Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 7 de 7
Filtrer
Plus de filtres











Gamme d'année
1.
Molecules ; 28(2)2023 Jan 15.
Article de Anglais | MEDLINE | ID: mdl-36677929

RÉSUMÉ

Arthroplasty is an orthopedic surgical procedure that replaces a dysfunctional joint by an orthopedic prosthesis, thereby restoring joint function. Upon the use of the joint prosthesis, a wearing process begins, which releases components such as titanium dioxide (TiO2) that trigger an immune response in the periprosthetic tissue, leading to arthritis, arthroplasty failure, and the need for revision. Flavonoids belong to a class of natural polyphenolic compounds that possess antioxidant and anti-inflammatory activities. Hesperidin methyl chalcone's (HMC) analgesic, anti-inflammatory, and antioxidant effects have been investigated in some models, but its activity against the arthritis caused by prosthesis-wearing molecules, such as TiO2, has not been investigated. Mice were treated with HMC (100 mg/kg, intraperitoneally (i.p.)) 24 h after intra-articular injection of 3 mg/joint of TiO2, which was used to induce chronic arthritis. HMC inhibited mechanical hyperalgesia, thermal hyperalgesia, joint edema, leukocyte recruitment, and oxidative stress in the knee joint (alterations in gp91phox, GSH, superoxide anion, and lipid peroxidation) and in recruited leukocytes (total reactive oxygen species and GSH); reduced patellar proteoglycan degradation; and decreased pro-inflammatory cytokine production. HMC also reduced the activation of nociceptor-sensory TRPV1+ and TRPA1+ neurons. These effects occurred without renal, hepatic, or gastric damage. Thus, HMC reduces arthritis triggered by TiO2, a component released upon wearing of prosthesis.


Sujet(s)
Arthrite , Chalcones , Hespéridine , Souris , Animaux , Nocicepteurs/métabolisme , Chalcones/usage thérapeutique , Inflammation/traitement médicamenteux , Inflammation/métabolisme , Arthrite/traitement médicamenteux , Stress oxydatif , Antioxydants/pharmacologie , Anti-inflammatoires/pharmacologie , Hyperalgésie/traitement médicamenteux , Cytokines/métabolisme
2.
Front Physiol ; 12: 733267, 2021.
Article de Anglais | MEDLINE | ID: mdl-34764880

RÉSUMÉ

Pain by chemical irritants is one of the less well-described aspects of nociception. The acidic substance is the paradigm of the chemical noxious compound. An acidic insult on cutaneous, subcutaneous and muscle tissue results in pain sensation. Acid (or H+) has at least two main receptor channels in dorsal root ganglia (DRG) nociceptors: the heat receptor transient receptor potential vanilloid 1 (TRPV1) and the acid-sensing ionic channels (ASICs). TRPV1 is a low-sensitivity H+ receptor, whereas ASIC channels display a higher H+ sensitivity of at least one order of magnitude. In this review, we first describe the functional and structural characteristics of these and other H+-receptor candidates and the biophysics of their responses to low pH. Additionally, we compile reports of the expression of these H+-receptors (and other possible complementary proteins) within the DRG and compare these data with mRNA expression profiles from single-cell sequencing datasets for ASIC3, ASIC1, transient receptor potential Ankiryn subtype 1 (TRPA1) and TRPV1. We show that few nociceptor subpopulations (discriminated by unbiased classifications) combine acid-sensitive channels. This comparative review is presented in light of the accumulating evidence for labeled-line coding for most noxious sensory stimuli.

3.
J Clin Med ; 10(19)2021 Sep 24.
Article de Anglais | MEDLINE | ID: mdl-34640360

RÉSUMÉ

Nociceptive innervation of the thoracolumbar fascia (TLF) has been investigated over the past few decades; however, these studies have not been compiled or collectively appraised. The purpose of this scoping review was to assess current knowledge regarding nociceptive innervation of the TLF to better inform future mechanistic and clinical TLF research targeting lower back pain (LBP) treatment. PubMed, ScienceDirect, Cochrane, and Embase databases were searched in January 2021 using relevant descriptors encompassing fascia and pain. Eligible studies satisfied the following: (a) published in English; (b) preclinical and clinical (in vivo and ex vivo) studies; (c) original data; (d) included quantification of at least one TLF nociceptive component. Two-phase screening procedures were conducted by a pair of independent reviewers, after which data were extracted and summarized from eligible studies. The search resulted in 257 articles of which 10 met the inclusion criteria. Studies showed histological evidence of nociceptive nerve fibers terminating in lower back fascia, suggesting a TLF contribution to LBP. Noxious chemical injection or electrical stimulation into fascia resulted in longer pain duration and higher pain intensities than injections into subcutaneous tissue or muscle. Pre-clinical and clinical research provides histological and functional evidence of nociceptive innervation of TLF. Additional knowledge of fascial neurological components could impact LBP treatment.

4.
Trends Immunol ; 38(1): 5-19, 2017 Jan.
Article de Anglais | MEDLINE | ID: mdl-27793571

RÉSUMÉ

Nociceptor sensory neurons protect organisms from danger by eliciting pain and driving avoidance. Pain also accompanies many types of inflammation and injury. It is increasingly clear that active crosstalk occurs between nociceptor neurons and the immune system to regulate pain, host defense, and inflammatory diseases. Immune cells at peripheral nerve terminals and within the spinal cord release mediators that modulate mechanical and thermal sensitivity. In turn, nociceptor neurons release neuropeptides and neurotransmitters from nerve terminals that regulate vascular, innate, and adaptive immune cell responses. Therefore, the dialog between nociceptor neurons and the immune system is a fundamental aspect of inflammation, both acute and chronic. A better understanding of these interactions could produce approaches to treat chronic pain and inflammatory diseases.


Sujet(s)
Système immunitaire , Inflammation/immunologie , Neuro-immunomodulation , Nocicepteurs/métabolisme , Douleur/immunologie , Cellules réceptrices sensorielles/immunologie , Immunité acquise , Animaux , Humains , Immunité innée , Neuropeptides/métabolisme , Agents neuromédiateurs/métabolisme
5.
J Dent Res ; 93(8): 788-93, 2014 Aug.
Article de Anglais | MEDLINE | ID: mdl-24928097

RÉSUMÉ

Reactionary dentin formation is an adaptive secretory response mediated by odontoblasts to moderate dentin injury. The implications of this process for neuroimmune interactions operating to contain pathogens have not been fully appreciated. The purpose of the present study was to describe the relationship between reactionary dentinogenesis, the neurogenic changes of dental pulp innervation, and dendritic cell recruitment to caries progression, using a comparative immunohistochemical approach in human teeth from young adult individuals. Reactionary dentin formation during dentin caries progression is associated with changes in the integrity of junctional complexes within the odontoblast layer. Diminished coexpression of Cx43 and zonula occludens 1 implies a reduced level of intercellular connectivity between odontoblasts. Dentin caries also causes overexpression of growth-associated protein 43, a modulator of neural plasticity that promotes extensive sprouting of nerve endings into the reactionary dentin matrix. At the same time, an elevated number of HLA-DR-positive dendritic cells infiltrate the odontoblast layer and subsequently invade reactionary dentin formed underneath the early caries-affected regions. Simultaneous odontoblast layer remodeling, nerve fiber sprouting, and activation of dendritic cells during caries progression suggest a coordinated neuroimmune response to fight caries pathogen invasion and to promote dentin-pulp healing. We propose that reactionary dentin formation hinders pathogen invasion and supports defensive neuroimmune interactions against infection. The eventual understanding of this complex scenario may contribute to the development of novel approaches to dental caries treatment.


Sujet(s)
Caries dentaires/anatomopathologie , Dentine secondaire/anatomopathologie , Dentinogenèse/physiologie , Adolescent , Adulte , Mouvement cellulaire/physiologie , Connexine 43/analyse , Cellules dendritiques/immunologie , Pulpe dentaire/immunologie , Pulpe dentaire/innervation , Dentine secondaire/immunologie , Dentine secondaire/innervation , Dentinogenèse/immunologie , Évolution de la maladie , Protéine GAP-43/analyse , Antigènes HLA-DR/analyse , Humains , Jonctions intercellulaires/anatomopathologie , Terminaisons nerveuses/ultrastructure , Neurofibres/ultrastructure , Neuro-immunomodulation/physiologie , Plasticité neuronale/physiologie , Odontoblastes/anatomopathologie , Jeune adulte , Protéine-1 de la zonula occludens/analyse
6.
Life Sci ; 105(1-2): 7-13, 2014 Jun 06.
Article de Anglais | MEDLINE | ID: mdl-24607781

RÉSUMÉ

AIMS: Although evidence suggest that TRPA1 mediates some effects of prostaglandins, it is not known whether TRPA1 contributes to the in vivo nociceptive effects of prostaglandin E2 (PGE2), a key mediator of inflammatory pain. MAIN METHODS: To address this issue, the effect of the pharmacological blockade of TRPA1 or of its gene silencing on the hyperalgesia induced in the rat paw by PGE2 or its downstream signaling molecules, protein kinase A (PKA) or protein kinase C-epsilon (PKCε), was evaluated. TRPA1 expression on dorsal root ganglia cells was assessed by western blot. KEY FINDINGS: The pharmacological blockade of local TRPA1 by its selective antagonist, HC 030031 decreased and reversed PGE2-induced hyperalgesia. The TRPA1 gene silencing induced by intrathecal pre-treatment with antisense oligodeoxynucleotide blocked PGE2-induced hyperalgesia and strongly reduced TRPA1 expression in dorsal root ganglia cells (L5 and L6). PGE2 injection into the hind paw did not significantly increase TRPA1 expression in dorsal root ganglia cells. Treatment with either HC 030031 or antisense oligodeoxynucleotide significantly decreased the hyperalgesia induced by PKA or PKCε. Since both kinases are the major components of PGE2-induced intracellular signal transduction, the modulation of TRPA1 function by PGE2 may be downstream PKA and PKC-epsilon. SIGNIFICANCE: These findings show that TRPA1 is essential to the in vivo nociceptive effects induced by one of the most important mediators of inflammatory pain, PGE2. This is one of the crucial findings necessary to support TRPA1 as a promising target for the development of future drugs to pain treatment and control.


Sujet(s)
Dinoprostone/métabolisme , Ganglions sensitifs des nerfs spinaux/métabolisme , Nociception/physiologie , Canaux cationiques TRPC/métabolisme , Acétanilides/pharmacologie , Analyse de variance , Animaux , Technique de Western , Cyclic AMP-Dependent Protein Kinases/métabolisme , Facteurs de croissance fibroblastique , Extinction de l'expression des gènes , Protein kinase C-epsilon/métabolisme , Purines/pharmacologie , Rats , Membre-1 de la sous-famille A de canaux cationiques à potentiel de récepteur transitoire , Canaux cationiques TRPC/antagonistes et inhibiteurs , Canaux cationiques TRPC/génétique
7.
Dolor ; 17(50): 44-48, dic. 2007. ilus
Article de Espagnol | LILACS | ID: lil-677759

RÉSUMÉ

Todas las formas de dolor incluyen el desarrollo de un estado de hiperalgesia que ilustra la naturaleza dinámica y plástica de la sensación de dolor. La hiperalgesia es la característica más importante del proceso doloroso y es la expresión de la hipersensibilidad de las vías del dolor inducida por la sensibilización de los receptores periféricos que registran eventos dolorosos y de las neuronas que transmiten y procesan esta información sensorial al SNC. Los nociceptores periféricos se sensibilizan adquiriendo una mayor y a veces nueva capacidad de respuesta a los estímulos periféricos. Por otra parte, un proceso de plasticidad sináptica, del cual se ha identificado una variedad de componentes moleculares, interviene en la amplificación central de las señales de las aferencias nociceptivas, lo cual evoca la hipersensibilidad de las neuronas centrales. El resultado final es un proceso sensorial que, a pesar de haber sido puesto en marcha inicialmente por una lesión, puede no mantener una relación estrecha con la lesión original y convertirse en un estado de dolor crónico sin tener una causa definida.


All froms of pain include the development of a hyperalgesic state that illustrates the dynamic and plastic nature of pain sesation. Hyperalgesia is the most prominent feature of the pain process and is the expression of hypersensitivity of the pain pathway induced by the sensitization of the peripheral receptors that signal painful events and of the neurons that transmit and process this sensory information to the CNS. Peripheral nociceptors can be sensitized, acquiring enhanced, and sometimes novel, responsiveness to peripheral stimuli. On the other hand a process of synaptic plasticity, of which several molecular components have already been identified, mediates the central amplification of the afferent signals that leads to the hypersensitivity of central neurons. The final result is a sensory process that, although initially triggered by injury, may not keep a close relationship with the originating injury and develop into a chronic pain state in the absence of a defined cause.


Sujet(s)
Humains , Douleur/classification , Douleur/physiopathologie , Douleur/traitement médicamenteux , Hyperalgésie/diagnostic , Hyperalgésie/physiopathologie , Plasticité neuronale , Plasticité neuronale/physiologie , Cellules réceptrices sensorielles , Mesure de la douleur/méthodes , Neuropathies périphériques/traitement médicamenteux , Moelle spinale , Neurones afférents , Neurones afférents/physiologie , Nocicepteurs/physiologie , Perception du toucher , Perception du toucher/physiologie
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE