Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 501
Filtrer
1.
Transgenic Res ; 2024 Sep 01.
Article de Anglais | MEDLINE | ID: mdl-39217580

RÉSUMÉ

A promoter is a crucial component in driving the expression of a transgene of interest for biotechnological applications in crop improvement and thus characterization of varied regulatory regions is essential. Here, we identified the promoter of COR2-like (codeinone reductase-like) from banana and characterized its tissue specific and stress inducible nature. MusaCOR2-like of banana is closely related to COR2 and CHR (chalcone reductase) sequences from different plant species and contains signature sequences including a catalytic tetrad typical of proteins with aldo-keto reductase activity. Transcript level of MusaCOR2-like was strongly induced in response to drought, salinity and exposure of signaling molecules such as abscisic acid, methyl-jasmonate and salicylic acid. Induction of MusaCOR2-like under stress strongly correlated with the presence of multiple cis-elements associated with stress responses in the PMusaCOR2-like sequence isolated from Musa cultivar Rasthali. Transgenic tobacco lines harbouring PMusaCOR2-like-GUS displayed visible GUS expression in vascular tissue of leaves and stem while its expression was undetectable in roots under control conditions. Exposure to drought, salinity and cold strongly induced GUS expression from PMusaCOR2-like-GUS in transgenic tobacco shoots in a window period of 3H to 12H. Applications of salicylic acid, methyl-jasmonate, abscisic acid and ethephon also activate GUS in transgenic shoots at different period, with salicylic acid and abscisic acid being the stronger stimulants of PMusaCOR2-like. Using PMusaCOR2-like-GUS fusion and expression profiling, the current study sheds insights into a complex regulation of COR2-like, one of the least studied genes of secondary metabolite pathway in plants.

2.
Heliyon ; 10(16): e36037, 2024 Aug 30.
Article de Anglais | MEDLINE | ID: mdl-39229509

RÉSUMÉ

In an effort to pursue a green synthesis approach, the biosynthesis of nano-silver (nAg) using plant extracts has garnered significant attention, particularly for its antimicrobial resistance and medical applications, which have been the focus of numerous studies. However, there remains a gap in surface catalytic studies, especially regarding the hydrogenation of 4-nitrophenol. While some studies have addressed catalytic kinetics, thermodynamic aspects have been largely overlooked, leaving the catalytic mechanisms of biosynthesized nAg unclear. In this context, the present work offers a straightforward, eco-friendly, and efficient protocol to obtain nano-silver inspired by Musa paradisiaca L. peel extract. This nAg serves multiple purposes, including antimicrobial resistance and as an eco-catalyst for hydrogenation. Predominantly consisting of zero-valent silver with anisotropic polyhedral shapes, mainly decahedra with an edge length of 50 nm, this nAg demonstrated effective antimicrobial action against both S. aureus and E. coli bacteria. More importantly, both kinetic and thermodynamic studies on the hydrogenation of 4-nitrophenol to 4-aminophenol catalyzed by this bio-inspired nAg revealed that the rate-limiting step is not diffusion-limited. Instead, the adsorbed hydrogen and 4-nitrophenolate react together via electron transfer on the surface of the nAg. The activation energy of 26.24 kJ mol-1 indicates a highly efficient eco-catalyst for such hydrogenation processes.

3.
Plant Physiol Biochem ; 215: 109025, 2024 Oct.
Article de Anglais | MEDLINE | ID: mdl-39142014

RÉSUMÉ

Hemicellulose is key in determining the fate of plant cell wall in almost all growth and developmental stages. Nevertheless, there is limited knowledge regarding its involvement in the development and ripening of banana fruit. This study investigated changes in the temporal-spatial distribution of various hemicellulose components, hemicellulose content, activities of the main hydrolysis enzymes, and transcription level of the main hemicellulose-related gene families in banana peels. Both hemicellulose and xylan contents were positively correlated to the fruit firmness observed in our previous study. On the contrary, the xylanase activity was negatively correlated to xylan content and the fruit firmness. The vascular bundle cells, phloem, and cortex of bananas are abundant in xyloglucan, xylan, and mannan contents. Interestingly, the changes in the signal intensity of the CCRC-M104 antibody recognizing non-XXXG type xyloglucan are positively correlated to hemicellulose content. According to RNA-Seq analysis, xyloglucan and xylan-related genes were highly active in the early stages of growth, and the expression of MaMANs and MaXYNs increased as the fruit ripened. The abundance of plant hormonal and growth-responsive cis-acting elements was detected in the 2 kb upstream region of hemicellulose-related gene families. Interaction between hemicellulose and cell wall-specific proteins and MaKCBP1/2, MaCKG1, and MaHKL1 was found. The findings shed light on cell wall hemicellulose's role in banana fruit development and ripening, which could improve nutrition, flavor, and reduce postharvest fruit losses.


Sujet(s)
Fruit , Musa , Polyosides , Musa/métabolisme , Musa/génétique , Musa/croissance et développement , Polyosides/métabolisme , Fruit/métabolisme , Fruit/croissance et développement , Fruit/génétique , Xylanes/métabolisme , Régulation de l'expression des gènes végétaux , Glucanes/métabolisme , Paroi cellulaire/métabolisme , Protéines végétales/métabolisme , Protéines végétales/génétique
4.
Molecules ; 29(15)2024 Aug 02.
Article de Anglais | MEDLINE | ID: mdl-39125075

RÉSUMÉ

Banana peels, comprising about 35% of the fruit's weight, are often discarded, posing environmental and economic issues. This research focuses on recycling banana peel waste by optimizing advanced extraction techniques, specifically microwave-assisted (MAE) and ultrasound-assisted extraction (UAE), for the isolation of phenolic compounds. A choline chloride-based deep eutectic solvent (DES) with glycerol in a 1:3 ratio with a water content of 30% (w/w) was compared to 30% ethanol. Parameters, including sample-to-solvent ratio (SSR), extraction time, and temperature for MAE or amplitude for UAE, were varied. Extracts were analyzed for hydroxycinnamic acid (HCA) and flavonoid content, and antioxidant activity using FRAP and ABTS assays. DES outperformed ethanol, with HCA content ranging from 180.80 to 765.92 mg/100 g and flavonoid content from 96.70 to 531.08 mg/100 g, accompanied by higher antioxidant activity. Optimal MAE conditions with DES were an SSR of 1:50, a temperature of 60 °C, and a time of 10 min, whereas an SSR of 1:60, time of 5 min, and 75% amplitude were optimal for UAE. The polyphenolic profile of optimized extracts comprised 19 individual compounds belonging to the class of flavonols, flavan-3-ols, and phenolic acids. This study concluded that DESs, with their superior extraction efficiency and environmental benefits, are promising solvents for the extraction of high-value bioactive compounds from banana peels and offer significant potential for the food and pharmaceutical industries.


Sujet(s)
Antioxydants , Solvants eutectiques profonds , Musa , Phénols , Extraits de plantes , Musa/composition chimique , Phénols/composition chimique , Phénols/isolement et purification , Phénols/analyse , Antioxydants/composition chimique , Antioxydants/isolement et purification , Extraits de plantes/composition chimique , Extraits de plantes/isolement et purification , Solvants eutectiques profonds/composition chimique , Flavonoïdes/composition chimique , Flavonoïdes/isolement et purification , Fruit/composition chimique , Micro-ondes , Technologie de la chimie verte/méthodes , Solvants/composition chimique
5.
Plants (Basel) ; 13(16)2024 Aug 06.
Article de Anglais | MEDLINE | ID: mdl-39204609

RÉSUMÉ

Banana (Musa spp.) is one of the most economically important horticultural crops. There are many types of banana, with differing ploidy (usually diploid, triploid, or tetraploid) and genome types (most containing the A or/and B genome). Currently, observation and genome type detection are commonly used to identify banana germplasm resources. However, observation is tedious, while genome type detection cannot distinguish categories below genome types. It is, therefore, urgent to establish a simple and effective method for identifying banana germplasm resources. This study sequenced and analyzed the ribosomal DNA internal transcribed spacer (ITS) sequences of 62 banana germplasm resources and found that the sequencing peaks, especially the 20 bp region near the 420-bp position (referred to as the 420-bp region), exhibited relatively recognizable and repeatable polymorphism characteristics. Using the 420-bp region as a marker, we were able to quickly distinguish bananas belonging to different genome type groups or different subgroups in the same genome type group. Moreover, it appeared that Sanger sequencing of ITS could be used to identify hybrid banana offspring. In general, ITS sequencing simplifies the classification of banana germplasm resources and has potential application in several areas of Musa improvement.

6.
Heliyon ; 10(15): e35139, 2024 Aug 15.
Article de Anglais | MEDLINE | ID: mdl-39170182

RÉSUMÉ

This study explores the bioactive secondary metabolite profiles of the peels of three major cultivars of bananas (Musa acuminata and Musa balbisiana). These cultivars are primarily grown in Southeast Asia and are widely consumed due to their rich nutritional and fiber content. The research utilizes advanced analytical techniques, specifically HPLC-DAD-q-TOF-MS/MS, in conjunction with both univariate and multivariate statistical analyses, to analyze the ethanolic extracts of the banana peels. This study identifies phenolic acids, flavonoids, and proanthocyanidins as significant contributors to the differentiation of the cultivars. The secondary metabolites rutin, chlorogenic acid, and gentisic acid are pinpointed as the key discriminants. Moreover, the research demonstrates a synergistic contribution of certain phytochemicals to the antioxidant and antibacterial properties of the banana peel extracts. The fingerprint profiling tools introduced in this study offer a reliable method for identifying metabolite biomarkers for the discrimination of banana cultivars.

7.
Foods ; 13(14)2024 Jul 20.
Article de Anglais | MEDLINE | ID: mdl-39063368

RÉSUMÉ

Vegetable quality parameters are established according to standards primarily based on visual characteristics. Although knowledge of biochemical changes in the secondary metabolism of plants throughout development is essential to guide decision-making about consumption, harvesting and processing, these determinations involve the use of reagents, specific equipment and sophisticated techniques, making them slow and costly. However, when non-destructive methods are employed to predict such determinations, a greater number of samples can be tested with adequate precision. Therefore, the aim of this work was to establish an association capable of modeling between non-destructive-physical and colorimetric aspects (predictive variables)-and destructive determinations-bioactive compounds and antioxidant activity (variables to be predicted), quantified spectrophotometrically and by HPLC in 'Nanicão' bananas during ripening. It was verified that to predict some parameters such as flavonoids, a regression equation using predictive parameters indicated the importance of R2, which varied from 83.43 to 98.25%, showing that some non-destructive parameters can be highly efficient as predictors.

8.
Front Plant Sci ; 15: 1397617, 2024.
Article de Anglais | MEDLINE | ID: mdl-39081528

RÉSUMÉ

Fusarium wilt of banana (FWB), caused by the soil-borne fungus Fusarium oxysporum f. sp. cubense (Foc), poses an undeniable threat to global banana production. This disease has intensified in recent years, with the tropical race 4 (TR4) strain spreading rapidly. Since 2018, the number of affected countries has increased from 16 to 23, presenting a significant challenge to researchers, producers, and National Plant Protection Organizations (NPPOs) worldwide. The potential impact of TR4 in Latin America and the Caribbean (LAC) is particularly concerning. This region boasts seven of the top ten banana-exporting countries, and bananas and plantains are crucial for food security and income generation. In Colombia, where TR4 was detected in 2019, the disease has already spread from La Guajira to Magdalena, and it is currently affecting 20 large commercial export farms. In Peru, the disease was detected in 2021 and although still restricted to the northern region, flood irrigation and heavy rains associated with the Yaku cyclone, boosted pathogen spread, and more than 400 small organic banana farmers are currently affected. In Venezuela, TR4 detection occurred in 2023, with plantations across three states and five municipalities now affected. Worryingly, TR4 has also been confirmed in plantains, a staple food in the region. Current national responses in LAC primarily rely on preventive and reactive measures: preventing initial incursions and containing outbreaks to avoid further spread. However, the disease's relentless progression suggests that its eventual presence in all banana-producing areas is likely. Therefore, exploring alternative management approaches beyond pathogen exclusion becomes crucial, both in affected and disease-free regions. This paper examines the current spread of TR4, focusing on epidemiological aspects and recent research-based management options. Key epidemiological features were highlighted, drawing practical examples from various scales (plots to landscapes) and utilizing experiences from LAC's fight against TR4. The paper also reviews field-tested approaches in biosecurity, biological control, resistant varieties, soil health, and integrated disease management, acknowledging the specific challenges faced by smallholder settings. In each section research initiatives were analyzed, identifying gaps, and proposing directions to minimize TR4 impact and accelerate the development of sustainable solutions for managing this devastating disease.

9.
Sci Rep ; 14(1): 16578, 2024 07 17.
Article de Anglais | MEDLINE | ID: mdl-39020014

RÉSUMÉ

Banana (Musa spp.) is the most widely consumed fruit globally. Fusarium wilt, caused by Fusarium oxysporum f. sp. cubense (Foc), is a highly threatening disease to banana production. Resistance genes to Foc exist in wild Musa genotypes such as Musa acuminata subsp. burmannicoides var. Calcutta 4. Whilst real-time PCR (RT-qPCR) is appropriate for accurate analysis of gene expression in pathways involved in host defence responses, reference genes with stable expression under specific biotic stress conditions and host tissue types are necessary for normalization of sample variation. In this context, the stability in potential host reference genes ACT1, APT, EF1α, GAPDH, αTUB, RAN, UBIQ1, UBIQ2, ßTUB1, ßTUB3, L2 and ACTA1 was evaluated in total RNA samples from root tissues in Calcutta 4 (resistant) and Musa sp. cultivar Prata-anã (susceptible) extracted during interaction with Foc subtropical race 4 (STR4). Expression stability was calculated using the algorithms geNorm, NormFinder and BestKeeper. ßTUB3 and L2 were identified as the most stable in Calcutta 4, with ACTA1 and GAPDH the most stable in Prata-anã. These reference genes for analysis of gene expression modulation in the Musa-Foc STR4 pathosystem are fundamental for advancing understanding of host defence responses to this important pathogen.


Sujet(s)
Résistance à la maladie , Fusarium , Génotype , Musa , Maladies des plantes , Réaction de polymérisation en chaine en temps réel , Fusarium/génétique , Musa/microbiologie , Musa/génétique , Maladies des plantes/microbiologie , Maladies des plantes/génétique , Réaction de polymérisation en chaine en temps réel/méthodes , Résistance à la maladie/génétique , Régulation de l'expression des gènes végétaux , Gènes de plante , Normes de référence , Analyse de profil d'expression de gènes/méthodes
10.
Int J Mol Sci ; 25(14)2024 Jul 17.
Article de Anglais | MEDLINE | ID: mdl-39063074

RÉSUMÉ

Alpha-amylase (AMY) plays a significant role in regulating the growth, development, and postharvest quality formation in plants. Nevertheless, little is known about the genome-wide features, expression patterns, subcellular localization, and functional regulation of AMY genes (MaAMYs) in the common starchy banana (Musa acuminata). Twelve MaAMY proteins from the banana genome database were clustered into two groups and contained a conserved catalytic domain. These MaAMYs formed collinear pairs with the AMYs of maize and rice. Three tandem gene pairs were found within the MaAMYs and are indicative of putative gene duplication events. Cis-acting elements of the MaAMY promoters were found to be involved in phytohormone, development, and stress responses. Furthermore, MaAMY02, 08, 09, and 11 were actively expressed during fruit development and ripening. Specifically, MaAMY11 showed the highest expression level at the middle and later stages of banana ripening. Subcellular localization showed that MaAMY02 and 11 were predominately found in the chloroplast, whereas MaAMY08 and 09 were primarily localized in the cytoplasm. Notably, transient attenuation of MaAMY11 expression resulted in an obvious increase in the starch content of banana fruit, while a significant decrease in starch content was confirmed through the transient overexpression of MaAMY11. Together, these results reveal new insights into the structure, evolution, and expression patterns of the MaAMY family, affirming the functional role of MaAMY11 in the starch degradation of banana fruit.


Sujet(s)
Régulation de l'expression des gènes végétaux , Musa , Phylogenèse , Protéines végétales , alpha-Amylases , Musa/génétique , Musa/enzymologie , Musa/croissance et développement , Protéines végétales/génétique , Protéines végétales/métabolisme , alpha-Amylases/génétique , alpha-Amylases/métabolisme , Fruit/génétique , Fruit/croissance et développement , Fruit/métabolisme , Régions promotrices (génétique) , Amidon/métabolisme , Oryza/génétique , Oryza/enzymologie , Oryza/croissance et développement
11.
Front Plant Sci ; 15: 1387055, 2024.
Article de Anglais | MEDLINE | ID: mdl-39027673

RÉSUMÉ

The majority of cultivated bananas originated from inter- and intra(sub)specific crosses between two wild diploid species, Musa acuminata and Musa balbisiana. Hybridization and polyploidization events during the evolution of bananas led to the formation of clonally propagated cultivars characterized by a high level of genome heterozygosity and reduced fertility. The combination of low fertility in edible clones and differences in the chromosome structure among M. acuminata subspecies greatly hampers the breeding of improved banana cultivars. Using comparative oligo-painting, we investigated large chromosomal rearrangements in a set of wild M. acuminata subspecies and cultivars that originated from natural and human-made crosses. Additionally, we analyzed the chromosome structure of F1 progeny that resulted from crosses between Mchare bananas and the wild M. acuminata 'Calcutta 4' genotype. Analysis of chromosome structure within M. acuminata revealed the presence of a large number of chromosomal rearrangements showing a correlation with banana speciation. Chromosome painting of F1 hybrids was complemented by Illumina resequencing to identify the contribution of parental subgenomes to the diploid hybrid clones. The balanced presence of both parental genomes was revealed in all F1 hybrids, with the exception of one clone, which contained only Mchare-specific SNPs and thus most probably originated from an unreduced diploid gamete of Mchare.

12.
Chemosphere ; 363: 142919, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-39059639

RÉSUMÉ

The main aim of this study is to experimentally investigate the yield of extraction and the presence of wax in the extracted yield from Musaacuminata (banana) biomass based on various functional groups that are present in natural wax. Extraction of natural wax from Musaacuminata (banana) biomass has been done by using the Soxhlet apparatus method in the presence of both polar (ethyl acetate and ethanol) and non-polar (toluene and hexane) solvents. The extracted yield has been found as 3.58% from hexane, 5.16% from toluene, 7.03% from ethyl acetate, and 10.26% from ethanol. The wax was also found in the extracted yield only in the case of nonpolar solvents (toluene and hexane). The novelty of this work is that Musaacuminata (banana) waste biomass has been utilized to recover the natural wax using nonpolar solvents and also compared with that of polar solvents to check the scope of wax extraction using polar solvents. Also, statistical analysis has been performed of the extracted yield using both solvents. Thin Layer Chromatography (TLC) and Fourier Transform Infrared Spectroscopy (FTIR) methods have been used to determine the various hydrocarbon chains present in the extracted yield which is similar to that of natural wax.


Sujet(s)
Biomasse , Musa , Solvants , Cires , Cires/composition chimique , Solvants/composition chimique , Musa/composition chimique , Spectroscopie infrarouge à transformée de Fourier , Chromatographie sur couche mince , Hexanes/composition chimique , Éthanol/composition chimique , Toluène/composition chimique , Toluène/analyse , Acétates/composition chimique
13.
Heliyon ; 10(11): e31316, 2024 Jun 15.
Article de Anglais | MEDLINE | ID: mdl-38868065

RÉSUMÉ

Zinc oxide nanoparticles (ZnO NPs) have become a highly regarded substance in various industries especially biologically synthesized ZnO NPs due to their adherence to the principles of green chemistry. However, concerns have been raised regarding the potential cytotoxic effects of ZnO NPs on biological systems. This study aimed to investigate and compare the cytotoxicity of ZnO NPs that were synthesized through chemical (C-ZnO NPs) and green approach using Musa acuminata leaf aqueous extract (Ma-ZnO NPs) on Vero cells. Characterization of ZnO NPs through Uv-Vis, FESEM, EDX, XRD, FTIR and XPS confirmed the successful synthesis of C- and Ma-ZnO NPs. MTT and ROS assays revealed that C- and Ma-ZnO NPs induced a concentration- and time-dependent cytotoxic effect on Vero cells. Remarkably, Ma-ZnO NPs showed significantly higher cell viability compared to C-ZnO NPs. The corelation of ROS and vell viability suggest that elevated ROS levels can lead to cell damage and even cell death. Flow cytometry analysis indicated that Ma-ZnO NPs exposed cells had more viable cells and a smaller cell population in the late and early apoptotic stage. Furthermore, more cells were arrested in the G1 phase upon exposure to C-ZnO NPs, which is associated with oxidative stress and DNA damage caused by ROS generation, proving its higher cytotoxicity than Ma-ZnO NPs. Similarly, time-dependent cytotoxicity and morphological alterations were observed in C- and Ma-ZnO NPs treated cells, indicating cellular damage. Furthermore, fluorescence microscopy also demonstrated a time-dependent increase in ROS formation in cells exposed to C- and Ma-ZnO NPs. In conclusion, the findings suggest that green ZnO NPs possess a favourable biocompatibility profile, exhibiting reduced cytotoxicity compared to chemically synthesized ZnO NPs on Vero cells. These results emphasize the potential of green synthesis methods for the development of safer and environmentally friendly ZnO NPs.

14.
Mol Nutr Food Res ; 68(13): e2300426, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38924345

RÉSUMÉ

SCOPE: Bilberry, bananas, and apples are used for smoothie production because the health-promoting activities and to prevent human diseases including neurodegenerative disorders. The smoothie is prepared to promote a promising practice for increasing the intake of fruit in the diet. METHODS AND RESULTS: The smoothie is packed into dark glass jars, pasteurized, and stored for up to 4 months at 4 or 22 °C. Then, it is analyzed for the polyphenols profile using liquid chromatography-high resolution mass spectometry (LC-HRMS) Polyphenols content and the antiinflammatory, anticholinesterase, and antioxidant activities, and the impact on catalase activity are controlled using biochemical analyses. A significant decrease in the flavanol content (p < 0.05) is investigated, while there are lower decreases or no changes in the other polyphenols content in the smoothies stored at 4 °C. The changes in the anticholinesterase and antioxidant activities of the smoothie are correlated with the total polyphenols, anthocyanins, flavonols, and tannins content. CONCLUSION: The proposed preservation of the smoothie and its storage at refrigeration temperature is adequate to maintain the smoothie's nutritional and functional effect for a 4-month shelf life. Even significant changes in the content of individual subgroups of polyphenols are not drastically reflected in the decrease of the smoothie biological activities.


Sujet(s)
Antioxydants , Fruit , Polyphénols , Spectrométrie de masse en tandem , Polyphénols/analyse , Polyphénols/pharmacologie , Fruit/composition chimique , Spectrométrie de masse en tandem/méthodes , Antioxydants/analyse , Antioxydants/pharmacologie , Chromatographie en phase liquide/méthodes , Anticholinestérasiques/pharmacologie ,
15.
Plants (Basel) ; 13(10)2024 May 08.
Article de Anglais | MEDLINE | ID: mdl-38794370

RÉSUMÉ

Bananas are a staple food that considerably contributes to both food security and income generation, especially in countries of Africa, Asia, and Central and South America. The banana plant (Musa spp.) is affected by various pathogens, of main concern being the plant-parasitic nematodes associated with the rhizosphere, the most important of which are Radopholus similis (burrowing nematode), Helicotylenchus sp. (spiral nematode), Pratylenchus sp. (root lesion nematode), and Meloidogyne sp. (gall nematode). Infected plants reduce their ability to absorb water and nutrients, which can lead to delayed flowering, fewer bunches, and lower fruit mass. Obtaining nematode-resistant banana cultivars through genetic improvement is an effective and sustainable option compared with chemical control with nematicides. Here, we provide the first systematic review of existing banana sources of resistance to nematodes to aid the management and control of nematodes in banana and plantain crops. Articles selected from different databases were evaluated, and searches were conducted using pre-established inclusion and exclusion criteria. We found 69 studies dealing with genetic improvement for nematode resistance in banana cultivation. Our findings revealed that sources of resistance are currently under investigation to combat the diseases caused by different nematode species in banana plants.

16.
Arch Med Sci ; 20(2): 632-640, 2024.
Article de Anglais | MEDLINE | ID: mdl-38757031

RÉSUMÉ

Introduction: Impairments in wound healing commonly occur among patients with diabetes. Herbal medicines have a long history of usage in wound care management. Super green (SG) is a newly discovered natural product obtained from Musa paradisiaca. This study aimed to investigate the efficacy of the topical application of SG in healing surgical wounds in diabetic rats. Material and methods: Wistar rats received a one-time intraperitoneal injection of streptozotocin to induce type 1 diabetes. Full-thickness excisional skin wounds were created on the backs of the rats. The relevant groups were topically treated with the indicated concentrations of SG or vehicle dressing throughout the study duration. Histological analysis was performed and the mRNA levels of proinflammatory cytokines were measured to evaluate the improvement of wound closure. Results: The wound area ratio of the SG (1/6000 dilution)-treated group was greatly reduced compared to that of the vehicle-treated group. The histological analysis showed fewer inflammatory cells, accelerated re-epithelialization, and increased collagen deposition in SG 1/6000-treated wounds. The gene expression levels of tumor necrosis factor-α, interleukin-1ß, and interleukin-6 were decreased and the levels of type I and type III collagen were increased after SG treatment. Conclusions: These results show that the most therapeutically efficacious concentration of SG (1/6000 dilution) can enhance wound repair in diabetic rats. SG has the potential to be a new treatment strategy for diabetic wounds.

17.
Int J Biol Macromol ; 270(Pt 1): 132276, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38734352

RÉSUMÉ

The reuse and development of natural waste resources is a hotspots and challenges in the research of new fiber materials and the resolution of environmental concern globally. Herein, this study aimed to develop a simple and direct manual extraction process to extract Musa core fibers (MCFs) for rapid water conduction and evaporation. Through simple processes such as ring cutting and stretching, this green and non-destructive inside-out extraction strategy enabled Musa fibers to be naturally and harmlessly degummed from natural Musa stems, with good maintenance of the fiber structure and highly helical morphology. The extracted fibers are composed of regularly and closely arranged cellulose nanofibrils in the shape of ribbon spirally arranged multi-filaments, and the single filament is about 2.65 µm. The high-purity fibers exhibit ultra-high tensile strength under a non-destructive extraction process, and the ultimate tensile strength in dry state is as high as 742.95 MPa. The tensile strength is affected by the number of fiber bundles, which shows that tensile strength and tensile modulus is higher than those of vascular bundle fibers in dry or wet condition. In addition, the MCFs membrane indicates good water conductivity, with a water absorption height of 50 mm for the sample in only 60 s. Moreover, the water evaporation rate of MCFs reaches 1.37 kg m-2 h-1 in 30 min, which shows that MCFs have excellent water conductivity and evaporation rate compared with ordinary cotton fibers. These results indicate that MCFs have great potential in replacing the use of chemical methods to extract fibers from vascular bundles, providing an effective way to achieve sustainability in quick-drying applications, as well as in the sustainable development of natural waste resources.


Sujet(s)
Musa , Résistance à la traction , Eau , Eau/composition chimique , Musa/composition chimique , Cellulose/composition chimique , Nanofibres/composition chimique
18.
Front Microbiol ; 15: 1376602, 2024.
Article de Anglais | MEDLINE | ID: mdl-38800760

RÉSUMÉ

Banana (Musa acuminata) is the most important crop in the Canary Islands (38.9% of the total cultivated area). The main pathogen affecting this crop is the soil fungal Fusarium oxysporum f. sp. cubense subtropical race 4 (Foc-STR4), for which there is no effective control method under field conditions. Therefore, the use of native biological control agents may be an effective and sustainable alternative. This study aims to: (i) investigate the diversity and distribution of Trichoderma species in the rhizosphere of different banana agroecosystems affected by Foc-STR4 in Tenerife (the island with the greatest bioclimatic diversity and cultivated area), (ii) develop and preserve a culture collection of native Trichoderma species, and (iii) evaluate the influence of soil chemical properties on the Trichoderma community. A total of 131 Trichoderma isolates were obtained from 84 soil samples collected from 14 farms located in different agroecosystems on the northern (cooler and wetter) and southern (warmer and drier) slopes of Tenerife. Ten Trichoderma species, including T. afroharzianum, T. asperellum, T. atrobrunneum, T. gamsii, T. guizhouense, T. hamatum, T. harzianum, T. hirsutum, T. longibrachiatum, and T. virens, and two putative novel species, named T. aff. harzianum and T. aff. hortense, were identified based on the tef1-α sequences. Trichoderma virens (35.89% relative abundance) and T. aff. harzianum (27.48%) were the most abundant and dominant species on both slopes, while other species were observed only on one slope (north or south). Biodiversity indices (Margalef, Shannon, Simpson, and Pielou) showed that species diversity and evenness were highest in the healthy soils of the northern slope. The Spearman analysis showed significant correlations between Trichoderma species and soil chemistry parameters (mainly with phosphorus and soil pH). To the best of our knowledge, six species are reported for the first time in the Canary Islands (T. afroharzianum, T. asperellum, T. atrobrunneum, T. guizhouense, T. hamatum, T. hirsutum) and in the rhizosphere of banana soils (T. afroharzianum, T. atrobrunneum, T. gamsii, T. guizhouense, T. hirsutum, T. virens). This study provides essential information on the diversity/distribution of native Trichoderma species for the benefit of future applications in the control of Foc-STR4.

19.
G3 (Bethesda) ; 14(8)2024 Aug 07.
Article de Anglais | MEDLINE | ID: mdl-38775627

RÉSUMÉ

Bananas (Musa spp.) are an essential fruit worldwide and rank as the fourth most significant food crop for addressing malnutrition due to their rich nutrients and starch content. The potential of their genetic diversity remains untapped due to limited molecular breeding tools. Our study examined a phenotypically diverse group of 124 accessions from the Colombian Musaceae Collection conserved in AGROSAVIA. We assessed 12 traits categorized into morphology, fruit quality, and yield, alongside sequence data. Our sequencing efforts provided valuable insights, with an average depth of about 7× per accession, resulting in 187,133 single-nucleotide polymorphisms (SNPs) against Musa acuminata (A genome) and 220,451 against Musa balbisiana (B genome). Population structure analysis grouped samples into four and five clusters based on the reference genome. By using different association models, we identified marker-trait associations (MTAs). The mixed linear model revealed four MTAs, while the Bayesian-information and linkage-disequilibrium iteratively nested keyway and fixed and random model for circulating probability unification models identified 82 and 70 MTAs, respectively. We identified 38 and 40 candidate genes in linkage proximity to significant MTAs for the A genome and B genome, respectively. Our findings provide insights into the genetic underpinnings of morphology, fruit quality, and yield. Once validated, the SNP markers and candidate genes can potentially drive advancements in genomic-guided breeding strategies to enhance banana crop improvement.


Sujet(s)
Fruit , Étude d'association pangénomique , Musa , Polymorphisme de nucléotide simple , Locus de caractère quantitatif , Musa/génétique , Fruit/génétique , Génome végétal , Phénotype , Déséquilibre de liaison , Gènes de plante , Caractère quantitatif héréditaire
20.
Trop Anim Health Prod ; 56(4): 139, 2024 Apr 24.
Article de Anglais | MEDLINE | ID: mdl-38656618

RÉSUMÉ

We aimed to evaluate the effects of different drying methods for banana residues on the energy metabolism and respirometry of growing lambs. Twenty Santa Inês x Dorper lambs were fed five experimental diets: Tifton 85 grass hay (Control), shade-dried banana leaf hay (LH Shade), shade-dried pseudostem banana hay (PH Shade), sun-dried banana leaf hay (LH Sun), and sun-dried banana pseudostem hay (PH Sun). Nutrient intake and digestibility were assessed in metabolic cages, whereas O2 consumption and CO2, methane, and heat production were measured in a respirometry chamber with animals fed at maintenance and ad libitum levels. Nutrient and energy intake was not influenced by diet. Pseudostem hay had higher apparent digestibility of dry matter (71.5%), organic matter (72.4%), and neutral detergent fiber (58.0%). However, this led to greater energy loss in the form of methane (12.1%). The banana residue hays and drying methods did not alter oxygen consumption, CO2 production, or heat production of animals fed ad libitum or during maintenance. On the other hand, the use of leaf hay resulted in a reduction of 24.7% in enteric methane production of animals fed ad libitum. The inclusion of pseudostem hay is recommended in sheep feedlot diet. This residue provided greater use of DM, however promoted a greater loss of energy in the form of methane, resulting in similar energy consumption. The drying methods did not reduce the availability of nutrients and the sun drying method is recommended, since it is a faster drying method.


Sujet(s)
Aliment pour animaux , Régime alimentaire , Digestion , Métabolisme énergétique , Musa , Animaux , Musa/composition chimique , Aliment pour animaux/analyse , Régime alimentaire/médecine vétérinaire , Mâle , Ovis aries/physiologie , Phénomènes physiologiques nutritionnels chez l'animal , Consommation d'oxygène , Dessiccation
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE