Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 4 de 4
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Front Oncol ; 13: 1104936, 2023.
Article de Anglais | MEDLINE | ID: mdl-36845686

RÉSUMÉ

Aberrant glycosylation is a prominent feature of cancer, that can be used as targets to improve the existing cancer biomarkers, and help to assess metastasis risks, and therapeutic effects. We developed a targeted O-glycoproteomics method using serum specimens, and evaluated its utility in identifying advanced colorectal cancer (CRC) markers. To this end, we combined consecutive lectin affinity purification using Maclura pomifera lectin (MPL), jacalin, and Sambucus nigra lectin, which have affinities for the following O-glycans, that have received attention as cancer-related antigens, Tn (GalNAc-Ser/Thr), Sialyl Tn (Siaα2-6GalNAc-Ser/Thr), T (Galß1-3GalNAc-Ser/Thr), Sialyl T (Siaα2-3Galß1-GalNAc-Ser/Thr), and di-Sialyl T (Siaα2-3Galß1-3[Siaα2-6] GalNAc-Ser/Thr), with a unique O-glycoproteomics approach. A total of 2,068 O-glycoforms derived from 265 proteins were identified in healthy individuals and patients with advanced CRC, of which 44 CRC-specific O-glycoforms were extracted. Particularly, five glycoproteins with T, Sialyl T, and di-Sialyl T antigens in specific peptide regions were evaluated quantitatively and statistically. We found that fibulin-2 (FBLN2) (aa330-349)/T antigen (area under the curve [AUC] = 0.92); macrophage colony-stimulating factor 1 (CSF1) (aa370-395)/(T + di-Sialyl T) (AUC = 0.94); macrophage mannose receptor 1 (MRC1) (aa1083-1101 and aa1215-1229)/T (AUC = 0.96 and 0.99); fibrinogen alpha chain (FGA) (aa354-367, aa511-527 and aa559-573)/Sialyl T (AUC = 0.98, 0.90 and 0.94); and complement component C7 (C7) (aa692-701)/di-Sialyl T (AUC = 1.00), can have high diagnostic efficacy to strategically predict advanced CRC groups. Hence, they could be promising markers for detection of advanced CRC, and provide new clinical test indicators along with lectins, such as MPL and jacalin. Our O-glycoproteomics platform provides a novel tool and resource, for researchers and clinicians seeking to better understand and treat advanced CRC.

2.
Proteomics Clin Appl ; 16(6): e2100095, 2022 11.
Article de Anglais | MEDLINE | ID: mdl-35507764

RÉSUMÉ

PURPOSE: Exploration study of site-specific isobaric-TMT-labeling quantitative serum O-glycoproteomics for the discovery of putative O-glycoprotein cancer biomarkers. EXPERIMENTAL DESIGN: Sera of 10 breast cancer patients was used as the exploration cohort. More abundant N-glycosylation was first removed with PNGase F. After tryptic digestion of de-N-glycosylated serum proteome, the TMT-labeled O-glycopeptides mixture was prepared and analyzed with RPLC-MS/MS. Site-specific qualitative and quantitative database search of O-glycopeptides was carried out with pGlyco 3.0. The same raw datasets were also searched with intact N-glycopeptide search engine GPSeeker to exclude possible interference of N-glycosylation. The final IDs were checked manually with GlcNAc-containing glycosite-determining fragment ions for confirmation. RESULTS: With the control of spectrum-level FDR ≤ 1% and manual validation, 299 O-glycopeptides corresponding to 83 O-glycosites and 66 O-glycoproteins were identified, and 13 O-glycopeptides were found differentially expressed. Most interestingly, differential O-glycosylation was observed for IgG1 and IgG3, which is an interesting putative biomarker panel. CONCLUSION AND CLINICAL RELEVANCE: Isobaric-labeling site-specific quantitative O-glycoproteomics is currently a state-of-the-art instrumental platform for discovery of putative seral cancer biomarkers. Differential seral O-glycosylation was observed in the IgG1 and IgG3.


Sujet(s)
Protéomique , Spectrométrie de masse en tandem , Humains , Glycopeptides , Glycoprotéines , Marqueurs biologiques tumoraux , Immunoglobuline G
3.
Viruses ; 13(4)2021 03 25.
Article de Anglais | MEDLINE | ID: mdl-33806155

RÉSUMÉ

Enveloped viruses hijack not only the host translation processes, but also its glycosylation machinery, and to a variable extent cover viral surface proteins with tolerogenic host-like structures. SARS-CoV-2 surface protein S presents as a trimer on the viral surface and is covered by a dense shield of N-linked glycans, and a few O-glycosites have been reported. The location of O-glycans is controlled by a large family of initiating enzymes with variable expression in cells and tissues and hence is difficult to predict. Here, we used our well-established O-glycoproteomic workflows to map the precise positions of O-linked glycosylation sites on three different entities of protein S-insect cell or human cell-produced ectodomains, or insect cell derived receptor binding domain (RBD). In total 25 O-glycosites were identified, with similar patterns in the two ectodomains of different cell origin, and a distinct pattern of the monomeric RBD. Strikingly, 16 out of 25 O-glycosites were located within three amino acids from known N-glycosites. However, O-glycosylation was primarily found on peptides that were unoccupied by N-glycans, and otherwise had low overall occupancy. This suggests possible complementary functions of O-glycans in immune shielding and negligible effects of O-glycosylation on subunit vaccine design for SARS-CoV-2.


Sujet(s)
COVID-19/virologie , SARS-CoV-2/composition chimique , SARS-CoV-2/métabolisme , Glycoprotéine de spicule des coronavirus/métabolisme , Motifs d'acides aminés , Animaux , Lignée cellulaire , Glycosylation , Humains , Insectes , Polyosides/métabolisme , SARS-CoV-2/génétique , Spécificité d'espèce , Glycoprotéine de spicule des coronavirus/composition chimique , Glycoprotéine de spicule des coronavirus/génétique
4.
bioRxiv ; 2021 Feb 10.
Article de Anglais | MEDLINE | ID: mdl-33564762

RÉSUMÉ

Enveloped viruses hijack not only the host translation processes, but also its glycosylation machinery, and to a variable extent cover viral surface proteins with tolerogenic host-like structures. SARS-CoV-2 surface protein S presents as a trimer on the viral surface and is covered by a dense shield of N-linked glycans, and a few O-glycosites have been reported. The location of O-glycans is controlled by a large family of initiating enzymes with variable expression in cells and tissues and hence difficult to predict. Here, we used our well-established O-glycoproteomic workflows to map the precise positions of O-linked glycosylation sites on three different entities of protein S - insect cell or human cell-produced ectodomains, or insect cell derived receptor binding domain (RBD). In total 25 O-glycosites were identified, with similar patterns in the two ectodomains of different cell origin, and a distinct pattern of the monomeric RBD. Strikingly, 16 out of 25 O-glycosites were located within three amino acids from known N-glycosites. However, O-glycosylation was primarily found on peptides that were unoccupied by N-glycans, and otherwise had low overall occupancy. This suggests possible complementary functions of O-glycans in immune shielding and negligible effects of O-glycosylation on subunit vaccine design for SARS-CoV-2.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE