Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 6 de 6
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Autophagy ; : 1-4, 2024 Jul 24.
Article de Anglais | MEDLINE | ID: mdl-39045779

RÉSUMÉ

Vac8 is the sole armadillo-repeat (ARM) protein in yeast. The function of Vac8 in the cytoplasm-to-vacuole targeting pathway has been known for a long time but its role in the phagophore assembly site localization and recruitment of autophagy-related protein complexes is slowly coming to light. Because Vac8 is also involved in formation of the nuclear-vacuole junction and vacuole inheritance, the protein needs to be a competent and wide-ranging mediator of cellular processes. In this article, we discuss two recent studies reporting on Vac8 and its binding partners. We describe Vac8 in the context of crystallized protein complexes as well as predicted models to reveal the versatility of Vac8 and its potential to become a subject of future autophagy research.Abbreviation: ARM, armadillo repeat; Cvt, cytoplasm-to-vacuole targeting; IDPR, intrinsically disordered protein region NVJ, nucleus-vacuole junction; SEC, size-exclusion chromatography.

2.
J Biol Chem ; 300(8): 107584, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-39025454

RÉSUMÉ

The oligosaccharide needed for protein N-glycosylation is assembled on a lipid carrier via a multistep pathway. Synthesis is initiated on the cytoplasmic face of the endoplasmic reticulum (ER) and completed on the luminal side after transbilayer translocation of a heptasaccharide lipid intermediate. More than 30 congenital disorders of glycosylation (CDGs) are associated with this pathway, including RFT1-CDG which results from defects in the membrane protein Rft1. Rft1 is essential for the viability of yeast and mammalian cells and was proposed as the transporter needed to flip the heptasaccharide lipid intermediate across the ER membrane. However, other studies indicated that Rft1 is not required for heptasaccharide lipid flipping in microsomes or unilamellar vesicles reconstituted with ER membrane proteins, nor is it required for the viability of at least one eukaryote. It is therefore not known what essential role Rft1 plays in N-glycosylation. Here, we present a molecular characterization of human Rft1, using yeast cells as a reporter system. We show that it is a multispanning membrane protein located in the ER, with its N and C termini facing the cytoplasm. It is not N-glycosylated. The majority of RFT1-CDG mutations map to highly conserved regions of the protein. We identify key residues that are important for Rft1's ability to support N-glycosylation and cell viability. Our results provide a necessary platform for future work on this enigmatic protein.


Sujet(s)
Troubles congénitaux de la glycosylation , Réticulum endoplasmique , Protéines membranaires , Saccharomyces cerevisiae , Humains , Réticulum endoplasmique/métabolisme , Réticulum endoplasmique/génétique , Troubles congénitaux de la glycosylation/métabolisme , Troubles congénitaux de la glycosylation/génétique , Troubles congénitaux de la glycosylation/anatomopathologie , Glycosylation , Protéines membranaires/métabolisme , Protéines membranaires/génétique , Saccharomyces cerevisiae/métabolisme , Saccharomyces cerevisiae/génétique , Glycoprotéines membranaires
3.
bioRxiv ; 2024 Jun 22.
Article de Anglais | MEDLINE | ID: mdl-38617304

RÉSUMÉ

The oligosaccharide needed for protein N-glycosylation is assembled on a lipid carrier via a multi-step pathway. Synthesis is initiated on the cytoplasmic face of the endoplasmic reticulum (ER) and completed on the luminal side after transbilayer translocation of a heptasaccharide lipid intermediate. More than 30 Congenital Disorders of Glycosylation (CDGs) are associated with this pathway, including RFT1-CDG which results from defects in the membrane protein Rft1. Rft1 is essential for the viability of yeast and mammalian cells and was proposed as the transporter needed to flip the heptasaccharide lipid intermediate across the ER membrane. However, other studies indicated that Rft1 is not required for heptasaccharide lipid flipping in microsomes or unilamellar vesicles reconstituted with ER membrane proteins, nor is it required for the viability of at least one eukaryote. It is therefore not known what essential role Rft1 plays in N-glycosylation. Here, we present a molecular characterization of human Rft1, using yeast cells as a reporter system. We show that it is a multi-spanning membrane protein located in the ER, with its N and C-termini facing the cytoplasm. It is not N-glycosylated. The majority of RFT1-CDG mutations map to highly conserved regions of the protein. We identify key residues that are important for Rft1's ability to support N-glycosylation and cell viability. Our results provide a necessary platform for future work on this enigmatic protein.

4.
Cell Rep ; 34(3): 108637, 2021 01 19.
Article de Anglais | MEDLINE | ID: mdl-33472077

RÉSUMÉ

Membrane contact sites facilitate the exchange of metabolites between organelles to support interorganellar communication. The nucleus-vacuole junctions (NVJs) establish physical contact between the perinuclear endoplasmic reticulum (ER) and the vacuole. Although the NVJ tethers are known, how NVJ abundance and composition are controlled in response to metabolic cues remains elusive. Here, we identify the ER protein Snd3 as central factor for NVJ formation. Snd3 interacts with NVJ tethers, supports their targeting to the contacts, and is essential for NVJ formation. Upon glucose exhaustion, Snd3 relocalizes from the ER to NVJs and promotes contact expansion regulated by central glucose signaling pathways. Glucose replenishment induces the rapid dissociation of Snd3 from the NVJs, preceding the slow disassembly of the junctions. In sum, this study identifies a key factor required for formation and regulation of NVJs and provides a paradigm for metabolic control of membrane contact sites.


Sujet(s)
Noyau de la cellule/métabolisme , Glucose/métabolisme , Protéines de transport du phosphate/métabolisme , Protéines de Saccharomyces cerevisiae/métabolisme , Saccharomyces cerevisiae/métabolisme , Vacuoles/métabolisme , Transduction du signal
5.
Autophagy ; 16(6): 991-1006, 2020 06.
Article de Anglais | MEDLINE | ID: mdl-31512555

RÉSUMÉ

Armadillo (ARM) repeat proteins constitute a large protein family with diverse and fundamental functions in all organisms, and armadillo repeat domains share high structural similarity. However, exactly how these structurally similar proteins can mediate diverse functions remains a long-standing question. Vac8 (vacuole related 8) is a multifunctional protein that plays pivotal roles in various autophagic pathways, including piecemeal microautophagy of the nucleus (PMN) and cytoplasm-to-vacuole targeting (Cvt) pathways in the budding yeast Saccharomyces cerevisiae. Vac8 comprises an H1 helix at the N terminus, followed by 12 armadillo repeats. Herein, we report the crystal structure of Vac8 bound to Atg13, a key component of autophagic machinery. The 70-Å extended loop of Atg13 binds to the ARM domain of Vac8 in an antiparallel manner. Structural, biochemical, and in vivo experiments demonstrated that the H1 helix of Vac8 intramolecularly associates with the first ARM and regulates its self-association, which is crucial for Cvt and PMN pathways. The structure of H1 helix-deleted Vac8 complexed with Atg13 reveals that Vac8[Δ19-33]-Atg13 forms a heterotetramer and adopts an extended superhelical structure exclusively employed in the Cvt pathway. Most importantly, comparison of Vac8-Nvj1 and Vac8-Atg13 provides a molecular understanding of how a single ARM domain protein adopts different quaternary structures depending on its associated proteins to differentially regulate 2 closely related but distinct cellular pathways. ABBREVIATIONS: Ape1: aminopeptidase I; ARM: armadillo repeat; Atg: autophagy-related; AUC: analytical ultracentrifugation; Cvt: cytoplasm-to-vacuole targeting; DIC: differential interference contrast; GFP: green fluorescent protein; GST: glutathione-S-transferase; ITC: isothermal titration calorimetry; NVJ: nucleus-vacuole junction; PDB: protein data bank; PMN: piecemeal microautophagy of the nucleus; prApe1: precursor Ape1; RMSD: root-mean-square deviation; SAXS: small-angle X-ray scattering; SD-N: nitrogen starvation medium; SEC: size-exclusion chromatography; tAtg13: Atg13 construct comprising residues 567-695; tNvj1: Nvj1 construct comprising residues 229-321; tVac8: Vac8 construct comprising residues 10-515; Vac8: vacuole related 8.


Sujet(s)
Protéines adaptatrices de la transduction du signal/composition chimique , Protéines à domaine armadillo/composition chimique , Protéines associées à l'autophagie/composition chimique , Microautophagie/génétique , Protéines de Saccharomyces cerevisiae/composition chimique , Saccharomyces cerevisiae/métabolisme , Vacuoles/métabolisme , Protéines du transport vésiculaire/composition chimique , Protéines adaptatrices de la transduction du signal/métabolisme , Protéines à domaine armadillo/métabolisme , Protéines associées à l'autophagie/métabolisme , Chromatographie en phase liquide , Réactifs réticulants/composition chimique , Cristallographie aux rayons X , Cytoplasme/métabolisme , Dimérisation , Liaison hydrogène , Microautophagie/effets des médicaments et des substances chimiques , Structure en hélice alpha , Transport des protéines/effets des médicaments et des substances chimiques , Transport des protéines/génétique , Récepteurs cytoplasmiques et nucléaires/composition chimique , Saccharomyces cerevisiae/composition chimique , Saccharomyces cerevisiae/génétique , Protéines de Saccharomyces cerevisiae/génétique , Protéines de Saccharomyces cerevisiae/métabolisme , Transduction du signal/effets des médicaments et des substances chimiques , Transduction du signal/génétique , Sirolimus/pharmacologie , Spectrométrie de masse en tandem , Vacuoles/effets des médicaments et des substances chimiques , Protéines du transport vésiculaire/génétique , Protéines du transport vésiculaire/métabolisme
6.
Proc Natl Acad Sci U S A ; 114(23): E4539-E4548, 2017 06 06.
Article de Anglais | MEDLINE | ID: mdl-28533415

RÉSUMÉ

Formation of the nucleus-vacuole junction (NVJ) is mediated by direct interaction between the vacuolar protein Vac8p and the outer nuclear endoplasmic reticulum membrane protein Nvj1p. Herein we report the crystal structure of Vac8p bound to Nvj1p at 2.4-Å resolution. Vac8p comprises a flexibly connected N-terminal H1 helix followed by 12 armadillo repeats (ARMs) that form a right-handed superhelical structure. The extended 80-Å-long loop of Nvj1p specifically binds the highly conserved inner groove formed from ARM1-12 of Vac8p. Disruption of the Nvj1p-Vac8p interaction results in the loss of tight NVJs, which impairs piecemeal microautophagy of the nucleus in Saccharomyces cerevisiae Vac8p cationic triad (Arg276, Arg317, and Arg359) motifs interacting with Nvj1p are also critical to the recognition of Atg13p, a key component of the cytoplasm-to-vacuole targeting (CVT) pathway, indicating competitive binding to Vac8p. Indeed, mutation of the cationic triad abolishes CVT of Ape1p in vivo. Combined with biochemical data, the crystal structure reveals a Vac8p homodimer formed from ARM1, and this self-association, likely regulated by the flexible H1 helix and the C terminus of Nvj1p, is critical for Vac8p cellular functions.


Sujet(s)
Noyau de la cellule/métabolisme , Récepteurs cytoplasmiques et nucléaires/composition chimique , Protéines de Saccharomyces cerevisiae/composition chimique , Vacuoles/métabolisme , Protéines du transport vésiculaire/composition chimique , Protéines adaptatrices de la transduction du signal/composition chimique , Protéines adaptatrices de la transduction du signal/génétique , Protéines adaptatrices de la transduction du signal/métabolisme , Substitution d'acide aminé , Autophagie , Protéines associées à l'autophagie/composition chimique , Protéines associées à l'autophagie/génétique , Protéines associées à l'autophagie/métabolisme , Fixation compétitive , Cristallographie aux rayons X , Cytoplasme/métabolisme , Modèles moléculaires , Mutagenèse dirigée , Motifs et domaines d'intéraction protéique , Structure quaternaire des protéines , Récepteurs cytoplasmiques et nucléaires/génétique , Récepteurs cytoplasmiques et nucléaires/métabolisme , Séquences répétées d'acides aminés , Saccharomyces cerevisiae/génétique , Saccharomyces cerevisiae/métabolisme , Saccharomyces cerevisiae/ultrastructure , Protéines de Saccharomyces cerevisiae/génétique , Protéines de Saccharomyces cerevisiae/métabolisme , Protéines du transport vésiculaire/génétique , Protéines du transport vésiculaire/métabolisme
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE