Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 391
Filtrer
1.
J Vet Med Sci ; 2024 Aug 16.
Article de Anglais | MEDLINE | ID: mdl-39155081

RÉSUMÉ

The major genetic group of Toxoplasma gondii, known as type I, generally displays high lethality in laboratory Mus musculus (mouse) strains, with few exceptions. However, because rodents are the primary reservoir hosts for T. gondii, if this characteristic manifests in the wild, type I strains would be extinct. Therefore, we hypothesized that populations of wild rodents capable of harboring type I T. gondii asymptomatically exist globally and are not limited to a few localized areas, as previously thought. The strength of mouse resistance to T. gondii is known to depend on the affinity of the mouse-expressed immunity-related GTPases B2 (IRGB2) protein for the T. gondii-expressed rphoptry protein 5B (ROP5B) protein. Therefore, the Irgb2 gene sequences of 12 individuals mice captured at two animal farms in Gifu Prefecture, and on an island in Okinawa Prefecture, Japan were determined, and subjected to a molecular phylogenetic analysis together with those of various mouse strains worldwide. The Irgb2 gene of M. musculus individuals captured on one farm and one island showed diverse sequences. The sequences from two individual mice captured in an animal farm formed a single clade with a wild mouse derived CAST/EiJ strain, known for its exceptional resistance to type I T. gondii lethality. These results suggest that M. musuculus individuals resistant to the Type I T. gondii strain may be present in Japan, in addition to the previously known populations in South Asia, Thailand and India.

2.
Mol Biol Evol ; 41(8)2024 Aug 02.
Article de Anglais | MEDLINE | ID: mdl-39101589

RÉSUMÉ

The mouse serves as a mammalian model for understanding the nature of variation from new mutations, a question that has both evolutionary and medical significance. Previous studies suggest that the rate of single-nucleotide mutations (SNMs) in mice is ∼50% of that in humans. However, information largely comes from studies involving the C57BL/6 strain, and there is little information from other mouse strains. Here, we study the mutations that accumulated in 59 mouse lines derived from four inbred strains that are commonly used in genetics and clinical research (BALB/cAnNRj, C57BL/6JRj, C3H/HeNRj, and FVB/NRj), maintained for eight to nine generations by brother-sister mating. By analyzing Illumina whole-genome sequencing data, we estimate that the average rate of new SNMs in mice is ∼µ = 6.7 × 10-9. However, there is substantial variation in the spectrum of SNMs among strains, so the burden from new mutations also varies among strains. For example, the FVB strain has a spectrum that is markedly skewed toward C→A transversions and is likely to experience a higher deleterious load than other strains, due to an increased frequency of nonsense mutations in glutamic acid codons. Finally, we observe substantial variation in the rate of new SNMs among DNA sequence contexts, CpG sites, and their adjacent nucleotides playing an important role.


Sujet(s)
Lignées consanguines de souris , Animaux , Souris , Lignées consanguines de souris/génétique , Mutation , Souris de lignée C57BL
3.
J Exp Biol ; 2024 Aug 29.
Article de Anglais | MEDLINE | ID: mdl-39206582

RÉSUMÉ

Exposure to winter cold causes an increase in energy demands to meet the challenge of thermoregulation. In small rodents, this increase in cardiac output leads to a profound cardiac hypertrophy, 2-3x that typically seen with exercise training. The nature of this hypertrophy and its relevance to winter mortality remains unclear. Our goal was to characterize cold-induced cardiac hypertrophy and to assess its similarity to either exercise-induced (physiological) hypertrophy or the pathological hypertrophy of hypertension. We hypothesized that cold-induced hypertrophy will most closely resemble exercise-induced hypertrophy, but be another unique pathway for physiological cardiac growth. We found that cold-induced hypertrophy was largely reversed after return to warm temperatures. Further, metabolic rates were elevated while gene expression and mitochondrial enzyme activities indicative of pathology were absent. A gene expression panel comparing hearts of exercised and cold exposed mice further suggests that these activities are similar, although not identical. In conclusion, we found that chronic cold led to a phenotype that most closely resembled physiological hypertrophy, with enhanced metabolic rate, without induction of fetal genes , but with decreased expression of genes associated with fatty acid oxidation, suggesting that heart failure is not a cause of winter mortality in small rodents and identifying a novel approach for the study of cardiac growth.

4.
Parasit Vectors ; 17(1): 358, 2024 Aug 23.
Article de Anglais | MEDLINE | ID: mdl-39180136

RÉSUMÉ

BACKGROUND: The mammalian gut microbiome includes a community of eukaryotes with significant taxonomic and functional diversity termed the eukaryome. The molecular analysis of eukaryotic diversity in microbiomes of wild mammals is still in its early stages due to the recent emergence of interest in this field. This study aimed to fill this knowledge gap by collecting data on eukaryotic species found in the intestines of wild rodents. Because little is known about the influence of climate on the gut eukaryome, we compared the composition of the gut eukaryotes in two rodent species, Mus musculus domesticus and Acomys cahirinus, which inhabit a transect crossing a temperate and tropical zone on the Jordanian side of the Great Rift Valley (GRV). METHODS: We used high-throughput amplicon sequencing targeting the 18S rRNA gene in fecal samples from rodents to identify eukaryotic organisms, their relative abundance, and their potential for pathogenicity. RESULTS: Nematodes and protozoa were the most prevalent species in the eukaryome communities, whereas fungi made up 6.5% of the total. Sixty percent of the eukaryotic ASVs belonged to taxa that included known pathogens. Eighty percent of the rodents were infected with pinworms, specifically Syphacia obvelata. Eukaryotic species diversity differed significantly between bioclimatic zones (p = 0.001). Nippostrongylus brasiliensis and Aspiculuris tetraptera were found to be present exclusively in the Sudanian zone rodents. This area has not reported any cases of Trichuris infections. Yet, Capillaria infestations were unique to the Mediterranean region, while Trichuris vulpis infestations were also prevalent in the Mediterranean and Irano-Turanian regions. CONCLUSIONS: This study highlights the importance of considering host species diversity and environmental factors when studying eukaryome composition in wild mammals. These data will be valuable as a reference to eukaryome study.


Sujet(s)
Climat , Fèces , Microbiome gastro-intestinal , Animaux , Jordanie/épidémiologie , Souris , Fèces/parasitologie , Fèces/microbiologie , Eucaryotes/classification , Eucaryotes/isolement et purification , Eucaryotes/génétique , Animaux sauvages/parasitologie , ARN ribosomique 18S/génétique , Rodentia/microbiologie , Rodentia/parasitologie , Biodiversité , Murinae/parasitologie
5.
Microbiol Resour Announc ; 13(8): e0033124, 2024 Aug 13.
Article de Anglais | MEDLINE | ID: mdl-38975773

RÉSUMÉ

House mice, Mus musculus, are highly adapted to anthropogenic spaces. Fecal samples were collected from house mice entering primate enclosure areas at the Duke Lemur Center (Durham, NC, USA). We identified 14 cressdnavirus and 59 microvirus genomes in these mouse feces.

6.
Sci Rep ; 14(1): 13537, 2024 06 12.
Article de Anglais | MEDLINE | ID: mdl-38866918

RÉSUMÉ

The development of interventions targeting reservoirs of Borrelia burgdorferi sensu stricto with acaricide to reduce the density of infected ticks faces numerous challenges imposed by ecological and operational limits. In this study, the pharmacokinetics, efficacy and toxicology of fluralaner were investigated in Mus musculus and Peromyscus leucopus mice, the main reservoir of B. burgdorferi in North America. Fluralaner showed rapid distribution and elimination, leading to fast plasma concentration (Cp) depletion in the first hours after administration followed by a slow elimination rate for several weeks, resulting in a long terminal half-life. Efficacy fell below 100% while Cp (± standard deviation) decreased from 196 ± 54 to 119 ± 62 ng/mL. These experimental results were then used in simulations of fluralaner treatment for a duration equivalent to the active period of Ixodes scapularis larvae and nymphs. Simulations showed that doses as low as 10 mg/kg have the potential to protect P. leucopus against infestation for a full I. scapularis active season if administered at least once every 7 days. This study shows that investigating the pharmacology of candidate acaricides in combination with pharmacokinetic simulations can provide important information to support the development of effective interventions targeting ecological reservoirs of Lyme disease. It therefore represents a critical step that may help surpass limits inherent to the development of these interventions.


Sujet(s)
Acaricides , Borrelia burgdorferi , Réservoirs de maladies , Ixodes , Maladie de Lyme , Peromyscus , Animaux , Maladie de Lyme/traitement médicamenteux , Souris , Ixodes/microbiologie , Ixodes/effets des médicaments et des substances chimiques , Réservoirs de maladies/microbiologie , Peromyscus/microbiologie , Acaricides/pharmacocinétique , Acaricides/pharmacologie , Borrelia burgdorferi/effets des médicaments et des substances chimiques , Isoxazoles/pharmacocinétique , Femelle
7.
Brain Sci ; 14(6)2024 Jun 05.
Article de Anglais | MEDLINE | ID: mdl-38928581

RÉSUMÉ

Ageing is a continuous process that can cause neurodevelopmental changes in the body. Several studies have examined its effects, but few have focused on how time affects biological processes in the early stages of brain development. As studying the changes that occur in the early stages of life is important to prevent age-related neurological and psychiatric disorders, we aim to focus on these changes. The transcriptomic markers of ageing that are common to the analysed brain regions of C57Bl/6J mice were identified after conducting two-way ANOVA tests and effect size analysis on the time courses of gene expression profiles in various mouse brain regions. A total of 16,374 genes (59.9%) significantly changed their expression level, among which 7600 (27.8%) demonstrated tissue-dependent differences only, and 1823 (6.7%) displayed time-dependent and tissue-independent responses. Focusing on genes with at least a large effect size gives the list of potential biomarkers 12,332 (45.1%) and 1670 (6.1%) genes, respectively. There were 305 genes that exhibited similar significant time response trends (independently of the brain region). Samples from an 11-day-old mouse embryo validated the identified early-stage brain ageing markers. The overall functional analysis revealed tRNA and rRNA processing in the mitochondrion and contact activation system (CAS), as well as the kallikrein/kinin system (KKS), together with clotting cascade and defective factor F9 activation being affected by ageing. Most ageing-related pathways were significantly enriched, especially those that are strongly connected to development processes and neurodegenerative diseases.

8.
Parasitol Res ; 123(6): 237, 2024 Jun 10.
Article de Anglais | MEDLINE | ID: mdl-38856825

RÉSUMÉ

Mastophorus muris (Gmelin, 1790) is a globally distributed parasitic nematode of broad range mammals. The taxonomy within the genus Mastophorus and the cryptic diversity among the genus are controversial among taxonomists. This study provides a detailed morphological description of M. muris from Mus musculus combined with a molecular phylogenetic approach. Moreover, descriptions and molecular data of M. muris from non-Mus rodents and wildcats complement our findings and together provide new insights into their taxonomy. The analysis of M. muris was based on light microscopy and scanning electron microscopy. The morphological description focused on the dentition pattern of the two trilobed pseudolabia. Additionally, we described the position of the vulva, arrangement of caudal pairs of papillae, spicules and measured specimens from both sexes and the eggs. For the molecular phylogenetic approach, we amplified the small subunit ribosomal RNA gene and the internal transcribed spacer, and the cytochrome c oxidase subunit 1. Mastophorus morphotypes based on dentition patterns and phylogenetic clustering indicate a subdivision of the genus in agreement with their host. We recognize two groups without a change to formal taxonomy: One group including those specimens infecting Mus musculus, and the second group including organisms infecting non-Mus rodents. Our genetic and morphological data shed light into the cryptic diversity within the genus Mastopohorus. We identified two host-associated groups of M. muris. The described morphotypes and genotypes of M. muris allow a consistent distinction between host-associated parasites.


Sujet(s)
Microscopie électronique à balayage , Phylogenèse , Animaux , Femelle , Mâle , Souris , Spiruroidea/classification , Spiruroidea/génétique , Spiruroidea/anatomie et histologie , Spiruroidea/isolement et purification , Spiruroidea/ultrastructure , Complexe IV de la chaîne respiratoire/génétique , Variation génétique , Analyse de séquence d'ADN , Microscopie , ADN des helminthes/génétique , ADN ribosomique/génétique , Espaceur de l'ADN ribosomique/génétique , Analyse de regroupements , Données de séquences moléculaires
9.
Adv Exp Med Biol ; 1441: 435-458, 2024.
Article de Anglais | MEDLINE | ID: mdl-38884724

RÉSUMÉ

Over the last few decades, the study of congenital heart disease (CHD) has benefited from various model systems and the development of molecular biological techniques enabling the analysis of single gene as well as global effects. In this chapter, we first describe different models including CHD patients and their families, animal models ranging from invertebrates to mammals, and various cell culture systems. Moreover, techniques to experimentally manipulate these models are discussed. Second, we introduce cardiac phenotyping technologies comprising the analysis of mouse and cell culture models, live imaging of cardiogenesis, and histological methods for fixed hearts. Finally, the most important and latest molecular biotechniques are described. These include genotyping technologies, different applications of next-generation sequencing, and the analysis of transcriptome, epigenome, proteome, and metabolome. In summary, the models and technologies presented in this chapter are essential to study the function and development of the heart and to understand the molecular pathways underlying CHD.


Sujet(s)
Cardiopathies congénitales , Animaux , Humains , Cardiopathies congénitales/génétique , Cardiopathies congénitales/métabolisme , Modèles animaux de maladie humaine , Souris , Phénotype , Séquençage nucléotidique à haut débit , Techniques de culture cellulaire/méthodes
10.
J Exp Biol ; 227(14)2024 Jul 15.
Article de Anglais | MEDLINE | ID: mdl-38873751

RÉSUMÉ

The influence of light spectral properties on circadian rhythms is of substantial interest to laboratory-based investigation of the circadian system and to field-based understanding of the effects of artificial light at night. The trade-offs between intensity and spectrum regarding masking behaviors are largely unknown, even for well-studied organisms. We used a custom LED illumination system to document the response of wild-type house mice (Mus musculus) to 1-h nocturnal exposure of all combinations of four intensity levels (0.01, 0.5, 5 and 50 lx) and three correlated color temperatures (CCT; 1750, 1950 and 3000 K). Higher intensities of light (50 lx) suppressed cage activity substantially, and consistently more for the higher CCT light (91% for 3000 K, 53% for 1750 K). At the lowest intensity (0.01 lx), mean activity was increased, with the greatest increases for the lowest CCT (12.3% increase at 1750 K, 3% increase at 3000 K). Multiple linear regression confirmed the influence of both CCT and intensity on changes in activity, with the scaled effect size of intensity 3.6 times greater than that of CCT. Activity suppression was significantly lower for male than for female mice. Assessment of light-evoked cFos expression in the suprachiasmatic nucleus at 50 lx showed no significant difference between high and low CCT exposure. The significant differences by spectral composition illustrate a need to account for light spectrum in circadian studies of behavior, and confirm that spectral controls can mitigate some, but certainly not all, of the effects of light pollution on species in the wild.


Sujet(s)
Rythme circadien , Lumière , Éclairage , Animaux , Souris/physiologie , Mâle , Rythme circadien/physiologie , Rythme circadien/effets des radiations , Femelle , Comportement animal/effets des radiations , Comportement animal/physiologie , Activité motrice/effets des radiations , Température
11.
mBio ; 15(6): e0093324, 2024 Jun 12.
Article de Anglais | MEDLINE | ID: mdl-38742830

RÉSUMÉ

Human papillomaviruses (HPVs) are the most common sexually transmitted infection in the United States and are a major etiological agent of cancers in the anogenital tract and oral cavity. Growing evidence suggests changes in the host microbiome are associated with the natural history and ultimate outcome of HPV infection. We sought to define changes in the host cervicovaginal microbiome during papillomavirus infection, persistence, and pathogenesis using the murine papillomavirus (MmuPV1) cervicovaginal infection model. Cervicovaginal lavages were performed over a time course of MmuPV1 infection in immunocompetent female FVB/N mice and extracted DNA was analyzed by qPCR to track MmuPV1 viral copy number. 16S ribosomal RNA (rRNA) gene sequencing was used to determine the composition and diversity of microbial communities throughout this time course. We also sought to determine whether specific microbial communities exist across the spectrum of MmuPV1-induced neoplastic disease. We, therefore, performed laser-capture microdissection to isolate regions of disease representing all stages of neoplastic disease progression (normal, low- and high-grade dysplasia, and cancer) from female reproductive tract tissue sections from MmuPV1-infected mice and performed 16S rRNA sequencing. Consistent with other studies, we found that the natural murine cervicovaginal microbiome is highly variable across different experiments. Despite these differences in initial microbiome composition between experiments, we observed that MmuPV1 persistence, viral load, and severity of disease influenced the composition of the cervicovaginal microbiome. These studies demonstrate that papillomavirus infection can alter the cervicovaginal microbiome.IMPORTANCEHuman papillomaviruses (HPVs) are the most common sexually transmitted infection in the United States. A subset of HPVs that infect the anogenital tract (cervix, vagina, anus) and oral cavity cause at least 5% of cancers worldwide. Recent evidence indicates that the community of microbial organisms present in the human cervix and vagina, known as the cervicovaginal microbiome, plays a role in HPV-induced cervical cancer. However, the mechanisms underlying this interplay are not well-defined. In this study, we infected the female reproductive tract of mice with a murine papillomavirus (MmuPV1) and found that key aspects of papillomavirus infection and disease influence the host cervicovaginal microbiome. This is the first study to define changes in the host microbiome associated with MmuPV1 infection in a preclinical animal model of HPV-induced cervical cancer. These results pave the way for using MmuPV1 infection models to further investigate the interactions between papillomaviruses and the host microbiome.


Sujet(s)
Col de l'utérus , Modèles animaux de maladie humaine , Microbiote , Papillomaviridae , Infections à papillomavirus , ARN ribosomique 16S , Vagin , Femelle , Animaux , Infections à papillomavirus/virologie , Infections à papillomavirus/microbiologie , Vagin/microbiologie , Vagin/virologie , Souris , Col de l'utérus/microbiologie , Col de l'utérus/virologie , ARN ribosomique 16S/génétique , Papillomaviridae/génétique , Papillomaviridae/classification , Papillomaviridae/isolement et purification , Charge virale
12.
Pharmaceutics ; 16(5)2024 May 10.
Article de Anglais | MEDLINE | ID: mdl-38794305

RÉSUMÉ

Recently, the number of people acquiring tattoos has increased, with tattoos gaining significant popularity in people between 20 and 40 years old. Inflammation is a common reaction associated with tattooing. The purpose of this study was to evaluate a nanostructured lipid carrier loading pranoprofen (PRA-NLC) as a tattoo aftercare formulation to reduce the inflammation associated with tattooing. In this context, the in vitro drug release and the ex vivo permeation-through-human-skin tests using Franz cells were appraised. The tolerance of our formulation on the skin was evaluated by studying the skin's biomechanical properties. In addition, an in vivo anti-inflammatory study was conducted on mice skin to evaluate the efficacy of the formulation applied topically after tattooing the animals. PRA-NLC showed a sustained release up to 72 h, and the amount of pranoprofen retained in the skin was found to be 33.48 µg/g/cm2. The formulation proved to be well tolerated; it increased stratum corneum hydration, and no signs of skin irritation were observed. Furthermore, it was demonstrated to be non-cytotoxic since the cell viability was greater than 80%. Based on these results, we concluded that PRA-NLC represents a suitable drug delivery carrier for the transdermal delivery of pranoprofen to alleviate the local skin inflammation associated with tattooing.

13.
Biomol NMR Assign ; 18(1): 79-84, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38564159

RÉSUMÉ

The lipocalin protein family is a structurally conserved group of proteins with a variety of biological functions defined by their ability to bind small molecule ligands and interact with partner proteins. One member of this family is siderocalin, a protein found in mammals. Its role is discussed in inflammatory processes, iron trafficking, protection against bacterial infections and oxidative stress, cell migration, induction of apoptosis, and cancer. Though it seems to be involved in numerous essential pathways, the exact mechanisms are often not fully understood. The NMR backbone assignments for the human siderocalin and its rat ortholog have been published before. In this work we describe the backbone NMR assignments of siderocalin for another important model organism, the mouse - data that might become important for structure-based drug discovery. Secondary structure elements were predicted based on the assigned backbone chemical shifts using TALOS-N and CSI 3.0, revealing a high content of beta strands and one prominent alpha helical region. Our findings correlate well with the known crystal structure and the overall conserved fold of the lipocalin family.


Sujet(s)
Lipocalines , Résonance magnétique nucléaire biomoléculaire , Structure secondaire des protéines , Animaux , Souris , Séquence d'acides aminés , Lipocaline-2/composition chimique , Lipocalines/composition chimique
14.
Mol Ecol ; 33(8): e17330, 2024 Apr.
Article de Anglais | MEDLINE | ID: mdl-38561950

RÉSUMÉ

Age is a key parameter in population ecology, with a myriad of biological processes changing with age as organisms develop in early life then later senesce. As age is often hard to accurately measure with non-lethal methods, epigenetic methods of age estimation (epigenetic clocks) have become a popular tool in animal ecology and are often developed or calibrated using captive animals of known age. However, studies typically rely on invasive blood or tissue samples, which limit their application in more sensitive or elusive species. Moreover, few studies have directly assessed how methylation patterns and epigenetic age estimates compare across environmental contexts (e.g. captive or laboratory-based vs. wild animals). Here, we built a targeted epigenetic clock from laboratory house mice (strain C57BL/6, Mus musculus) using DNA from non-invasive faecal samples, and then used it to estimate age in a population of wild mice (Mus musculus domesticus) of unknown age. This laboratory mouse-derived epigenetic clock accurately predicted adult wild mice to be older than juveniles and showed that wild mice typically increased in epigenetic age over time, but with wide variation in epigenetic ageing rate among individuals. Our results also suggested that, for a given body mass, wild mice had higher methylation across targeted CpG sites than laboratory mice (and consistently higher epigenetic age estimates as a result), even among the smallest, juvenile mice. This suggests wild and laboratory mice may display different CpG methylation levels from very early in life and indicates caution is needed when developing epigenetic clocks on laboratory animals and applying them in the wild.


Sujet(s)
Vieillissement , Méthylation de l'ADN , Souris , Animaux , Méthylation de l'ADN/génétique , Souris de lignée C57BL , Vieillissement/génétique , Animaux sauvages/génétique , Épigenèse génétique
15.
Toxicology ; 504: 153790, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38552894

RÉSUMÉ

Polychlorinated biphenyls (PCBs) are persistent organic pollutants that pose a current ecosystem and human health concern. PCB exposure impacts the gut microbiome in animal models, suggesting a mechanistic link between PCB exposure and adverse health outcomes. The presence and absence of the microbiome and exposure to PCBs independently affect the lipid composition in the liver, which in turn affects the PCB disposition in target tissues, such as the liver. Here, we investigated microbiome × subacute PCB effects on the hepatic lipid composition of conventional and germ-free female mice exposed to 0, 6, or 30 mg/kg body weight of an environmental PCB mixture in sterile corn oil once daily for 3 consecutive days. Hepatic triacylglyceride and polar lipid levels were quantified using mass spectrometric methods following the subacute PCB exposure. The lipidomic analysis revealed no PCB effect on the hepatic levels. No microbiome effect was observed on levels of triacylglyceride and most polar lipid classes. The total hepatic levels of phosphatidylcholine (PC) and ether-phosphatidylcholine (ePC) lipids were lower in germ-free mice than the conventional mice from the same exposure group. Moreover, levels of several unsaturated PCs, such as PC(36:5) and PC(42:10), and ePCs, such as ePC(36:2) and ePC(4:2), were lower in germ-free than conventional female mice. Based on a KEGG pathway meta-analysis of RNA sequencing data, the ether lipid metabolism pathway is altered in the germ-free mouse liver. In contrast to the liver, extractable lipid levels, determined gravimetrically, differed in several tissues from naïve conventional vs. germ-free mice. Overall, microbiome × subacute PCB exposure effects on hepatic lipid composition are unlikely to affect PCB distribution into the mouse liver. Further studies are needed to assess how the different extractable lipid levels in other tissues alter PCB distribution in conventional vs. germ-free mice.


Sujet(s)
Axénie , Foie , Phosphatidylcholines , Polychlorobiphényles , Animaux , Polychlorobiphényles/toxicité , Foie/métabolisme , Foie/effets des médicaments et des substances chimiques , Femelle , Phosphatidylcholines/métabolisme , Souris , Souris de lignée C57BL , Microbiome gastro-intestinal/effets des médicaments et des substances chimiques , Lipidomique
16.
Ecol Evol ; 14(3): e10843, 2024 Mar.
Article de Anglais | MEDLINE | ID: mdl-38505179

RÉSUMÉ

The size and distribution of home ranges reflect how individuals within a population use, defend, and share space and resources, and may thus be an important predictor of population-level dynamics. Eruptive species, such as the house mouse in Australian grain-growing regions, are an ideal species in which to investigate variations in space use and home range overlap between stable and outbreaking populations. In this study, we use spatially explicit capture-recapture models to explore if space use and home range overlap among female mice could serve as indicators of changes in population density leading into summer. Additionally, we assess the sensitivity of space use and home range estimates to reduced recapture rates. Our analysis did not reveal variations in the spring spatial organisation of female mice based on existing capture-mark-recapture data. However, our study highlights the need to balance monitoring efforts within regions, emphasising the importance of exploring studies that can improve spatial recaptures by optimising trapping efforts. This is particularly important in Australian agricultural systems, where varying farm management practices may drive differences in population dynamics.

17.
Proc Biol Sci ; 291(2019): 20240099, 2024 Mar 27.
Article de Anglais | MEDLINE | ID: mdl-38503332

RÉSUMÉ

In many species, establishing and maintaining a territory is critical to survival and reproduction, and an animal's ability to do so is strongly influenced by the presence and density of competitors. Here we manipulate social conditions to study the alternative reproductive tactics displayed by genetically identical, age-matched laboratory mice competing for territories under ecologically realistic social environmental conditions. We introduced adult males and females of the laboratory mouse strain C57BL/6J into a large, outdoor field enclosure containing defendable resource zones under one of two social conditions. We first created a low-density social environment, such that the number of available territories exceeded the number of males. After males established stable territories, we introduced a pulse of intruder males and observed the resulting defensive and invasive tactics employed. In response to this change in social environment, males with large territories invested more in patrolling but were less effective at excluding intruder males as compared with males with small territories. Intruding males failed to establish territories and displayed an alternative tactic featuring greater exploration as compared with genetically identical territorial males. Alternative tactics did not lead to equal reproductive success-males that acquired territories experienced greater survival and had greater access to females.


Sujet(s)
Comportement sexuel chez les animaux , Conditions sociales , Mâle , Femelle , Souris , Animaux , Comportement sexuel chez les animaux/physiologie , Souris de lignée C57BL , Territorialité , Reproduction/physiologie
18.
Mol Biol Evol ; 41(4)2024 Apr 02.
Article de Anglais | MEDLINE | ID: mdl-38513632

RÉSUMÉ

Chromosomal fusions represent one of the most common types of chromosomal rearrangements found in nature. Yet, their role in shaping the genomic landscape of recombination and hence genome evolution remains largely unexplored. Here, we take advantage of wild mice populations with chromosomal fusions to evaluate the effect of this type of structural variant on genomic landscapes of recombination and divergence. To this aim, we combined cytological analysis of meiotic crossovers in primary spermatocytes with inferred analysis of recombination rates based on linkage disequilibrium using single nucleotide polymorphisms. Our results suggest the presence of a combined effect of Robertsonian fusions and Prdm9 allelic background, a gene involved in the formation of meiotic double strand breaks and postzygotic reproductive isolation, in reshaping genomic landscapes of recombination. We detected a chromosomal redistribution of meiotic recombination toward telomeric regions in metacentric chromosomes in mice with Robertsonian fusions when compared to nonfused mice. This repatterning was accompanied by increased levels of crossover interference and reduced levels of estimated recombination rates between populations, together with high levels of genomic divergence. Interestingly, we detected that Prdm9 allelic background was a major determinant of recombination rates at the population level, whereas Robertsonian fusions showed limited effects, restricted to centromeric regions of fused chromosomes. Altogether, our results provide new insights into the effect of Robertsonian fusions and Prdm9 background on meiotic recombination.


Sujet(s)
Chromosomes , Génomique , Mâle , Animaux , Souris , Allèles
19.
Elife ; 122024 Feb 23.
Article de Anglais | MEDLINE | ID: mdl-38393970

RÉSUMÉ

Serine(S)/threonine(T)-glutamine(Q) cluster domains (SCDs), polyglutamine (polyQ) tracts and polyglutamine/asparagine (polyQ/N) tracts are Q-rich motifs found in many proteins. SCDs often are intrinsically disordered regions that mediate protein phosphorylation and protein-protein interactions. PolyQ and polyQ/N tracts are structurally flexible sequences that trigger protein aggregation. We report that due to their high percentages of STQ or STQN amino acid content, four SCDs and three prion-causing Q/N-rich motifs of yeast proteins possess autonomous protein expression-enhancing activities. Since these Q-rich motifs can endow proteins with structural and functional plasticity, we suggest that they represent useful toolkits for evolutionary novelty. Comparative Gene Ontology (GO) analyses of the near-complete proteomes of 26 representative model eukaryotes reveal that Q-rich motifs prevail in proteins involved in specialized biological processes, including Saccharomyces cerevisiae RNA-mediated transposition and pseudohyphal growth, Candida albicans filamentous growth, ciliate peptidyl-glutamic acid modification and microtubule-based movement, Tetrahymena thermophila xylan catabolism and meiosis, Dictyostelium discoideum development and sexual cycles, Plasmodium falciparum infection, and the nervous systems of Drosophila melanogaster, Mus musculus and Homo sapiens. We also show that Q-rich-motif proteins are expanded massively in 10 ciliates with reassigned TAAQ and TAGQ codons. Notably, the usage frequency of CAGQ is much lower in ciliates with reassigned TAAQ and TAGQ codons than in organisms with expanded and unstable Q runs (e.g. D. melanogaster and H. sapiens), indicating that the use of noncanonical stop codons in ciliates may have coevolved with codon usage biases to avoid triplet repeat disorders mediated by CAG/GTC replication slippage.


Sujet(s)
Dictyostelium , Drosophila melanogaster , Animaux , Souris , Codon stop/métabolisme , Drosophila melanogaster/génétique , Drosophila melanogaster/métabolisme , Dictyostelium/génétique , Protéines fongiques/métabolisme , Glutamine/métabolisme
20.
Environ Toxicol Pharmacol ; 106: 104387, 2024 Mar.
Article de Anglais | MEDLINE | ID: mdl-38364936

RÉSUMÉ

Worldwide, disorders of the thyroid gland are a growing concern; such can be caused by exposure to contaminants, including agrochemicals used in conventional agriculture, which act as endocrine disruptors. The purpose of this study is to evaluate whether or not exposure to an environment with conventional agriculture leads to thyroid disruption. Mus musculus were used as bioindicator species, captured in two sites: a farm where conventional agriculture is practiced, and a place without agriculture. Thyroid histomorphometric and morphologic data were analyzed. The impacts of the agricultural environment over the thyroid were revealed, as indications of hypothyroidism were observed in exposed mice: the area and volume of epithelial cells were much lower. Alterations in thyroid histomorphology were also observed: lower follicular sphericity, irregularly delimited epithelium and increased exfoliation into the colloid. These results highlight the need for transition from current conventional agricultural systems towards organic systems.


Sujet(s)
Perturbateurs endocriniens , Hypothyroïdie , Animaux , Souris , Fermes , Agriculture , Hypothyroïdie/induit chimiquement
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE