung through neonatal Fc receptor (FcRn) mediated transcytosis. The exosomes F-L-R-Exo are generated by genetically engineered dendritic cells, in which a fusion protein Fc-Lamp2b-RBD is expressed and anchored on the membrane. After intratracheally administration, F-L-R-Exo is able to induce a high level of RBD-specific IgG and IgA antibodies in the animals' lungs. Furthermore, potent Th1 immune-biased T cell responses were also observed in both systemic and mucosal immune responses. F-L-R-Exo can protect the mice from SARS-CoV-2 pseudovirus infection after a challenge. These findings hold great promise for the development of a novel respiratory mucosal vaccine approach.

16.
Dev Comp Immunol ; 162: 105262, 2024 Sep 11.
Article de Anglais | MEDLINE | ID: mdl-39270949

RÉSUMÉ

Aquaculture is notably vulnerable to diseases, with Edwardsiella tarda causing significant mortality across various commercially important fish species in both freshwater and marine environments. In the aquaculture industry, sustainable disease control hinges on the effective development of vaccines. Oral vaccines present an appealing approach to immunization in fish due to their ease of antigen administration, reduced stress compared to non-oral delivery methods, and their potential applicability to both small and large finfish species. In mammals, the exposure of mucosal surfaces to antigens results in the secretion of antigen-specific IgA at these locations. Mammals have a common mucosal immune system, in which stimulation of one epithelium can also give rise to specific IgA or IgM responses in other mucosal organs. Mucosal immunoglobulins are particularly important in developing vaccines that provide mucosal immunity. However, it remains unclear whether fish share a common mucosal system. Moreover, neither Peyer's patches nor intestinal lymph nodes were identified. Nevertheless, oral vaccination remains an attractive method for inducing immunity. We investigated whether the activation of the mucosal immune response was induced by direct injection of the antigen. After oral antigen administration, antigen-specific antibody titers increased in the experimental group (E. tarda FKC vaccine). In the challenge experiment, the cumulative survival rate was 72% (E. tarda). This suggests that oral administration of antigens can activate intestinal mucosal immunity in flounders. Additionally, these results help understand the intestinal mucosal immune system of teleost fish. In the future, research on the signaling mechanisms of these genes is expected to provide helpful information for developing vaccine adjuvants.

17.
Front Immunol ; 15: 1434804, 2024.
Article de Anglais | MEDLINE | ID: mdl-39301033

RÉSUMÉ

This comprehensive review undertakes a multidisciplinary exploration of the gut-lung axis, from the foundational aspects of anatomy, embryology, and histology, through the functional dynamics of pathophysiology, to implications for clinical science. The gut-lung axis, a bidirectional communication pathway, is central to understanding the interconnectedness of the gastrointestinal- and respiratory systems, both of which share embryological origins and engage in a continuous immunological crosstalk to maintain homeostasis and defend against external noxa. An essential component of this axis is the mucosa-associated lymphoid tissue system (MALT), which orchestrates immune responses across these distant sites. The review delves into the role of the gut microbiome in modulating these interactions, highlighting how microbial dysbiosis and increased gut permeability ("leaky gut") can precipitate systemic inflammation and exacerbate respiratory conditions. Moreover, we thoroughly present the implication of the axis in oncological practice, particularly in lung cancer development and response to cancer immunotherapies. Our work seeks not only to synthesize current knowledge across the spectrum of science related to the gut-lung axis but also to inspire future interdisciplinary research that bridges gaps between basic science and clinical application. Our ultimate goal was to underscore the importance of a holistic understanding of the gut-lung axis, advocating for an integrated approach to unravel its complexities in human health and disease.


Sujet(s)
Microbiome gastro-intestinal , Immunothérapie , Tumeurs du poumon , Humains , Tumeurs du poumon/immunologie , Tumeurs du poumon/thérapie , Microbiome gastro-intestinal/immunologie , Immunothérapie/méthodes , Animaux , Poumon/immunologie , Dysbiose/immunologie ,
18.
Adv Healthc Mater ; : e2401650, 2024 Sep 25.
Article de Anglais | MEDLINE | ID: mdl-39319481

RÉSUMÉ

The cGAMP-aluminum nanoparticles (CAN) are engineered as a vaccine adjuvant-delivery system to carry mixed RBD (receptor-binding domain) of the original severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its new variant for developing bivalent pulmonary coronavirus disease 2019 (COVID-19) vaccines (biRBD-CAN). High phosphophilicity/adsorptivity made intrapulmonary CAN instantly form the pulmonary ingredient-coated CAN (piCAN) to possess biomimetic features enhancing biocompatibility. In vitro biRBD-CAN sparked APCs (antigen-presenting cells) to mature and make extra reactive oxygen species, engendered lysosome escape effects and enhanced proteasome activities. Through activating the intracellular stimulator of interferon genes (STING) and nucleotide-binding domain and leucine-rich repeat and pyrin domain containing proteins 3 (NALP3) inflammasome pathways to exert synergy between cGAMP and AN, biRBD-CAN stimulated APCs to secret cytokines favoring mixed Th1/Th2 immunoresponses. Mice bearing twice intrapulmonary biRBD-CAN produced high levels of mucosal antibodies, the long-lasting systemic antibodies, and potent cytotoxic T lymphocytes which efficiently erased cells displaying cognate epitopes. Notably, biRBD-CAN existed in mouse lungs and different lymph nodes for at least 48 h, unveiling their sustained immunostimulatory activity as the main mechanism underlying the long-lasting immunity and memory. Hamsters bearing twice intrapulmonary biRBD-CAN developed high resistance to pseudoviral challenges performed using different recombinant strains including the ones with distinct SARS-CoV-2-spike mutations. Thus, biRBD-CAN as a broad-spectrum pulmonary COVID-19 vaccine candidate may provide a tool for controlling the emerging SARS-CoV-2 variants.

19.
J Microbiol ; 62(9): 709-725, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-39240507

RÉSUMÉ

The importance of the complex interplay between the microbiome and mucosal immunity, particularly within the respiratory tract, has gained significant attention due to its potential implications for the severity and progression of lung diseases. Therefore, this review summarizes the specific interactions through which the respiratory tract-specific microbiome influences mucosal immunity and ultimately impacts respiratory health. Furthermore, we discuss how the microbiome affects mucosal immunity, considering tissue-specific variations, and its capacity in respiratory diseases containing asthma, chronic obstructive pulmonary disease, and lung cancer. Additionally, we investigate the external factors which affect the relationship between respiratory microbiome and mucosal immune responses. By exploring these intricate interactions, this review provides valuable insights into the potential for microbiome-based interventions to modulate mucosal immunity and alleviate the severity of respiratory diseases.


Sujet(s)
Évolution de la maladie , Immunité muqueuse , Microbiote , Humains , Microbiote/immunologie , Asthme/immunologie , Asthme/microbiologie , Appareil respiratoire/microbiologie , Appareil respiratoire/immunologie , Animaux , Broncho-pneumopathie chronique obstructive/immunologie , Broncho-pneumopathie chronique obstructive/microbiologie , Maladies de l'appareil respiratoire/immunologie , Maladies de l'appareil respiratoire/microbiologie , Tumeurs du poumon/immunologie , Tumeurs du poumon/microbiologie
20.
Int J Exerc Sci ; 17(7): 1167-1182, 2024.
Article de Anglais | MEDLINE | ID: mdl-39257863

RÉSUMÉ

The objective of the study was to monitor exercise-induced muscle damage (EIMD), inflammatory responses (IL-6, TNFα, and IL-10), and immune-endocrine balance (testosterone, cortisol, and salivary SIgA) in official 20 km walking race competitions. Eight 20 km professional walking racers (n = 6 women), 27 ± 9 years, underwent blood and saliva sampling, evaluation of delayed-onset muscle soreness (DOMS), and squat (SJ) and countermovement (CMJ) jump tests 2 h before (Pre), immediately after (Post), and 24 and 48 h after the competition. The rate of perceived exertion (RPE) was recorded 20 minutes after the race ended. The race evoked high competitive load (948.3 ± 268.0 a.u.), increased creatine kinase levels at 24 h (p < 0.05), and DOMS at 48 h (p < 0.05), but no significant changes in SJ and CMJ after the race. No significant changes in cytokines were detected. No changes in salivary SIgA secretion rate and inflammatory cytokines were detected (p > 0.05). The race induced increased testosterone (p < 0.05), and cortisol (p < 0.01) levels immediately after the race. Despite the high competitive load, 20-km walking racer athletes presented mild EIMD without impairment in immune-endocrine markers.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE