Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 1.104
Filtrer
1.
Acta Biomater ; 2024 Jul 09.
Article de Anglais | MEDLINE | ID: mdl-38992410

RÉSUMÉ

Dental enamels of different species exhibit a wide variety of microstructural patterns that are attractive to mimic in bioinspired composites to achieve high stiffness and superior toughness. Non-human enamel types, however, have not yet received the deserved attention and their mechanical behaviour is largely unknown. Using nanoindentation tests and finite element modelling, we investigate the mechanical behaviour of Macropus rufogriseus enamel, revealing a dominanting influence of the microstructure on the effective mechanical behaviour and allowing insight into structural dependences. We find a shallow gradient in stiffness and low degree of anisotropy over the enamel thickness that is attributed to the orientation and size of microstructural features. Most notably, M. rufogriseus's modified radial enamel has a far simpler structural pattern than other species', but achieves great property amplification. It is therefore a very promising template for biomimetic design. STATEMENT OF SIGNIFICANCE: The diversity of dental enamel structures in different species is well documented but the mechanical behaviour of non-human enamel types is largely unknown. In this work, we investigate the microstructure and structure-dependent mechanical properties of marsupial enamel by nanoindentation and finite element simulations. Combining these methods gives valuable insights into the performance of modified radial enamel structures. Their stiffness and toughness is due to a unique structural design that is far less complex than well-studied human enamel types which makes it a uniquely suitable template for biomimetic design.

2.
J Bone Miner Res ; 2024 Jul 10.
Article de Anglais | MEDLINE | ID: mdl-38982734

RÉSUMÉ

Osteogenesis imperfecta (OI) is a skeletal dysplasia characterized by low bone mass and frequent fractures. Children with OI are commonly treated with bisphosphonates to reduce fracture rate, but treatment options for adults are limited. In the Phase 2b ASTEROID trial, setrusumab (a sclerostin neutralizing antibody, SclAb) improved bone density and strength in adults with type I, III and IV OI. Here, we investigate bone matrix material properties in tetracycline-labeled trans-iliac biopsies from three groups: i) control: individuals with no metabolic bone disease, ii) OI: individuals with OI, iii) SclAb-OI: individuals with OI after six months of setrusumab treatment (as part of the ASTEROID trial). In addition to bone histomorphometry, bone mineral and matrix properties were evaluated with nanoindentation, Raman spectroscopy, second harmonic generation imaging, quantitative backscatter electron imaging, and small-angle x-ray scattering. Spatial locations of fluorochrome labels were identified to differentiate inter-label bone of the same tissue age and intra-cortical bone. No difference in collagen orientation was found between the groups. The bone mineral density distribution and analysis of Raman spectra indicate that OI groups have greater mean mineralization, greater relative mineral content, and lower crystallinity than the control group, which was not altered by SclAb treatment. Finally, a lower modulus and hardness were measured in the inter-label bone of the OI-SclAb group compared to the OI group. Previous studies suggest that even though bone from OI has a higher mineral content, the ECM has comparable mechanical properties. Therefore, fragility in OI may stem from contributions from other yet unexplored aspects of bone organization at higher length scales. We conclude that SclAb treatment leads to increased bone mass while not adversely affecting bone matrix properties in individuals with OI.


Individuals with osteogenesis imperfecta (OI), also known as "brittle bone disease," have low bone mass and frequent fractures. Low bone mass occurs due to an imbalance between cells that remove bone and cells that form bone. Pharmaceutical treatments that block removal of bone lead to reduced fracture rates in children with OI. Effective treatment options for adults are limited. Setrusumab is a drug that leads to increased bone mass and strength in adults with OI. Here, we investigate whether Setrusumab alters the bone material in addition to improving bone mass. Three groups are compared: individuals with OI treated with Setrusumab, individuals with OI not treated with Setrusumab, and individuals without OI. A lower modulus and hardness were measured with nanoindentation in the Setrusumab-treated group. However, we did not find any changes in the bone's multi-scale structure. Fragility in OI may stem from other yet unexplored aspects of bone organization. We conclude that Setrusumab treatment leads to increased bone mass while not adversely affecting bone material properties in individuals with OI.

3.
Nanotechnology ; 35(39)2024 Jul 11.
Article de Anglais | MEDLINE | ID: mdl-38955145

RÉSUMÉ

Friction phenomena in two-dimensional (2D) materials are conventionally studied at atomic length scales in a few layers using low-load techniques. However, the advancement of 2D materials for semiconductor and electronic applications requires an understanding of friction and delamination at a few micrometers length scale and hundreds of layers. To bridge this gap, the present study investigates frictional resistance and delamination mechanisms in 2D tungsten diselenide (WSe2) at 10µm length and 100-500 nm depths using an integrated atomic force microscopy (AFM), high-load nanoscratch, andin-situscanning electron microscopic (SEM) observations. AFM revealed a heterogenous distribution of frictional resistance in a single WSe2layer originating from surface ripples, with the mean increasing from 8.7 to 79.1 nN as the imposed force increased from 20 to 80 nN. High-loadin-situnano-scratch tests delineated the role of the individual layers in the mechanism of multi-layer delamination under an SEM. Delamination during scratch consists of stick-slip motion with friction force increasing in each successive slip, manifested as increasing slope of lateral force curves with scratch depth from 10.9 to 13.0 (× 103) Nm-1. Delamination is followed by cyclic fracture of WSe2layers where the puckering effect results in adherence of layers to the nanoscratch probe, increasing the local maximum of lateral force from 89.3 to 205.6µN. This establishment of the interconnectedness between friction in single-layer and delamination at hundreds of layers harbors the potential for utilizing these materials in semiconductor devices with reduced energy losses and enhanced performance.

4.
Acta Biomater ; 2024 Jun 20.
Article de Anglais | MEDLINE | ID: mdl-38908419

RÉSUMÉ

The equine hoof wall has outstanding impact resistance, which enables high-velocity gallop over hard terrain with minimum damage. To better understand its viscoelastic behavior, complex moduli were determined using two complementary techniques: conventional (∼5 mm length scale) and nano (∼1 µm length scale) dynamic mechanical analysis (DMA). The evolution of their magnitudes was measured for two hydration conditions: fully hydrated and ambient. The storage modulus of the ambient hoof wall was approximately 400 MPa in macro-scale experiments, decreasing to ∼250 MPa with hydration. In contrast, the loss tangent decreased for both hydrated (∼0.1-0.07) and ambient (∼0.04-0.01) conditions, over the frequency range of 1-10 Hz. Nano-DMA indentation tests conducted up to 200 Hz showed little frequency dependence beyond 10 Hz. The loss tangent of tubular regions showed more hydration sensitivity than in intertubular regions, but no significant difference in storage modulus was observed. Loss tangent and effective stiffness were higher in indentations for both hydration levels. This behavior is attributed to the hoof wall's hierarchical structure, which has porosity, functionally graded aspects, and material interfaces that are not captured at the scale of indentation. The hoof wall's viscoelasticity characterized in this work has implications for the design of bioinspired impact-resistant materials and structures. STATEMENT OF SIGNIFICANCE: The outer wall of horse hooves evolved to withstand heavy impacts during gallop. While previous studies have measured the properties of the hoof wall in slowly changing conditions, we wanted to quantify its behavior using experiments that replicate the quickly changing forces of impact. Since the hoof wall's structure is complex and contributes to its overall performance, smaller scale experiments were also performed. The behavior of the hoof wall was within the range of other biological materials and polymers. When hydrated, it becomes softer and can dissipate more energy. This work improves our understanding of the hoof's function and allows for more accurate simulations that can account for different impact speeds.

5.
Carbohydr Polym ; 340: 122331, 2024 Sep 15.
Article de Anglais | MEDLINE | ID: mdl-38858014

RÉSUMÉ

Self-supporting films from amphiphilic hyaluronan are suitable for medical applications like wound dressings or resorbable implants. These films are typically cast from water/alcohol solutions. However, when the mixed solvent evaporates in ambient air, convection flows develop in the solution and become imprinted in the film, potentially compromising its properties. Consequently, we developed a novel film manufacturing method: drying in a closed box under saturated vapour conditions. Using this approach, we prepared a series of optically clear lauroyl-hyaluronan (LHA) films with uniform thickness and compared them to their air-dried counterparts. We first evaluated swelling ratios and elastic moduli for LHA films with varying degrees of substitution. The box-dried films swelled significantly less and were 1-2 orders of magnitude stiffer than air-dried films from the same LHA sample. Confocal microscopy revealed that box-dried films exhibited a regular microstructure, while air-dried films displayed a pore-size gradient and strong microstructure modulation due to convection flows. Local elastic modulus variations arising from these microstructures were assessed using nanoindentation mapping. Importantly, achieving the desired film stiffness requires much lower polymer modification when box-drying is used, enhancing the biological response to the material. These findings have implications for all polysaccharide formulations that utilize mixed solvents.

6.
ACS Nano ; 18(21): 13768-13780, 2024 May 28.
Article de Anglais | MEDLINE | ID: mdl-38745441

RÉSUMÉ

Achieving tunable rupturing of eutectic gallium indium (EGaIn) particles holds great significance in flexible electronic applications, particularly pressure sensors. We tune the mechanosensitivity of EGaIn particles by preparing them in toluene with thiol surfactants and demonstrate an improvement over typical preparations in ethanol. We observe, across multiple length scales, that thiol surfactants and the nonpolar solvent synergistically reduce the applied stress requirements for electromechanical actuation. At the nanoscale, dodecanethiol and propanethiol in toluene suppress gallium oxide growth, as characterized by transmission electron microscopy and X-ray photoelectron spectroscopy. Quantitative AFM imaging produces force-indentation curves and height images, while conductive AFM measures current while probing individual EGaIn particles. As the applied force increases, thiolated particles demonstrate intensified softening, rupturing, and stress-induced electrical activation at forces 40% lower than those for bare particles in ethanol. To confirm that thiolation facilitates rupturing at the macroscale, a laser is used to ablate samples of EGaIn particles. Scanning electron microscopy and resistance measurements across macroscopic samples confirm that thiolated EGaIn particles coalesce to exhibit electrical activation at 0.1 W. Particles prepared in ethanol, however, require 3 times higher laser power to demonstrate a similar behavior. This unique collection of advanced techniques demonstrates that our particle synthesis conditions can facilitate on-demand functionality to benefit electronic applications.

7.
Acta Biomater ; 183: 210-220, 2024 Jul 15.
Article de Anglais | MEDLINE | ID: mdl-38801871

RÉSUMÉ

The micro/nano pores in natural mineralized tissues can, to a certain extent, affect their responses to mechanical loading but are generally ignored in existing indentation analysis. In this study, we first examined the void volume fraction of sound and caries lesion enamels through micro-computed tomography (micro-CT). A Berkovich indentation study was then carried out to characterize the effect of porous microstructure on the mechanical behavior of the human enamels. The indentation tests were also modeled using the nonlinear finite element analysis technique to simulate indentation load-displacement curves, which showed reasonable agreement with the experimental measurements. From the simulation results, the extent of densification in the plastic zone was identified and the corresponding stress and contact pressure evolutions were quantified. Further, a conventional elastic-perfectly plastic material model without considering micropores was also developed to investigate the compaction effect of the porous structure. The simulation results reveal that conventional elastic perfect-plastic constitutive models become less reliable to model the mechanical behavior of carious lesion enamel with increasing loss of mineral content as it underestimates the yield stress and plastic energy dissipation. This study divulges the importance of compaction of porous enamel structure beneath the indented area. Note that understanding the effect of porous microstructures on plastic behavior is vital as the involved inelastic deformation mechanism associated with irreversible processes, such as wear and localized microcracking, has a significant bearing on wear and fatigue behavior of enamel. STATEMENT OF SIGNIFICANCE: Based on micro-CT and nano-indentation characterization, a numerical model was developed aiming to precisely describe the deformation behavior of naturally porous enamel. Inelastic properties and energy dissipation characteristics of porous enamel were investigated in detail. This work demonstrated that the existence of micro-pores in White Spot Lesions (WSLs) contributes to mechanical stability, which can mitigate the reduction in Young's modulus and fracture toughness resulting from loss of mineral components. The knowledge gained from this study can be used to explain the mechanisms related to irreversible processes, such as contact induced cracking and wear, and strengthen understanding of the mechanical behavior of porous mineralized tissues.


Sujet(s)
Émail dentaire , Microtomographie aux rayons X , Émail dentaire/composition chimique , Porosité , Humains , Analyse des éléments finis , Élasticité , Contrainte mécanique
8.
Skin Res Technol ; 30(5): e13740, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38720488

RÉSUMÉ

BACKGROUND: The human nail has a three-layered structure. Although it would be useful to quantitatively evaluate the changes in deformability of the nail due to various surface treatments, few studies have been conducted. METHODS: The effects of two types of surface treatment-a chemically acting nail softener and a physically acting nail strengthener-on the deformability of human fingernails were investigated. The Young's modulus of each plate of the nail samples before and after softening treatment was determined by nanoindentation. The Young's modulus of the strengthener was determined by conducting a three-point bending test on a polyethylene sheet coated with the strengthener. RESULTS: Young's modulus decreased in order from the top plate against the softening treatment time, and the structural elasticity for bending deformation (SEB) of the nail sample, which expresses the deformability against bending deformation independent of its external dimensions, decreased to 60% after 6 h of treatment. The Young's modulus of the nail strengthener was 244.5 MPa, which is less than 10% of the SEB of the nail. When the nail strengthener was applied to the nail surface, the SEB decreased to 73%, whereas the flexural rigidity increased to 117%. CONCLUSION: Changes in nail deformability caused by various surface treatments for softening and hardening were quantitatively evaluated successfully.


Sujet(s)
Module d'élasticité , Ongles , Propriétés de surface , Humains , Module d'élasticité/physiologie , Ongles/physiologie , Femelle , Élasticité/physiologie , Adulte
9.
ACS Biomater Sci Eng ; 10(5): 2935-2944, 2024 05 13.
Article de Anglais | MEDLINE | ID: mdl-38627890

RÉSUMÉ

Ti-Au intermetallic-based material systems are being extensively studied as next-generation thin film coatings to extend the lifetime of implant devices. These coatings are being developed for application to the articulating surfaces of total joint implants and, therefore, must have excellent biocompatibility combined with superior mechanical hardness and wear resistance. However, these key characteristics of Ti-Au coatings are heavily dependent upon factors such as the surface properties and temperature of the underlying substrate during thin film deposition. In this work, Ti3Au thin films were deposited by magnetron sputtering on both glass and Ti6Al4V substrates at an ambient and elevated substrate temperature of 275 °C. These films were studied for their mechanical properties by the nanoindentation technique in both variable load and fixed load mode using a Berkovich tip. XRD patterns and cross-sectional SEM images detail the microstructure, while AFM images present the surface morphologies of these Ti3Au thin films. The biocompatibility potential of the films is assessed by cytotoxicity tests in L929 mouse fibroblast cells using Alamar blue assay, while leached ion concentrations in the film extracts are quantified using ICPOEMS. The standard deviation for hardness of films deposited on glass substrates is ∼4 times lower than that on Ti6Al4V substrates and is correlated with a corresponding increase in surface roughness from 2 nm for glass to 40 nm for Ti6Al4V substrates. Elevating substrate temperature leads to an increase in film hardness from 5.1 to 8.9 GPa and is related to the development of a superhard ß phase of the Ti3Au intermetallic. The standard deviation of this peak mechanical hardness value is reduced by ∼3 times when measured in fixed load mode compared to the variable load mode due to the effect of nanoindentation tip penetration depth. All tested Ti-Au thin films also exhibit excellent biocompatibility against L929 fibroblast cells, as viability levels are above 95% and leached Ti, Al, V, and Au ion concentrations are below 0.1 ppm. Overall, this work demonstrates a novel Ti3Au thin film system with a unique combination of high hardness and excellent biocompatibility with potential to be developed into a new wear-resistant coating to extend the lifetime of articulating total joint implants.


Sujet(s)
Alliages , Verre , Test de matériaux , Propriétés de surface , Titane , Titane/composition chimique , Alliages/composition chimique , Animaux , Souris , Verre/composition chimique , Matériaux revêtus, biocompatibles/composition chimique , Lignée cellulaire , Fibroblastes/effets des médicaments et des substances chimiques , Matériaux biocompatibles/composition chimique , Dureté , Or/composition chimique
10.
Chemistry ; 30(38): e202400779, 2024 Jul 05.
Article de Anglais | MEDLINE | ID: mdl-38613428

RÉSUMÉ

Dynamic molecular crystals are an emerging class of crystalline materials that can respond to mechanical stress by dissipating internal strain in a number of ways. Given the serendipitous nature of the discovery of such crystals, progress in the field requires advances in computational methods for the accurate and high-throughput computation of the nanomechanical properties of crystals on specific facets which are exposed to mechanical stress. Here, we develop and apply a new atomistic model for computing the surface elastic moduli of crystals on any set of facets of interest using dispersion-corrected density functional theory (DFT-D) methods. The model was benchmarked against a total of 24 reported nanoindentation measurements from a diverse set of molecular crystals and was found to be generally reliable. Using only the experimental crystal structure of the dietary supplement, L-aspartic acid, the model was subsequently applied under blind test conditions, to correctly predict the growth morphology, facet and nanomechanical properties of L-aspartic acid to within the accuracy of the measured elastic stiffness of the crystal, 24.53±0.56 GPa. This work paves the way for the computational design and experimental realization of other functional molecular crystals with tailor-made mechanical properties.

11.
Interface Focus ; 14(2): 20230048, 2024 Apr 15.
Article de Anglais | MEDLINE | ID: mdl-38618230

RÉSUMÉ

Leafcutter ant colonies are divided into castes with the individuals performing different tasks, based mostly on size. With the mandibles, the small minims care for the brood or the fungus, whereas the larger minors and mediae cut and transport plant material, with the ant size positively related to the material size. The mechanical properties and composition of the mandible cuticle have been previously tested in the soldiers as the largest caste, revealing that the cutting edges contained high contents of the cross-linking transition metal zinc (Zn). With regard to the smaller castes, no data are present. To study how the mandible size and function relates to its mechanical properties, we here tested the mandibles of minims, minors and mediae by nanoindentation. We found that the hardness (H) and Young's modulus (E) values increased with increasing ant size and that the mandible cutting edges in each caste have the highest H- and E-values. To gain insight into the origins of these properties, we characterized the elemental composition by energy-dispersive X-ray analysis, revealing that minors and mediae possessed higher content of Zn in the cutting edges in contrast to the minims containing significantly less Zn. This shows, that Zn content relates to higher mechanical property values. Additionally, it shows that all of these parameters can differ within a single species.

12.
Materials (Basel) ; 17(7)2024 Apr 08.
Article de Anglais | MEDLINE | ID: mdl-38612212

RÉSUMÉ

A series of Ti41Zr25Be34-xNix (x = 4, 6, 8, 10 at.%) and Ti41Zr25Be34-xCux (x = 4, 6, 8 at.%) bulk metallic glasses were investigated to examine the influence of Ni and Cu content on the viscosity, thermoplastic formability, and nanoindentation of Ti-based bulk metallic glasses. The results demonstrate that Ti41Zr25Be30Ni4 and Ti41Zr25Be26Cu8 amorphous alloys have superior thermoplastic formability among the Ti41Zr25Be34-xNix and Ti41Zr25Be34-xCux amorphous alloys due to their low viscosity in the supercooled liquid region and wider supercooled liquid region. The hardness and modulus exhibit obvious variations with increasing Ni and Cu content in Ti-based bulk metallic glasses, which can be attributed to alterations in atomic density. Optimal amounts of Ni and Cu in Ti-based bulk metallic glasses enhance thermoplastic formability and mechanical properties. The influence of Ni and Cu content on the hardness of Ti-based bulk metallic glasses is discussed from the perspective of the mean atomic distance.

13.
Int J Mol Sci ; 25(7)2024 Mar 27.
Article de Anglais | MEDLINE | ID: mdl-38612536

RÉSUMÉ

The endometrial epithelium and underlying stroma undergo profound changes to support and limit embryo adhesion and invasion, which occur in the secretory phase of the menstrual cycle during the window of implantation. This coincides with a peak in progesterone and estradiol production. We hypothesized that the interplay between hormone-induced changes in the mechanical properties of the endometrial epithelium and stroma supports this process. To study it, we used hormone-responsive endometrial adenocarcinoma-derived Ishikawa cells growing on substrates of different stiffness. We showed that Ishikawa monolayers on soft substrates are more tightly clustered and uniform than on stiff substrates. Probing for mechanical alterations, we found accelerated stress-relaxation after apical nanoindentation in hormone-stimulated monolayers on stiff substrates. Traction force microscopy furthermore revealed an increased number of foci with high traction in the presence of estradiol and progesterone on soft substrates. The detection of single cells and small cell clusters positive for the intermediate filament protein vimentin and the progesterone receptor further underscored monolayer heterogeneity. Finally, adhesion assays with trophoblast-derived AC-1M-88 spheroids were used to examine the effects of substrate stiffness and steroid hormones on endometrial receptivity. We conclude that the extracellular matrix and hormones act together to determine mechanical properties and, ultimately, embryo implantation.


Sujet(s)
Matrice extracellulaire , Progestérone , Femelle , Humains , Épithélium , Cycle menstruel , Oestradiol
14.
Materials (Basel) ; 17(7)2024 Mar 28.
Article de Anglais | MEDLINE | ID: mdl-38612067

RÉSUMÉ

The generation of mechanical characteristics in workpiece subsurface layers as a result of the cutting process has a predominant influence on the performance properties of machined parts. The effect of the end milling process on the mechanical characteristics of the machined subsurface layers was evaluated using nondestructive methods: instrumented nanoindentation and sclerometry (scratching). In this paper, the influence of one of the common processes of materials processing by cutting-the process of end tool milling-on the generation of mechanical characteristics of workpiece machined subsurface layers is studied. The effect of the end milling process on the character of mechanical property formation was evaluated through the coincidence of the cutting process energy characteristics with the mechanical characteristics of the machined subsurface layers. The total cutting power and cutting work in the tertiary cutting zone area were used as energy characteristics of the end milling process. The modes of the end milling process are considered as the main parameters affecting these energy characteristics. The mechanical characteristics of the workpiece machined subsurface layers were the microhardness of the subsurface layers and the total work of indenter penetration, determined by instrumental nanoindentation, and the maximum depth of indenter penetration, determined by sclerometry. Titanium alloy Ti10V2Fe3Al (Ti-1023) was used as the machining material. Based on the evaluation of the coincidence of the cutting process energy characteristics with the specified mechanical characteristics of the machined subsurface layers, the milling mode effect of the studied titanium alloy, in particular the cutter feed and cutting speed, on the generated mechanical characteristics was established.

15.
Materials (Basel) ; 17(7)2024 Mar 29.
Article de Anglais | MEDLINE | ID: mdl-38612081

RÉSUMÉ

To manufacture metallic components with high wear resistance, treatments such as nitriding and carburising followed by quenching and tempering (NQT and CQT, respectively) are applied to various types of steel to increase the hardness (H) of the friction surface. However, the wear mechanism of the resulting functionally graded materials has not been fully understood. In this study, specimens of industrial 99.82% pure iron treated with NQT at 913 and 1033 K, and CQT at 1203 K, as well as hot-rolled sheets without heat treatment were examined by performing nanoindentation tests to measure changes in their H, reduced Young's moduli (Er), elastic deformation energies (We), and plastic deformation energies (Wp) along the depth direction. The relationship between Wp/We and the elastic strain resistance (H/Er) can be expressed for all specimens via the equation Wp/We = -1.0 + 0.16 (H/Er)-1. Furthermore, the obtained H/Er av measured at 5 µm intervals based on the specimen profile and wear volume has a good correlation depending to the sliding distance, as confirmed by the results of the ring-on-plate sliding tests conducted for the carbon-treated, nitrogen-treated, and hot-rolled specimens. This study provides a new approach, using H/Er parameters to identify the dominant factors affecting wear resistance at the initial stage of wear that may contribute to the development of wear-resistant materials.

16.
Materials (Basel) ; 17(7)2024 Apr 04.
Article de Anglais | MEDLINE | ID: mdl-38612170

RÉSUMÉ

Nanoindentation measurements were conducted to investigate the high-cycle response of 316L stainless steel in bending fatigue. Hardness variation owing to the gradient flexure stress amplitude for different curvatures was plotted along with the thickness and length, respectively. Scanning electron microscopy (SEM) was subsequently conducted to explore the deformation characteristics in multiple layers, which had cyclic gradient stress, on the cross-section of specimens. The nanoindentation results indicated that the cyclic hardening response of 316L stainless steel is correlated with the level of stress amplitude in the high-cycle fatigue (HCF) regime. Furthermore, an analytical model was proposed to clarify the relationship between nanohardness and stress amplitude. Finally, the evolution of damage accumulation due to irreversible plastic deformation is continuous during stress reduction up to the neighboring zone at the neutral surface of the flexure beam in some individual grains.

17.
Sci Rep ; 14(1): 9112, 2024 Apr 20.
Article de Anglais | MEDLINE | ID: mdl-38643297

RÉSUMÉ

The plastic response of the Senkov HfNbTaTiZr high-entropy alloy is explored by means of simulated nanoindentation tests. Both a random alloy and an alloy with chemical short-range order are investigated and compared to the well understood case of an elementary Ta crystal. Strong differences in the dislocation plasticity between the alloys and the elementary Ta crystal are found. The high-entropy alloys show only little relaxation of the indentation dislocation network after indenter retraction and only negligible dislocation emission into the sample interior. Short-range order-besides making the alloy both stiffer and harder-further increases the size of the plastic zone and the dislocation density there. These features are explained by the slow dislocation migration in these alloys. Also, the short-range-ordered alloy features no twinning plasticity in contrast to the random alloy, while elemental Ta exhibits twinning under high stress but detwins considerably under stress relief. The results are in good qualitative agreement with our current knowledge of plasticity in high-entropy alloys.

18.
J Funct Biomater ; 15(4)2024 Mar 31.
Article de Anglais | MEDLINE | ID: mdl-38667544

RÉSUMÉ

This study investigates the viscoelastic deformation mechanisms of bone as a response to Vickers hardness indentation. We utilized advanced high-resolution scanning electron microscopy (SEM) to investigate a distinct deformation pattern that originates from the indentation site within the bone matrix. The focus of our research was to analyze a unique deformation mechanism observed in bone tissue, which has been colloquially termed as "screw-like" due to its resemblance to a screw thread when viewed under an optical microscope. The primary goals of this research are to investigate the distinctive characteristics of the "screw-like" deformation pattern and to determine how the microstructure of bone influences the initiation and control of this mechanism. These patterns, emerging during the dwell period of indentation, underscore the viscoelastic nature of bone, indicating its propensity for energy dissipation and microstructural reconfiguration under load. This study uncovered a direct correlation between the length of the "screw-like" deformation and the duration of the indentation dwell time, providing quantifiable evidence of the bone's viscoelastic behavior. This finding is pivotal in understanding the mechanical properties of bone, including its fracture toughness, as it relates to the complex interplay of factors such as energy dissipation, microstructural reinforcement, and stress distribution. Furthermore, this study discusses the implications of viscoelastic properties on the bone's ability to resist mechanical challenges, underscoring the significance of viscoelasticity in bone research.

19.
Bioengineering (Basel) ; 11(4)2024 Mar 25.
Article de Anglais | MEDLINE | ID: mdl-38671730

RÉSUMÉ

This study proposed a composite tibia defect scaffold with radial gradient porosity, utilizing finite element analysis to assess stress in the tibial region with significant critical-sized defects. Simulations for scaffolds with different porosities were conducted, designing an optimal tibia defect scaffold with radial gradient porosity for repairing and replacing critical bone defects. Radial gradient porosity scaffolds resulted in a more uniform stress distribution, reducing titanium alloy stiffness and alleviating stress shielding effects. The scaffold was manufactured using selective laser melting (SLM) technology with stress relief annealing to simplify porous structure fabrication. The study used New Zealand white rabbits' tibia defect sites as simulation parameters, reconstructing the 3D model and implanting the composite scaffold. Finite element analysis in ANSYS-Workbench simulated forces under high-activity conditions, analyzing stress distribution and strain. In the simulation, the titanium alloy scaffold bore a maximum stress of 122.8626 MPa, while the centrally encapsulated HAp material delivered 27.92 MPa. The design demonstrated superior structural strength, thereby reducing stress concentration. The scaffold was manufactured using SLM, and the uniform design method was used to determine a collection of optimum annealing parameters. Nanoindentation and compression tests were used to determine the influence of annealing on the elastic modulus, hardness, and strain energy of the scaffold.

20.
Materials (Basel) ; 17(8)2024 Apr 10.
Article de Anglais | MEDLINE | ID: mdl-38673101

RÉSUMÉ

Oxide Dispersion Strengthened (ODS) ferritic steels are promising materials for the nuclear power sector. This paper presents the results of a study on the sintering process using the Spark Plasma Sintering (SPS) technique, focusing on ODS ferritic steel powders with different contents (0.3 and 0.6 vol.%) of Y2O3. The novelty lies in the analysis of the effect of pre-annealing treatment on powders previously prepared by mechanical alloying on the microstructure, mechanical, and thermal properties of the sinters. Using the SPS method, it was possible to obtain well-densified sinters with a relative density above 98%. Pre-annealing the powders resulted in an increase in the relative density of the sinters and a slight increase in their thermal conductivity. The use of low electron energies during SEM analysis allowed for a fairly good visualization of the reinforcing oxides uniformly dispersed in the matrix. Analysis of the Mössbauer spectroscopy results revealed that pre-annealing induces local atomic rearrangements within the solid solution. In addition, there was an additional spectral component, indicating the formation of a Cr-based paramagnetic phase. The ODS material with a higher Y2O3 content showed increased Vickers hardness values, as well as increased Young's modulus and nanohardness, as determined by nanoindentation tests.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...