Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 106
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Integr Zool ; 2024 Jun 13.
Article de Anglais | MEDLINE | ID: mdl-38872346

RÉSUMÉ

Identifying climatic niche shift and its influencing factors is of great significance in predicting the risk of alien species invasions accurately. Previous studies have attempted to identify the factors related to the niche shift of alien species in their invaded ranges, including changes in introduction history, selection of exact climate predictors, and anthropogenic factors. However, the effect of species-level traits on niche shift remains largely unexplored, especially those reflecting the species' adaptation ability to new environments. Based on the occurrence data of 117 successful alien bird invaders at a global scale, their native and invaded climatic niches were compared, and the potential influencing factors were identified. Our results show the niche overlap was low, with more than 75% of the non-native birds representing climatic niche shift (i.e. >10% niche expansion). In addition, 85% of the species showed a large proportion (mean ± SD, 39% ± 21%) of niche unfilling. Relative brain size (RBS) after accounting for body size had no direct effect on niche shift, but path analysis showed that RBS had an indirect effect on niche shift by acting on behavioral innovation primarily on technical innovation rather than consumer innovation. These findings suggested the incorporation of species' important behavioral adaptation traits may be promising to develop future prediction frameworks of biological invasion risk in response to the continued global change.

2.
J Anim Ecol ; 2024 Jun 27.
Article de Anglais | MEDLINE | ID: mdl-38937937

RÉSUMÉ

In this study, we estimate the niche overlap between native and invaded ranges of 36 Lessepsian fish, focusing on how this estimate might vary in relation to the temporal resolution of sea surface temperature and salinity, which are the main niche axes determining their distribution. Specifically, we wanted to address the following questions: (i) Does the choice of temporal averaging method of variables influence the estimation of niche overlap for individual variables? (ii) Does this temporal resolution effect persist when conducting bivariate niche estimations? Niches overlap was estimated by calculating two indices and these analyses were repeated at two temporal resolutions, matching observations to the classic 'multidecadal' average of environmental conditions and to the corresponding annual average of records. Results are compared with verify whether differences can be detected in the magnitude of niche commonality measured at annual or multidecadal temporal resolution. The findings show that the temporal resolution of the data significantly influences estimates of overlap in the thermal niche. Specifically, our analysis indicates a considerable disparity between native and invasive niche regions for most species, particularly when evaluated over multidecadal periods compared with matching occurrence data to the annual mean values of years the occurrence was observed, that is matching occurrence data to a common average of 'present' conditions or to the annual mean values of years of observation. In particular, the largest overlaps between native and invaded niches occur along the salinity axis, regardless of temporal resolution. When considering both temperature and salinity together, the results remain unaffected by the temporal resolution of the environmental data. Almost 30% of the species show a different niche in their introduced range, and for the other species, the overlap between native and invaded ranges was reduced with respect to the univariate analyses.

3.
Ecol Lett ; 27(6): e14453, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38844411

RÉSUMÉ

Climate change threatens many species by a poleward/upward movement of their thermal niche. While we know that faster movement has stronger impacts, little is known on how fluctuations of niche movement affect population outcomes. Environmental fluctuations often affect populations negatively, but theory and experiments have revealed some positive effects. We study how fluctuations around the average speed of the niche impact a species' persistence, abundance and realized niche width under climate change. We find that the outcome depends on how fluctuations manifest and what the relative time scale of population growth and climate fluctuations are. When populations are close to extinction with the average speed, fluctuations around this average accelerate population decline. However, populations not yet close to extinction can increase in abundance and/or realized niche width from such fluctuations. Long-lived species increase more when their niche size remains constant, short-lived species increase more when their niche size varies.


Sujet(s)
Changement climatique , Densité de population , Animaux , Écosystème , Dynamique des populations , Modèles biologiques , Répartition des animaux
4.
Insects ; 15(4)2024 Apr 05.
Article de Anglais | MEDLINE | ID: mdl-38667380

RÉSUMÉ

As a globally invasive quarantine pest, the cotton mealybug, Phenacoccus solenopsis, is spreading rapidly, posing serious threats against agricultural and forestry production and biosecurity. In recent years, the niche conservatism hypothesis has been widely debated, which is particularly evident in invasive biology research. Identifying the niche dynamics of P. solenopsis, as well as assessing its global invasion risk, is of both theoretical and practical importance. Based on 462 occurrence points and 19 bioclimatic variables, we used n-dimensional hypervolume analysis to quantify the multidimensional climatic niche of this pest in both its native and invasive ranges. We examined niche conservatism and further optimized the MaxEnt model parameters to predict the global invasion risk of P. solenopsis under both current and future climate conditions. Our findings indicated that the niche hypervolume of this pest in invasive ranges was significantly larger than that in its native ranges, with 99.45% of the niche differentiation contributed by niche expansion, with the remaining less than 1% explained by space replacement. Niche expansion was most evident in Oceania and Eurasia. The area under the receiver operating characteristic curve (0.83) and true skill statistic (0.62) indicated the model's robust performance. The areas of suitable habitats for P. solenopsis are increasing significantly and the northward spread is obvious in future climate change scenarios. North Africa, northern China, Mediterranean regions, and northern Europe had an increased invasion risk of P. solenopsis. This study provided scientific support for the early warning and control of P. solenopsis.

5.
Neotrop Entomol ; 53(3): 608-616, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38598071

RÉSUMÉ

Insects of economic importance such as Leucoptera coffeella can cause high defoliation in plants and reduce crop yields. We aimed to identify changes in the ecological niche and potential zones of the invasion. Occurrence records were obtained from databases and bibliography. WorldClim V2.0 bioclimatic layers were used. For the modeling of the potential distribution, the kuenm R package was used by executing the Maxent algorithm. The potential distribution models suggested greatest environmental suitability extends from Europe, South Asia, and Central and South Africa, showing the "tropical and subtropical moist broadleaf forests" as the ecoregion that presents the greatest probability of the presence of L. coffeella. The potential distribution model projected in the invaded area agrees with the known distribution in the region (America), although the results show that it is occupying environmental spaces not present in the area of origin. This species presented a large proportion of the invaded niche that overlaps the native niche and is colonizing new environmental conditions in the invaded area relative to its native distribution (Africa). This information could be used in the planning of coffee crops on the American continent.


Sujet(s)
Écosystème , Espèce introduite , Animaux , Répartition des animaux , Lepidoptera , Coffea , Papillons de nuit
6.
Conserv Biol ; : e14277, 2024 Apr 25.
Article de Anglais | MEDLINE | ID: mdl-38660923

RÉSUMÉ

Globally, species are increasingly at risk from compounding threatening processes, an increasingly prominent driver of which is environmental disturbances. To facilitate effective conservation efforts following such events, methods that evaluate potential impacts across multiple species and provide landscape-scale information are needed to guide targeted responses. Often, the geographic overlap between a disturbance and species' distribution is calculated and then used as a proxy for potential impact. However, such methods do not account for the important influence of environmental heterogeneity throughout species' ranges. To address this shortcoming, we quantified the effects of environmental disturbances on species' environmental niche space. Using the Australian 2019 and 2020 Black Summer fires as a case study, we applied a niche-centric approach to examine the potential impacts of these fires on 387 vertebrate species. We examined the utility of established and novel niche metrics to assess the potential impacts of large-scale disturbance events on species by comparing the potential effects of the fires as determined by our various niche measures to those derived from geographic-based measures of impact. We examined the quality of environmental space affected by the disturbance by quantifying the position in niche space where the disturbance occurred (center or margin), the uniqueness of the environmental space that was burned, and the degree to which the remaining, unburned portion of the niche differed from a species' original prefire niche. There was limited congruence between the proportion of geographic and niche space affected, which showed that geographic-based approaches in isolation may have underestimated the impact of the fires for 56% of modeled species. For each species, when combined, these metrics provided a greater indication of postdisturbance recovery potential than geographic-based measures alone. Accordingly, the integration of niche-based analyses into conservation assessments following large-scale disturbance events will lead to a more nuanced understanding of potential impacts and guide more informed and effective conservation actions.


Estrategia basada en los nichos para explorar el impacto de la perturbación ambiental sobre la biodiversidad Resumen En todo el mundo, las especies corren un riesgo cada vez mayor de verse amenazadas por procesos combinados, entre los que destacan las perturbaciones ambientales. Para facilitar una labor de conservación eficaz después de estos fenómenos, se necesitan métodos que evalúen el impacto potencial en varias especies y proporcionen información a escala de paisaje para orientar las respuestas específicas. A menudo, se calcula el traslape geográfico entre una perturbación y la distribución de las especies y se utiliza como indicador del impacto potencial. Sin embargo, estos métodos no tienen en cuenta la influencia importante de la heterogeneidad ambiental en toda el área de distribución de las especies. Para abordar esta deficiencia, cuantificamos los efectos de las perturbaciones ambientales en el espacio del nicho ambiental de las especies. Usamos los incendios australianos de Black Summer de 2019 y 2020 como caso de estudio y aplicamos un enfoque centrado en el nicho para examinar los impactos potenciales de estos incendios en 387 especies de vertebrados. Analizamos la utilidad de las métricas nuevas y establecidas de nicho para evaluar los impactos potenciales de los eventos de perturbación a gran escala para las especies con la comparación de los efectos potenciales de los incendios determinados por nuestras diversas medidas de nicho con los derivados de las medidas de impacto basadas en la geografía. Examinamos la calidad del espacio ambiental afectado por la perturbación al cuantificar la posición en el espacio del nicho donde se produjo la perturbación (centro o margen), la singularidad del espacio ambiental que se quemó y el grado en que la parte restante no quemada del nicho difería del nicho original de una especie antes del incendio. Hubo una congruencia limitada entre la proporción del espacio geográfico y del nicho afectado, lo que demostró que los enfoques geográficos aislados pueden subestimar el impacto de los incendios para el 56% de las especies modeladas. Para cada especie, estas métricas combinadas proporcionaron una mayor indicación del potencial de recuperación tras las perturbaciones que las medidas geográficas por sí solas. Por lo tanto, la integración de los análisis basados en nichos en las evaluaciones de conservación tras perturbaciones a gran escala permitirá comprender mejor los impactos potenciales y orientar las acciones de conservación de manera más informada y eficaz.

7.
Ying Yong Sheng Tai Xue Bao ; 35(3): 797-805, 2024 Mar 18.
Article de Anglais | MEDLINE | ID: mdl-38646768

RÉSUMÉ

Phthorimaea operculella is a major potato pest of global importance, early warning and detection of which are of significance. In this study, we analyzed the climate niche conservation of P. operculella during its invasion by comparing the overall climate niche from three dimensions, including the differences between native range (South America) and entire invaded region (excluding South America), the differences bwtween native range (South America) and five invaded continents (North America, Oceania, Asia, Africa, and Europe), as well as the differences between native region (South America) and an invaded region (China). We constructed ecological niche models for its native range (South America) and invaded region (China). The results showed that the climatic niche of the pest has expanded to varying degrees in different regions, indicating that the pest could well adapt to new environments during the invasion. Almost all areas of South America are suitable for P. operculella. In China, its suitable area is mainly concentrated in Shandong, Hebei, Tianjin, Beijing, Henan, Hubei, Yunnan, Guizhou, Sichuan, Hainan, northern Guangxi, southern Hunan, Anhui, Guangdong, Jiangsu, southern Shanxi, and southern Shaanxi. With increasing greenhouse gas emissions and global temperature, its suitable area will decrease at low latitude and increase gradually at high latitude. Specifically, the northern boundary will extend to Liaoning, Jilin, and the southeastern region of Inner Mongolia, while the western boundary extends to Sichuan and the southeast Qinghai-Tibet Plateau. The suitable area in the southeast Yunnan-Guizhou Plateau, Hainan Island, and the south of Yangtze River, will gradually decrease. The total suitable habitat area for P. operculella in China is projected to increase under future climate condition. From 2081 to 2100, under the three greenhouse gas emissions scenarios of ssp126, ssp370, and ssp585, the suitable area is expected to increase by 27.78, 165.54, and 140.41 hm2, respectively. Therefore, it is crucial to strengtehen vigilance and implement strict measures to prevent the further expansion of P. operculella.


Sujet(s)
Écosystème , Espèce introduite , Chine , Animaux , Amérique du Sud , Climat
9.
Pest Manag Sci ; 80(7): 3423-3435, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38407566

RÉSUMÉ

BACKGROUND: Dendroctonus valens along with its symbiotic fungi have caused unprecedented damage to pines in China. Leptographium procerum, its primary symbiotic fungus, facilitates the invasion and colonization of the pest, thereby aggravating ecological threats. Assessing shifts in the niches and ranges of D. valens and its symbiotic fungus could provide a valuable basis for pest control. Here, we conducted niche comparisons between native and invasive populations of D. valens. Then, we employed standard ecological niche models and ensembles of small models to predict the potential distributions of D. valens and L. procerum under climate change conditions and to estimate areas of overlap. RESULTS: The niche of invasive population of D. valens in Chinese mainland only occupied a limited portion of the niche of native population in North America, leaving a substantial native niche unfilled and without any niche expansion. The suitable regions for D. valens are predicted in central and southern North America and central and northeastern Chinese mainland. The overlap with the suitable regions of L. procerum included eastern North America and the central and northeastern Chinese mainland under historical climatic scenarios. The regions susceptible to their symbiotic damage will shift northward in response to future climate change. CONCLUSIONS: Projected distributions of D. valens and its symbiotic fungus, along with areas vulnerable to their symbiotic damage, provide essential insights for devising strategies against this association. Additionally, our study contributes to comprehending how biogeographic approaches aid in estimating potential risks of pest-pathogen interactions in forests within a warming world. © 2024 Society of Chemical Industry.


Sujet(s)
Changement climatique , Symbiose , Charançons , Animaux , Chine , Charançons/microbiologie , Charançons/physiologie , Espèce introduite , Coléoptères/microbiologie , Coléoptères/physiologie , Modèles biologiques , Écosystème , Répartition des animaux , Pinus/parasitologie , Pinus/microbiologie
10.
Front Zool ; 21(1): 3, 2024 Feb 01.
Article de Anglais | MEDLINE | ID: mdl-38297312

RÉSUMÉ

BACKGROUND: Recent climate changes have produced extreme climate events. This study focused on extreme snowfall and intended to discuss the vulnerability of temperate mammals against it through interspecies comparisons of spatial niches in northern Japan. We constructed niche models for seven non-hibernating species through wide-scaled snow tracking on skis, whose total survey length was 1144 km. RESULTS: We detected a low correlation (rs < 0.4) between most pairs of species niches, indicating that most species possessed different overwintering tactics. A morphological advantage in locomotion cost on snow did not always expand niche breadth. In contrast, a spatial niche could respond to (1) drastic landscape change by a diminishing understory due to snow, possibly leading to changes in predator-prey interactions, and (2) the mass of cold air, affecting thermoregulatory cost and food accessibility. When extraordinary snowfall occurred, the nonarboreal species with larger body sizes could niche shift, whereas the smaller-sized or semi-arboreal mammals did not. In addition, compared to omnivores, herbivores were prone to severe restriction of niche breadth due to a reduction in food accessibility under extreme climates. CONCLUSIONS: Dietary habits and body size could determine the redundancy of niche width, which may govern robustness/vulnerability to extreme snowfall events.

11.
Glob Chang Biol ; 30(1): e17125, 2024 Jan.
Article de Anglais | MEDLINE | ID: mdl-38273487

RÉSUMÉ

Climate change may be an important threat to global biodiversity, potentially leading to the extinction of numerous species. But how many? There have been various attempts to answer this question, sometimes yielding strikingly different estimates. Here, we review these estimates, assess their disagreements and methodology, and explore how we might reach better estimates. Large-scale studies have estimated the extinction of ~1% of sampled species up to ~70%, even when using the same approach (species distribution models; SDMs). Nevertheless, worst-case estimates often converge near 20%-30% species loss, and many differences shrink when using similar assumptions. We perform a new review of recent SDM studies, which show ~17% loss of species to climate change under worst-case scenarios. However, this review shows that many SDM studies are biased by excluding the most vulnerable species (those known from few localities), which may lead to underestimating global species loss. Conversely, our analyses of recent climate change responses show that a fundamental assumption of SDM studies, that species' climatic niches do not change over time, may be frequently violated. For example, we find mean rates of positive thermal niche change across species of ~0.02°C/year. Yet, these rates may still be slower than projected climate change by ~3-4 fold. Finally, we explore how global extinction levels can be estimated by combining group-specific estimates of species loss with recent group-specific projections of global species richness (including cryptic insect species). These preliminary estimates tentatively forecast climate-related extinction of 14%-32% of macroscopic species in the next ~50 years, potentially including 3-6 million (or more) animal and plant species, even under intermediate climate change scenarios.


Sujet(s)
Changement climatique , Écosystème , Animaux , Biodiversité , Plantes , Prévision
12.
Mol Phylogenet Evol ; 190: 107960, 2024 Jan.
Article de Anglais | MEDLINE | ID: mdl-37918683

RÉSUMÉ

The cycad genus Ceratozamia comprises 40 species from Mexico, Guatemala, Belize, and Honduras, where cycads occur throughout climatically varied montane habitats. Ceratozamia has the potential to reveal the history and processes of species diversification across diverse Neotropical habitats in this region. However, the species relationships within Ceratozamia and the ecological trends during its evolution remain unclear. Here, we aimed to clarify the phylogenetic relationships, the timing of clade and species divergences, and the niche evolution throughout the phylogenetic history of Ceratozamia. Genome-wide DNA sequences were obtained with MIG-seq, and multiple data-filtering steps were used to optimize the dataset used to construct an ultrametric species tree. Divergence times among branches and ancestral niches were estimated. The niche variation among species was evaluated, summarized into two principal components, and their ancestral states were reconstructed to test whether niche shifts among branches can be explained by random processes, under a Brownian Motion model. Ceratozamia comprises three main clades, and most species relationships within the clades were resolved. Ceratozamia has diversified since the Oligocene, with major branching events occurring during the Miocene. This timing is consistent with fossil evidence, the timing estimated for other Neotropical plant groups, and the major geological events that shaped the topographic and climatic variation in Mexico. Patterns of niche evolution in the genus do not accord with the Brownian Motion model. Rather, non-random evolution with shifts towards more seasonal environments at high latitudes, or shifts towards humid or dry environments at low latitudes explain the diversification of Ceratozamia. We present a comprehensive phylogenetic reconstruction for Ceratozamia and identify for the first time the environmental factors involved in clade and species diversification within the genus. This study alleviates the controversies regarding the species relationships in the genus and provides the first evidence that latitude-associated environmental factors may influence processes of niche evolution in cycads.


Sujet(s)
Zamiaceae , Phylogenèse , Zamiaceae/génétique , Phylogéographie , Écosystème , Facteurs temps
13.
Ecol Evol ; 13(12): e10769, 2023 Dec.
Article de Anglais | MEDLINE | ID: mdl-38077516

RÉSUMÉ

Tephroseris helenitis is a perennial herb that experienced a severe decline of species records over the last 120 years in the state of Hessia, Germany. Here, the species is found in humid habitats with moderate temperatures. In this modeling study, we assessed changes in climatic conditions between the periods 1900-1949, 1950-1979, 1980-1999 and 2000-2020 and explored whether these changes can explain the decline of records of T. helenitis. Climatic variables used were monthly precipitation sums, monthly mean, minimum and maximum temperatures, monthly temperature ranges as well as annual precipitation sum and annual mean temperature. For the majority of these variables, changes were significant across periods. Minimum temperatures in March, April and July (Tmin_Mar, Tmin_Apr, Tmin_Jul) best explained species presences and absences in 1900-1949 and 1950-1979. The species shifted its realized niche towards lower Tmin_Mar and narrowed its niche on Tmin_Apr and Tmin_Jul between these two periods. March, April and July are crucial in the life cycle of T. helenitis. Tmin_Mar and Tmin_Apr are related to the induction of flowering through a period of low temperatures (vernalization), and Tmin_Jul is related to seed germination. Documented increasing March and April temperatures as well as autumn and winter temperatures in the past 120 years may imply that vernalization became increasingly unsuccessful for the species and increasing July temperatures may have decreased its germination success. Given the disappearance of its temperature niche (Tmin_Mar, Tmin_Apr, Tmin_Jul) due to ongoing global warming not only in Hessia and Germany, we anticipate that T. helenitis will go extinct in Europe.

14.
Insects ; 14(10)2023 Oct 13.
Article de Anglais | MEDLINE | ID: mdl-37887822

RÉSUMÉ

The yellow fever (Aedes aegypti) and Asian tiger (Ae. albopictus) mosquitos are major vectors of global mosquito-borne pathogens. However, their niche and range shifts, the underlying mechanisms, and related relative invasion rates remain scarcely known. We examined the niche and range shifts between the native and invasive Ae. aegypti and Ae. albopictus populations through dynamic niche and range models and the largest occurrence record datasets to date. We detected substantial niche and range expansions in both species, probably because the introduced populations have more opportunities to acclimate to diverse environmental conditions than their native counterparts. Mitigating climate change could effectively control their future invasions, given that future climate changes could promote their invasiveness. Additionally, compared to the introduced Ae. aegypti, the more recent invader Ae. albopictus had greater niche and range expansion over its shorter invasion history. In terms of the range shifts, Ae. albopictus had an invasion rate approximately 13.3 times faster than that of Ae. aegypti, making it a more invasive vector of global mosquito-borne pathogens. Therefore, considering its higher invasion rate, much more attention should be paid to Ae. albopictus in devising our strategies against prevailing global mosquito-borne pathogens than Ae. aegypti. Since small niche shifts could result in their large range shifts, niche shifts might be a more important indicator for biological invasion assessments.

15.
Genome Biol Evol ; 15(10)2023 10 06.
Article de Anglais | MEDLINE | ID: mdl-37793176

RÉSUMÉ

Animals abandoned their marine niche and successfully adapted to life on land multiple times throughout evolution, providing a rare opportunity to study the mechanisms driving large scale macroevolutionary convergence. However, the genomic factors underlying this process remain largely unknown. Here, we investigate the macroevolutionary dynamics of gene repertoire evolution during repeated transitions out of the sea in mollusks, a lineage that has transitioned to freshwater and terrestrial environments multiple independent times. Through phylogenomics and phylogenetic comparative methods, we examine ∼100 genomic data sets encompassing all major molluskan lineages. We introduce a conceptual framework for identifying and analyzing parallel and convergent evolution at the orthogroup level (groups of genes derived from a single ancestral gene in the species in question) and explore the extent of these mechanisms. Despite deep temporal divergences, we found that parallel expansions of ancient gene families played a major role in facilitating adaptation to nonmarine habitats, highlighting the relevance of the preexisting genomic toolkit in facilitating adaptation to new environments. The expanded functions primarily involve metabolic, osmoregulatory, and defense-related systems. We further found functionally convergent lineage-exclusive gene gains, while family contractions appear to be driven by neutral processes. Also, genomic innovations likely contributed to fuel independent habitat transitions. Overall, our study reveals that various mechanisms of gene repertoire evolution-parallelism, convergence, and innovation-can simultaneously contribute to major evolutionary transitions. Our results provide a genome-wide gene repertoire atlas of molluskan terrestrialization that paves the way toward further understanding the functional and evolutionary bases of this process.


Sujet(s)
Évolution biologique , Évolution moléculaire , Animaux , Phylogenèse , Génomique , Mollusca/génétique , Écosystème
16.
Ecol Lett ; 26 Suppl 1: S47-S61, 2023 Sep.
Article de Anglais | MEDLINE | ID: mdl-37840020

RÉSUMÉ

Plasticity-mediated changes in interaction dynamics and structure may scale up and affect the ecological network in which the plastic species are embedded. Despite their potential relevance for understanding the effects of plasticity on ecological communities, these effects have seldom been analysed. We argue here that, by boosting the magnitude of intra-individual phenotypic variation, plasticity may have three possible direct effects on the interactions that the plastic species maintains with other species in the community: may expand the interaction niche, may cause a shift from one interaction niche to another or may even cause the colonization of a new niche. The combined action of these three factors can scale to the community level and eventually expresses itself as a modification in the topology and functionality of the entire ecological network. We propose that this causal pathway can be more widespread than previously thought and may explain how interaction niches evolve quickly in response to rapid changes in environmental conditions. The implication of this idea is not solely eco-evolutionary but may also help to understand how ecological interactions rewire and evolve in response to global change.


Sujet(s)
Adaptation physiologique , Évolution biologique
17.
Sci Total Environ ; 898: 165476, 2023 Nov 10.
Article de Anglais | MEDLINE | ID: mdl-37454863

RÉSUMÉ

The process of forest range shift not only affects the vegetation aboveground but also influences the dynamics of belowground microbial communities. To investigate the changes in soil under forest range shift, we examined the natural forest soil microbiome along with its corresponding physicochemical properties, as well as the afforestation of natural forest by seedlings and sowing. By utilizing natural forests and employing different afforestation methods, we simulated the three stages of forest range shift: the staging stage, regeneration, and colonization. We employed network analysis and phylogenetic assemblages to examine the structure of soil microbial communities during these three stages in a macro-environmental change context. Ordination and regression analyses were also used to explore the correlation between microorganisms, environmental factors, and changes in their niches. The findings revealed that different afforestation (range shift) types led to distinct microbial compositions. Seedling afforestation exhibited similarities to mature forests, suggesting a significant influence on below-ground microorganisms. In contrast, sowing-based afforestation resulted in small changes in soil microbes, indicating a legacy effect on grassland soils. The impact of the rhizosphere on microbial composition remained consistent across the three forest types. Overall, this study underscores the significance of forest range shift in shaping soil microbial communities and emphasizes the need to consider these dynamics in forest management and restoration endeavours.


Sujet(s)
Microbiote , Sol , Sol/composition chimique , Phylogenèse , Microbiologie du sol , Forêts
18.
Ecol Lett ; 26(7): 1084-1094, 2023 Jul.
Article de Anglais | MEDLINE | ID: mdl-37125448

RÉSUMÉ

Most animals undergo ontogenetic niche shifts during their life. Yet, standard ecological theory builds on models that ignore this complexity. Here, we study how complex life cycles, where juvenile and adult individuals each feed on different sets of resources, affect community richness. Two different modes of community assembly are considered: gradual adaptive evolution and immigration of new species with randomly selected phenotypes. We find that under gradual evolution complex life cycles can lead to both higher and lower species richness when compared to a model of species with simple life cycles that lack an ontogenetic niche shift. Thus, complex life cycles do not per se increase the scope for gradual adaptive diversification. However, complex life cycles can lead to significantly higher species richness when communities are assembled trough immigration, as immigrants can occupy isolated peaks of the dynamic fitness landscape that are not accessible via gradual evolution.


Sujet(s)
Émigration et immigration , Étapes du cycle de vie , Animaux , Phénotype , Évolution biologique , Écosystème
19.
Pest Manag Sci ; 79(9): 3364-3375, 2023 Sep.
Article de Anglais | MEDLINE | ID: mdl-37133424

RÉSUMÉ

BACKGROUND: Pycnoderes quadrimaculatus is a pest that feeds on several plants, many of which are economically important. It is native to North/Central America and its distribution has expanded to several countries in South America. RESULTS: Ecological niche models show that P. quadrimaculatus has invaded regions with climates different from those of its native range, and that there are suitable climatic conditions for its establishment worldwide. Regions where P. quadrimaculatus is a major threat and possible natural pathways of ingression were identified. In the future, its distribution will be modified by climate change. CONCLUSIONS: This study provides useful information for risk assessment and pest management of P. quadrimaculatus. According to our results, the species has great potential as a pest because it can adapt to different climatic conditions and feeds on a wide range of economically important plants. Over time, its distribution has expanded, and our models suggest that it will continue to invade other regions unless preventive measures are taken. © 2023 Society of Chemical Industry.


Sujet(s)
Heteroptera , Animaux , Amérique du Nord , Modèles théoriques , Amérique centrale , Changement climatique , Écosystème , Espèce introduite
20.
Plant Divers ; 45(1): 36-44, 2023 Jan.
Article de Anglais | MEDLINE | ID: mdl-36876317

RÉSUMÉ

Polyploidy after hybridization between species can lead to immediate post-zygotic isolation, causing saltatory origin of new species. Although the incidence of polyploidization in plants is high, it is thought that a new polyploid lineage can succeed only if it establishes a new ecological niche divergent from its progenitor lineages. We tested the hypothesis that Rhodiola integrifolia from North America is an allopolyploid produced by R. rhodantha and R. rosea and determined whether its survival can be explained by the niche divergence hypothesis. To this end, we sequenced two low-copy nuclear genes (ncpGS and rpb2) in a phylogenetic analysis of 42 Rhodiola species and tested for niche equivalency and similarity using Schoener's D as the index of niche overlap. Our phylogeny-based approach showed that R. integrifolia possesses alleles from both R. rhodantha and R. rosea. Dating analysis showed that the hybridization event that led to R. integrifolia occurred ca. 1.67 Mya and niche modeling analysis showed that at this time, both R. rosea and R. rhodantha may have been present in Beringia, providing the opportunity for the hybridization event. We also found that the niche of R. integrifolia differs from that of its progenitors in both niche breadth and optimum. Taken together, these results confirm the hybrid origin of R. integrifolia and support the niche divergence hypothesis for this tetraploid species. Our results underscore the fact that lineages with no current overlapping distribution could produce hybrid descendants in the past, when climate oscillations made their distributions overlap.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE