Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 170
Filtrer
1.
Article de Anglais | MEDLINE | ID: mdl-38871184

RÉSUMÉ

BACKGROUND: Eosinophils are elusive cells involved in allergic inflammation. Single-cell RNA-sequencing (scRNA-seq) is an emerging approach to deeply characterize cellular properties, heterogeneity, and functionality. OBJECTIVES: We sought to comprehensively characterize the transcriptome and biological functions of human eosinophils at a site of severe allergic inflammation in the esophagus (ie, eosinophilic esophagitis [EoE]). METHODS: We employed a gravity-based scRNA-seq methodology to sequence blood eosinophils from patients with EoE and control individuals compared to a reanalyzed public scRNA-seq dataset of human esophageal eosinophils of EoE patients. We used flow cytometry, immunostaining, and a stimulation assay to verify mRNA findings. RESULTS: In total, scRNA-seq was obtained from 586 eosinophils (188 from blood [n = 6 individuals] and 398 from esophagus [n = 6 individuals]). The esophageal eosinophils were composed of a population of activated eosinophils (enriched in 659 genes compared with peripheral blood-associated eosinophils) and a small population of eosinophils resembling peripheral blood eosinophils (enriched in 62 genes compared with esophageal eosinophils). Esophageal eosinophils expressed genes involved in sensing and responding to diverse stimuli, most notably IFN-γ, IL-10, histamine and leukotrienes, and succinate. Esophageal eosinophils were most distinguished from other esophageal populations by gene expression of the receptors CCR3, HRH4, SUCNR1, and VSTM1; transcription factors CEBPE, OLIG1, and OLIG2; protease PRSS33; and the hallmark eosinophil gene CLC. A web of bidirectional eosinophil interactions with other esophageal populations was derived. Comparing esophageal eosinophils and mast cells revealed that esophageal eosinophils expressed genes involved in DNAX-activation protein-12 (also known as TYROBP) interactions, IgG receptor-triggered events, immunoregulation, and IL-10 signaling. CONCLUSIONS: In EoE, esophageal eosinophils exist as 2 populations, a minority population resembling blood eosinophils and the other population characterized by high de novo transcription of diverse sensing receptors and inflammatory mediators readying them to potentially intersect with diverse cell types.

2.
Proc Natl Acad Sci U S A ; 121(20): e2321711121, 2024 May 14.
Article de Anglais | MEDLINE | ID: mdl-38713624

RÉSUMÉ

During development, neural stem cells in the cerebral cortex, also known as radial glial cells (RGCs), generate excitatory neurons, followed by production of cortical macroglia and inhibitory neurons that migrate to the olfactory bulb (OB). Understanding the mechanisms for this lineage switch is fundamental for unraveling how proper numbers of diverse neuronal and glial cell types are controlled. We and others recently showed that Sonic Hedgehog (Shh) signaling promotes the cortical RGC lineage switch to generate cortical oligodendrocytes and OB interneurons. During this process, cortical RGCs generate intermediate progenitor cells that express critical gliogenesis genes Ascl1, Egfr, and Olig2. The increased Ascl1 expression and appearance of Egfr+ and Olig2+ cortical progenitors are concurrent with the switch from excitatory neurogenesis to gliogenesis and OB interneuron neurogenesis in the cortex. While Shh signaling promotes Olig2 expression in the developing spinal cord, the exact mechanism for this transcriptional regulation is not known. Furthermore, the transcriptional regulation of Olig2 and Egfr has not been explored. Here, we show that in cortical progenitor cells, multiple regulatory programs, including Pax6 and Gli3, prevent precocious expression of Olig2, a gene essential for production of cortical oligodendrocytes and astrocytes. We identify multiple enhancers that control Olig2 expression in cortical progenitors and show that the mechanisms for regulating Olig2 expression are conserved between the mouse and human. Our study reveals evolutionarily conserved regulatory logic controlling the lineage switch of cortical neural stem cells.


Sujet(s)
Facteurs de transcription à motif basique hélice-boucle-hélice , Cortex cérébral , Récepteurs ErbB , Protéines Hedgehog , Protéines de tissu nerveux , Cellules souches neurales , Neurogenèse , Facteur de transcription-2 des oligodendrocytes , Facteur de transcription PAX6 , Animaux , Neurogenèse/physiologie , Cortex cérébral/métabolisme , Cortex cérébral/cytologie , Facteurs de transcription à motif basique hélice-boucle-hélice/métabolisme , Facteurs de transcription à motif basique hélice-boucle-hélice/génétique , Récepteurs ErbB/métabolisme , Récepteurs ErbB/génétique , Souris , Facteur de transcription-2 des oligodendrocytes/métabolisme , Facteur de transcription-2 des oligodendrocytes/génétique , Protéines de tissu nerveux/métabolisme , Protéines de tissu nerveux/génétique , Protéines Hedgehog/métabolisme , Protéines Hedgehog/génétique , Facteur de transcription PAX6/métabolisme , Facteur de transcription PAX6/génétique , Cellules souches neurales/métabolisme , Cellules souches neurales/cytologie , Protéines à homéodomaine/métabolisme , Protéines à homéodomaine/génétique , Protéine à doigts de zinc Gli3/métabolisme , Protéine à doigts de zinc Gli3/génétique , Protéines de l'oeil/métabolisme , Protéines de l'oeil/génétique , Protéines de répression/métabolisme , Protéines de répression/génétique , Facteurs de transcription PAX/métabolisme , Facteurs de transcription PAX/génétique , Névroglie/métabolisme , Névroglie/cytologie , Régulation de l'expression des gènes au cours du développement , Transduction du signal , Bulbe olfactif/métabolisme , Bulbe olfactif/cytologie , Lignage cellulaire , Humains
3.
Histopathology ; 84(5): 893-899, 2024 Apr.
Article de Anglais | MEDLINE | ID: mdl-38253970

RÉSUMÉ

AIMS: The SOX10 transcription factor is important for the maturation of oligodendrocytes involved in central nervous system (CNS) myelination. Currently, very little information exists about its expression and potential use in CNS tumour diagnoses. The aim of our study was to characterize the expression of SOX10 in a large cohort of CNS tumours and to evaluate its potential use as a biomarker. METHODS: We performed immunohistochemistry (IHC) for SOX10 and OLIG2 in a series of 683 cases of adult- and paediatric-type CNS tumours from different subtypes. The nuclear immunostaining results for SOX10 and OLIG2 were scored as positive (≥10% positive tumour cells) or negative. RESULTS: OLIG2 and SOX10 were positive in diffuse midline gliomas (DMG), H3-mutant, and EZHIP-overexpressed. However, in all DMG, EGFR-mutant, SOX10 was constantly negative. In diffuse paediatric-type high-grade gliomas (HGG), all RTK1 cases were positive for both OLIG2 and SOX10. RTK2 cases were all negative for both OLIG2 and SOX10. MYCN cases variably expressed OLIG2 and were all immunonegative for SOX10. In glioblastoma, IDH-wildtype, OLIG2 was mostly positive, but SOX10 was variably expressed, depending on the epigenetic subtype. All circumscribed astrocytic gliomas were positive for both OLIG2 and SOX10 except pleomorphic xanthoastrocytomas, astroblastomas, MN1-altered, and subependymal giant cell astrocytomas. SOX10 was negative in ependymomas, meningiomas, pinealoblastomas, choroid plexus tumours, intracranial Ewing sarcomas, and embryonal tumours except neuroblastoma, FOXR2-activated. CONCLUSION: To conclude, SOX10 can be incorporated into the IHC panel routinely used by neuropathologists in the diagnostic algorithm of embryonal tumours and for the subtyping of paediatric and adult-type HGG.


Sujet(s)
Astrocytome , Tumeurs du cerveau , Tumeurs du système nerveux central , Gliome , Tumeurs embryonnaires et germinales , Adulte , Humains , Enfant , Immunohistochimie , Tumeurs du cerveau/diagnostic , Tumeurs du cerveau/génétique , Tumeurs du cerveau/métabolisme , Facteurs de transcription à motif basique hélice-boucle-hélice , Protéines de tissu nerveux/métabolisme , Marqueurs biologiques tumoraux/métabolisme , Gliome/diagnostic , Gliome/génétique , Gliome/métabolisme , Astrocytome/anatomopathologie , Tumeurs du système nerveux central/diagnostic , Tumeurs du système nerveux central/génétique , Facteurs de transcription SOX-E , Facteur de transcription-2 des oligodendrocytes , Facteurs de transcription Forkhead
4.
Open Med (Wars) ; 19(1): 20230841, 2024.
Article de Anglais | MEDLINE | ID: mdl-38221931

RÉSUMÉ

This study investigated the relationship between ATP-binding cassette sub-family B member 1 (ABCB1) and OLIG2 single nucleotide polymorphism (SNP) and neurological injury severity and outcome in cerebral infarction (CI). The neurological injury severity of 298 CI patients was evaluated by the National Institutes of Health Stroke Scale. The prognosis of CI patients at 30 days after admission was evaluated by the modified Rankin Scale. And 322 healthy people were selected as the control group. The SNPs of the ABCB1 gene (rs1045642) and OLIG2 gene (rs1059004 and rs9653711) were detected by TaqMan probe PCR, and the distribution of SNPs genotype was analyzed. SNP rs9653711 was correlated with CI. Recessive models of rs1045642 and rs9653711 were correlated with CI. The genotypes of rs1045642 and rs9653711 and genetic models were associated with CI severity. rs1045642 had no correlation with CI prognosis, while rs9653711 had less correlation. The genotype distribution and recessive model were associated with CI prognosis. SNP rs1059004 was not associated with CI severity and prognosis. Alcohol consumption, hypertension, diabetes, hyperlipidemia, and high levels of homocysteine (HCY) were independent risk factors for CI, while hypertension, hyperlipidemia, and HCY were associated with poor prognosis of CI. ABCB1 rs1045642 and OLOG2 rs9653711 are associated with CI severity.

5.
Acta Biomater ; 174: 297-313, 2024 01 15.
Article de Anglais | MEDLINE | ID: mdl-38096960

RÉSUMÉ

The transcription factor Olig2 is highly expressed throughout oligodendroglial development and is needed for the differentiation of oligodendrocyte progenitor cells (OPCs) into oligodendrocytes and remyelination. Although Olig2 overexpression in OPCs is a possible therapeutic target for enhancing myelin repair in ischemic stroke, achieving Olig2 overexpression in vivo remains a formidable technological challenge. To address this challenge, we employed lipid nanoparticle (LNP)-mediated delivery of Olig2 synthetically modified messenger RNA (mRNA) as a viable method for in vivo Olih2 protein overexpression. Specifically, we developed CD140a-targeted LNPs loaded with Olig2 mRNA (C-Olig2) to achieve targeted Olig2 protein expression within PDGFRα+ OPCs, with the goal of promoting remyelination for ischemic stroke therapy. We show that C-Olig2 promotes the differentiation of PDGFRα+ OPCs derived from mouse neural stem cells into mature oligodendrocytes in vitro, suggesting that mRNA-mediated Olig2 overexpression is a rational approach to promote oligodendrocyte differentiation and remyelination. Furthermore, when C-Olig2 was administered to a murine model of ischemic stroke, it led to improvements in blood‒brain barrier (BBB) integrity, enhanced remyelination, and rescued learning and cognitive deficits. Our comprehensive analysis, which included bulk RNA sequencing (RNA-seq) and single-nucleus RNA-seq (snRNA-seq), revealed upregulated biological processes related to learning and memory in the brains of mice treated with C-Olig2 compared to those receiving empty LNPs (Mock). Collectively, our findings highlight the therapeutic potential of multifunctional nanomedicine targeting mRNA expression for ischemic stroke and suggest that this approach holds promise for addressing various brain diseases. STATEMENT OF SIGNIFICANCE: While Olig2 overexpression in OPCs represents a promising therapeutic avenue for enhancing remyelination in ischemic stroke, in vivo strategies for achieving Olig2 expression pose considerable technological challenges. The delivery of mRNA via lipid nanoparticles is considered aa viable approach for in vivo protein expression. In this study, we engineered CD140a-targeted LNPs loaded with Olig2 mRNA (C-Olig2) with the aim of achieving specific Olig2 overexpression in mouse OPCs. Our findings demonstrate that C-Olig2 promotes the differentiation of OPCs into oligodendrocytes in vitro, providing evidence that mRNA-mediated Olig2 overexpression is a rational strategy to foster remyelination. Furthermore, the intravenous administration of C-Olig2 into a murine model of ischemic stroke not only improved blood-brain barrier integrity but also enhanced remyelination and mitigated learning and cognitive deficits. These results underscore the promising therapeutic potential of multifunctional nanomedicine targeting mRNA expression in the context of ischemic stroke.


Sujet(s)
Accident vasculaire cérébral ischémique , Précurseurs des oligodendrocytes , Souris , Animaux , Facteur de transcription-2 des oligodendrocytes , Accident vasculaire cérébral ischémique/métabolisme , Récepteur au PDGF alpha/métabolisme , Modèles animaux de maladie humaine , Gaine de myéline , Différenciation cellulaire/génétique , Oligodendroglie , Ischémie , ARN messager/génétique , ARN messager/métabolisme
6.
Dev Biol ; 505: 85-98, 2024 Jan.
Article de Anglais | MEDLINE | ID: mdl-37944224

RÉSUMÉ

Dopaminergic neurons develop in distinct neural domains by integrating local patterning and neurogenesis signals. While the proneural proteins Neurog1 and Olig2 have been previously linked to development of dopaminergic neurons, their dependence on local prepatterning and specific contributions to dopaminergic neurogenesis are not well understood. Here, we show that both transcription factors are differentially required for the development of defined dopaminergic glutamatergic subpopulations in the zebrafish posterior tuberculum, which are homologous to A11 dopaminergic neurons in mammals. Both Olig2 and Neurog1 are expressed in otpa expressing progenitor cells and appear to act upstream of Otpa during dopaminergic neurogenesis. Our epistasis analysis confirmed that Neurog1 acts downstream of Notch signaling, while Olig2 acts downstream of Shh, but upstream and/or in parallel to Notch signaling during neurogenesis of A11-type dopaminergic clusters. Furthermore, we identified Olig2 to be an upstream regulator of neurog1 in dopaminergic neurogenesis. This regulation occurs through Olig2-dependent repression of the proneural repressor and Notch target gene her2. Our study reveals how Neurog1 and Olig2 integrate local patterning signals, including Shh, with Notch neurogenic selection signaling, to specify the progenitor population and initiate neurogenesis and differentiation of A11-type dopaminergic neurons.


Sujet(s)
Neurones , Danio zébré , Animaux , Danio zébré/génétique , Neurones/métabolisme , Neurogenèse/physiologie , Facteurs de transcription à motif basique hélice-boucle-hélice/génétique , Facteurs de transcription à motif basique hélice-boucle-hélice/métabolisme , Facteurs de transcription/métabolisme , Différenciation cellulaire , Protéines de poisson-zèbre/génétique , Protéines de poisson-zèbre/métabolisme , Régulation de l'expression des gènes au cours du développement , Mammifères/métabolisme
8.
Front Neurosci ; 17: 1204012, 2023.
Article de Anglais | MEDLINE | ID: mdl-37795190

RÉSUMÉ

In mouse dentate gyrus, radial glia-like cells (RGLs) persist throughout life and play a critical role in the generation of granule neurons. A large body of evidence has shown that the combinatorial expression of transcription factors (TFs) defines cell types in the developing central nervous system (CNS). As yet, the identification of specific TFs that exclusively define RGLs in the developing mouse dentate gyrus (DG) remains elusive. Here we show that phospho-Smad3 (PSmad3) is expressed in a subpopulation of neural progenitors in the DG. During embryonic stage (E14-15), PSmad3 was predominantly expressed in gfap-GFP-positive (GFP+)/Sox2+ progenitors located at the lower dentate notch (LDN). As the development proceeds (E16-17), the vast majority of PSmad3+ cells were GFP+/Sox2+/Prox1low+/Ki67+ proliferative progenitors that eventually differentiated into granule neurons. During postnatal stage (P1-P6) PSmad3 expression was observed in GFP+ progenitors and astrocytes. Subsequently, at P14-P60, PSmad3 expression was found both in GFP+ RGLs in the subgranular zone (SGZ) and astrocytes in the molecular layer (ML) and hilus. Notably, PSmad3+ SGZ cells did not express proliferation markers such as PCNA and phospho-vimentin, suggesting that they are predominantly quiescent from P14 onwards. Significantly PSmad3+/GFP+ astrocytes, but not SGZ cells, co-expressed Olig2 and S100ß. Together, PSmad3+/Olig2- expression serves as an exclusive marker for a specific subpopulation of GFP+ neural progenitors and RGLs in the mouse DG during both embryonic and postnatal period.

9.
Cancers (Basel) ; 15(20)2023 Oct 18.
Article de Anglais | MEDLINE | ID: mdl-37894405

RÉSUMÉ

Glioblastomas (GBs) are incurable brain tumors. The persistence of aggressive stem-like tumor cells after cytotoxic treatments compromises therapeutic efficacy, leading to GBM recurrence. Forcing the GBM cells to irreversibly abandon their aggressive stem-like phenotype may offer an alternative to conventional cytotoxic treatments. Here, we show that the RNA binding protein CELF2 is strongly expressed in mitotic and OLIG2-positive GBM cells, while it is downregulated in differentiated and non-mitotic cells by miR-199a-3p, exemplifying GBM intra-tumor heterogeneity. Using patient-derived cells and human GBM samples, we demonstrate that CELF2 plays a key role in maintaining the proliferative/OLIG2 cell phenotype with clonal and tumorigenic properties. Indeed, we show that CELF2 deficiency in patient-derived GSCs drastically reduced tumor growth in the brains of nude mice. We further show that CELF2 promotes TRIM28 and G9a expression, which drive a H3K9me3 epigenetic profile responsible for the silencing of the SOX3 gene. Thus, CELF2, which is positively correlated with OLIG2 and Ki67 expression in human GBM samples, is inversely correlated with SOX3 and miR-199a-3p. Accordingly, the invalidation of SOX3 in CELF2-deficient patient-derived cells rescued proliferation and OLIG2 expression. Finally, patients expressing SOX3 above the median level of expression tend to have a longer life expectancy. CELF2 is therefore a crucial target for the malignant potential of GBM and warrants attention when developing novel anticancer strategies.

10.
J Forensic Leg Med ; 97: 102557, 2023 Jul.
Article de Anglais | MEDLINE | ID: mdl-37413907

RÉSUMÉ

BACKGROUND: As there is a lack of comprehensive literature regarding the molecular environment of the human brain emphasizing on oligodendrocyte progenitor cells (OPCs) following high impact brain trauma. The protagonist of OPCs post severe traumatic brain injury (sTBI) provides a significant thrust towards estimating time elapsed since trauma as well as developing novel therapeutic approaches. The present study was carried out to study post trauma alterations pertaining to myelin sheath and oligodendrocyte response with survival time. MATERIALS AND METHODS: In the present study, victims (both male and female) of sTBI (n = 64) were recruited and contrasted with age and gender matched controls (n = 12). Post mortem brain samples from corpus callosum and grey white matter interface were collected during autopsy examination. Extent of myelin degradation and response of OPC markers Olig-2 and PDGFR-α were evaluated using immunohistochemistry and qRT-PCR. STATA 14.0 statistical software was used for data analysis with P-value<0.05 considered statistically significant. RESULTS: Timewise qualitative correlation with extent of demyelination performed using LFB-PAS/IHC-MBP, IHC Olig-2 and mRNA expression revealed tendency towards remyelination in both corpus callosum and grey white matter interface. Number of Olig-2 positive cells was significantly higher in sTBI group as compared to control group (P-value: 0.0001). Moreover, mRNA expression studies of Olig-2 showed significant upregulation in sTBI patients. mRNA expression of Olig-2 and PDGFR-α in sTBI patients showed significant variation with respect to survival time (p value:0.0001). CONCLUSION: Detailed assessment of post TBI changes implementing various immunohistochemical and molecular techniques shall potentially reveal intriguing and important inferences in medicolegal practices and neurotherapeutics.


Sujet(s)
Lésions traumatiques de l'encéphale , Précurseurs des oligodendrocytes , Humains , Mâle , Femelle , Précurseurs des oligodendrocytes/physiologie , Encéphale/métabolisme , Oligodendroglie/métabolisme , ARN messager/métabolisme
11.
Res Sq ; 2023 Jun 09.
Article de Anglais | MEDLINE | ID: mdl-37333134

RÉSUMÉ

Recurrence is the primary life-threatening complication for medulloblastoma (MB). In Sonic Hedgehog (SHH)-subgroup MB, OLIG2-expressing tumor stem cells drive recurrence. We investigated the anti-tumor potential of the small-molecule OLIG2 inhibitor CT-179, using SHH-MB patient-derived organoids, patient-derived xenograft (PDX) tumors and mice genetically-engineered to develop SHH-MB. CT-179 disrupted OLIG2 dimerization, DNA binding and phosphorylation and altered tumor cell cycle kinetics in vitro and in vivo, increasing differentiation and apoptosis. CT-179 increased survival time in GEMM and PDX models of SHH-MB, and potentiated radiotherapy in both organoid and mouse models, delaying post-radiation recurrence. Single cell transcriptomic studies (scRNA-seq) confirmed that CT-179 increased differentiation and showed that tumors up-regulated Cdk4 post-treatment. Consistent with increased CDK4 mediating CT-179 resistance, CT-179 combined with CDK4/6 inhibitor palbociclib delayed recurrence compared to either single-agent. These data show that targeting treatment-resistant MB stem cell populations by adding the OLIG2 inhibitor CT-179 to initial MB treatment can reduce recurrence.

12.
Cells ; 12(9)2023 04 26.
Article de Anglais | MEDLINE | ID: mdl-37174652

RÉSUMÉ

Oligodendrocytes are the myelinating cells of the central nervous system that facilitate efficient signal transduction. The loss of these cells and the associated myelin sheath can lead to profound functional deficits. Moreover, oligodendrocytes also play key roles in mediating glial-neuronal interactions, which further speaks to their importance in health and disease. Neural progenitor cells (NPCs) are a promising source of cells for the treatment of oligodendrocyte-related neurological diseases due to their ability to differentiate into a variety of cell types, including oligodendrocytes. However, the efficiency of oligodendrocyte differentiation is often low. In this study, we induced the expression of the Olig2 transcription factor in tripotent NPCs using a doxycycline-inducible promoter, such that the extent of oligodendrocyte differentiation could be carefully regulated. We characterized the differentiation profile and the transcriptome of these inducible oligodendrogenic NPCs (ioNPCs) using a combination of qRT-PCR, immunocytochemistry and RNA sequencing with gene ontology (GO) and gene set enrichment analysis (GSEA). Our results show that the ioNPCs differentiated into a significantly greater proportion of oligodendrocytes than the NPCs. The induction of Olig2 expression was also associated with the upregulation of genes involved in oligodendrocyte development and function, as well as the downregulation of genes involved in other cell lineages. The GO and GSEA analyses further corroborated the oligodendrocyte specification of the ioNPCs.


Sujet(s)
Cellules souches neurales , Transcriptome , Transcriptome/génétique , Facteurs de transcription à motif basique hélice-boucle-hélice/génétique , Facteurs de transcription à motif basique hélice-boucle-hélice/métabolisme , Protéines de tissu nerveux/génétique , Protéines de tissu nerveux/métabolisme , Différenciation cellulaire/génétique , Cellules souches neurales/métabolisme , Oligodendroglie/métabolisme , Analyse de séquence d'ARN
13.
Neuropharmacology ; 236: 109567, 2023 Sep 15.
Article de Anglais | MEDLINE | ID: mdl-37209812

RÉSUMÉ

Depression is a mood disorder coursing with several behavioral, cellular, and neurochemical alterations. The negative impact of chronic stress may precipitate this neuropsychiatric disorder. Interestingly, downregulation of oligodendrocyte-related genes, abnormal myelin structure, and reduced numbers and density of oligodendrocytes in the limbic system have been identified in patients diagnosed with depression, but also in rodents exposed to chronic mild stress (CMS). Several reports have emphasized the importance of pharmacological or stimulation-related strategies in influencing oligodendrocytes in the hippocampal neurogenic niche. Repetitive transcranial magnetic stimulation (rTMS) has gained attention as an intervention to revert depression. Here, we hypothesized that 5 Hz (Hz) of rTMS or Fluoxetine (Flx) would revert depressive-like behaviors by influencing oligodendrocytes and revert neurogenic alterations caused by CMS in female Swiss Webster mice. Our results showed that 5 Hz rTMS or Flx revert depressive-like behavior. Only rTMS influenced oligodendrocytes by increasing the number of Olig2-positive cells in the hilus of the dentate gyrus and the prefrontal cortex. However, both strategies exerted effects on some events of the hippocampal neurogenic processes, such as cell proliferation (Ki67-positive cells), survival (CldU-positive cells), and intermediate stages (doublecortin-positive cells) along the dorsal-ventral axis of this region. Interestingly, the combination of rTMS-Flx exerted antidepressant-like effects, but the increased number of Olig2-positive cells observed in mice treated only with rTMS was canceled. However, rTMS-Flx exerted a synergistic effect by increasing the number of Ki67-positive cells. It also increased the number of CldU- and doublecortin-positive cells in the dentate gyrus. Our results demonstrate that 5 Hz rTMS has beneficial effects, as it reverted depressive-like behavior by increasing the number of Olig2-positive cells and reverting the decrement in hippocampal neurogenesis in CMS-exposed mice. Nevertheless, the effects of rTMS on other glial cells require further investigation.


Sujet(s)
Fluoxétine , Stimulation magnétique transcrânienne , Souris , Animaux , Femelle , Fluoxétine/pharmacologie , Fluoxétine/usage thérapeutique , Stimulation magnétique transcrânienne/méthodes , Antigène KI-67 , Antidépresseurs/usage thérapeutique , Protéines à domaine doublecortine , Facteur de transcription-2 des oligodendrocytes
14.
Brain Struct Funct ; 228(3-4): 947-966, 2023 May.
Article de Anglais | MEDLINE | ID: mdl-37000250

RÉSUMÉ

Myelination of the neocortex of altricial species is mostly a postnatal event, and the appearance of myelin has been associated with the end of the critical period for ocular dominance plasticity in rodent visual cortex. Due to their precocality, ungulates may tell a different story. Here, we analyzed the development of PDGFRα positive oligodendrocyte precursor cells and expression of myelin proteins in the laminar compartments of fetal and postnatal porcine cortex from E45 onwards. Precursor cell density initially increased and then decreased but remained present at P90. MAG and MBP staining were detectable at E70 in subventricular zone and deep white matter, ascending into gyral white matter at E85, and into the gray matter and marginal zone at E100 (birth in pig at E114). Protein blots confirmed the declining expression of PDGFRα from E65 onwards, and the increase of MBP and MAG expression from E80 onwards. Somatosensory input elicited by spontaneous activity is considered important for the formation of the body representation. Indeed, PDGFRα, MBP and MAG expression started earlier in somatosensory than in visual cortex. Taken together, myelination proceeded in white and gray matter and marginal zone of pig cortex before birth with an areal-specific time course, and an almost mature pattern was present at P5 in visual cortex.


Sujet(s)
Gaine de myéline , Néocortex , Animaux , Suidae , Gaine de myéline/métabolisme , Néocortex/métabolisme , Récepteur au PDGF alpha/métabolisme , Protéines de la myéline/métabolisme , Sus scrofa , Oligodendroglie/métabolisme
15.
Clinics (Sao Paulo) ; 78: 100120, 2023.
Article de Anglais | MEDLINE | ID: mdl-37001387

RÉSUMÉ

OBJECTIVES: The incidence of cerebellar Glioblastoma Multiforme (cGBM) is rare. Database like TCGA have not distinguish cGBM from GBM, our knowledge on cGBM gene expression characteristics is limited. The expression status of Oligodendrocyte Lineage Transcription factor 2 (OLIG2) and its clinical significance in cGBM is still unclear. METHODS: The clinical data and tissue specimens of 73 cGBM patients were retrospectively studied. The association between OLIG2 expression level and the demographic characteristics of cGBM patients was identified by the Chi-Square test. The survival curves were drawn by Kaplan-Meier analysis. The independent prognostic factors was calculated according to Cox regression analysis. RESULTS: The OLIG2 high expression was observed in about 57.5% (42/73) of the cGBM patients. Patients with high OLIG2 expression levels had a higher alive ratio at the end of follow-up (alive ratio: 70.6% vs. 29.4%, p = 0.04). The median survival time was 21 months and 13 months for high and low expression of OLIG2 (p < 0 .05). Univariate analysis and Multivariate analysis indicated that EOR (HR = 3.89, 95% CI 1.23‒12.26, p = 0.02), low OLIG2 expression (HR = 5.26, 95% CI 1.13‒24.59, p = 0.04), and without adjuvant therapy (HR = 4.95, 95% CI 1.22‒20.00, p = 0.03) were independent risk factors for the OS of cGBM patients. CONCLUSION: High expression level of OLIG2 could be used as an independent favorable prognosis indicator in cGBM patients and be recognized as a characteristic biomarker of cGBM.


Sujet(s)
Tumeurs du cerveau , Glioblastome , Humains , Pronostic , Études rétrospectives , Estimation de Kaplan-Meier , Association thérapeutique , Facteur de transcription-2 des oligodendrocytes/génétique
16.
Arkh Patol ; 85(1): 10-15, 2023.
Article de Russe | MEDLINE | ID: mdl-36785957

RÉSUMÉ

BACKGROUND: Anomalies of the FOXO1 gene in alveolar rhabdomyosarcoma are associated with a worse clinical prognosis, which determines the high value of studying the status of this gene when choosing a therapy strategy. The «gold standard¼ for determining FOXO1 gene rearrangements is currently the fluorescent in situ hybridization (FISH) technique. OBJECTIVE: Study of the relationship between canonical FOXO1 translocation and immunohistochemical expression of new surrogate markers in alveolar rhabdomyosarcoma to determine their predictive value. MATERIAL AND METHODS: 139 cases of rhabdomyosarcoma were retrospectively studied. The study used tissue matrix technology (TMA). On sections obtained from TMA blocks, the FISH technique was implemented using the locus-specific probe MetaSystems XL FOXO1 Break Apart (Metasystems, Germany). Immunohistochemical studies were performed on similar sections from TMA blocks with OLIG2 (Cell Marque Antibodies, clone 211F1.1) and MUC4 (Cell Marque Antibodies, clone 8G7) antibodies. RESULTS: The final expression analysis and statistical processing using a 2x2 contingency table and Fisher's exact test passed 111 cases (76 without FOXO1 rearrangement and 35 with rearrangement). The specificity of OLIG2 and MUC4 expression for FOXO1-rearranged alveolar rhabdomyosarcoma was 85.53% and 80.26%, respectively (p<0.01). CONCLUSION: The present study confirms the high predictive value of the expression of surrogate markers OLIG2 and MUC4 in determining the genetic status of alveolar rhabdomyosarcoma, which makes it possible to predict with high specificity the detection of the FOXO1 gene rearrangement.


Sujet(s)
Rhabdomyosarcome alvéolaire , Humains , Rhabdomyosarcome alvéolaire/diagnostic , Rhabdomyosarcome alvéolaire/génétique , Rhabdomyosarcome alvéolaire/métabolisme , Facteurs de transcription PAX/génétique , Facteurs de transcription PAX/métabolisme , Hybridation fluorescente in situ/méthodes , Protéine O1 à motif en tête de fourche/génétique , Études rétrospectives , Marqueurs biologiques , Translocation génétique/génétique , Protéines de fusion oncogènes/génétique , Protéines de fusion oncogènes/métabolisme
17.
Int J Mol Sci ; 24(2)2023 Jan 16.
Article de Anglais | MEDLINE | ID: mdl-36675255

RÉSUMÉ

Discoidin domain receptor 1 (DDR1) is a tyrosine kinase receptor expressed in epithelial cells from different tissues in which collagen binding activates pleiotropic functions. In the brain, DDR1 is mainly expressed in oligodendrocytes (OLs), the function of which is unclear. Whether collagen can activate DDR1 in OLs has not been studied. Here, we assessed the expression of DDR1 during in vitro OL differentiation, including collagen IV incubation, and the capability of collagen IV to induce DDR1 phosphorylation. Experiments were performed using two in vitro models of OL differentiation: OLs derived from adult rat neural stem cells (NSCs) and the HOG16 human oligodendroglial cell line. Immunocytofluorescence, western blotting, and ELISA were performed to analyze these questions. The differentiation of OLs from NSCs was addressed using oligodendrocyte transcription factor 2 (Olig2) and myelin basic protein (MBP). In HOG16 OLs, collagen IV induced DDR1 phosphorylation through slow and sustained kinetics. In NSC-derived OLs, DDR1 was found in a high proportion of differentiating cells (MBP+/Olig2+), but its protein expression was decreased in later stages. The addition of collagen IV did not change the number of DDR1+/MBP+ cells but did accelerate OL branching. Here, we provide the first demonstration that collagen IV mediates the phosphorylation of DDR1 in HOG16 cells and that the in vitro co-expression of DDR1 and MBP is associated with accelerated branching during the differentiation of primary OLs.


Sujet(s)
Récepteur-1 à domaine discoïdine , Récepteurs à activité tyrosine kinase , Rats , Humains , Animaux , Récepteur-1 à domaine discoïdine/métabolisme , Ligands , Collagène de type IV/métabolisme , Oligodendroglie/métabolisme
18.
J Neurochem ; 165(3): 303-317, 2023 05.
Article de Anglais | MEDLINE | ID: mdl-36547371

RÉSUMÉ

Cells possess intrinsic features that are inheritable via epigenetic regulation, such as DNA methylation and histone modification. These inheritable features maintain a unique gene expression pattern, underlying cellular memory. Because of the degradation or displacement of mitotic chromosomes, most transcription factors do not contribute to cellular memory. However, accumulating in vitro evidence indicates that some transcription factors can be retained in mitotic chromosomes called as bookmarking. Such transcription factors may contribute to a novel third mechanism of cellular memory. Since most findings of transcription factor bookmarking have been reported in vitro, little is currently known in vivo. In the neural tube of mouse embryos, we discovered that OLIG2, a basic helix loop helix (bHLH) transcription factor that regulates proliferation of neural progenitors and the cell fate of motoneurons and oligodendrocytes, binds to chromatin through every cell cycle including M-phase. OLIG2 chromosomal localization coincides with mitotic cell features such as the phosphorylation of histone H3, KI67, and nuclear membrane breakdown. Chromosomal localization of OLIG2 is regulated by an N-terminus triple serine motif. Photobleaching analysis revealed slow OLIG2 mobility, suggesting a high affinity of OLIG2 to DNA. In Olig2 N-terminal deletion mutant mice, motoneurons and oligodendrocyte progenitor numbers are reduced in the neural tube, suggesting that the bookmarking regulatory domain is important for OLIG2 function. We conclude that OLIG2 is a de novo in vivo bookmarking transcription factor. Our results demonstrate the presence of in vivo bookmarking in a living organism and illustrate a novel function of transcription factors.


Sujet(s)
Épigenèse génétique , Facteurs de transcription , Souris , Animaux , Facteurs de transcription/génétique , Tube neural/métabolisme , Protéines de tissu nerveux/métabolisme , Facteur de transcription-2 des oligodendrocytes/génétique , Facteur de transcription-2 des oligodendrocytes/métabolisme , Facteurs de transcription à motif basique hélice-boucle-hélice/génétique , Facteurs de transcription à motif basique hélice-boucle-hélice/métabolisme , Différenciation cellulaire/génétique , Oligodendroglie/métabolisme
19.
Glia ; 71(2): 415-430, 2023 02.
Article de Anglais | MEDLINE | ID: mdl-36308278

RÉSUMÉ

Oligodendrocyte precursor cells (OPCs) are uniformly distributed in the mammalian brain; however, their function is rather heterogeneous in respect to their origin, location, receptor/channel expression and age. The basic helix-loop-helix transcription factor Olig2 is expressed in all OPCs as a pivotal determinant of their differentiation. Here, we identified a subset (2%-26%) of OPCs lacking Olig2 in various brain regions including cortex, corpus callosum, CA1 and dentate gyrus. These Olig2 negative (Olig2neg ) OPCs were enriched in the juvenile brain and decreased subsequently with age, being rarely detectable in the adult brain. However, the loss of this population was not due to apoptosis or microglia-dependent phagocytosis. Unlike Olig2pos OPCs, these subset cells were rarely labeled for the mitotic marker Ki67. And, accordingly, BrdU was incorporated only by a three-day long-term labeling but not by a 2-hour short pulse, suggesting these cells do not proliferate any more but were derived from proliferating OPCs. The Olig2neg OPCs exhibited a less complex morphology than Olig2pos ones. Olig2neg OPCs preferentially remain in a precursor stage rather than differentiating into highly branched oligodendrocytes. Changing the adjacent brain environment, for example, by acute injuries or by complex motor learning tasks, stimulated the transition of Olig2pos OPCs to Olig2neg cells in the adult. Taken together, our results demonstrate that OPCs transiently suppress Olig2 upon changes of the brain activity.


Sujet(s)
Lésions encéphaliques , Précurseurs des oligodendrocytes , Animaux , Précurseurs des oligodendrocytes/métabolisme , Protéines de tissu nerveux/métabolisme , Facteur de transcription-2 des oligodendrocytes/métabolisme , Oligodendroglie/métabolisme , Facteurs de transcription à motif basique hélice-boucle-hélice/génétique , Facteurs de transcription à motif basique hélice-boucle-hélice/métabolisme , Différenciation cellulaire , Lésions encéphaliques/métabolisme , Mammifères/métabolisme
20.
Clinics ; 78: 100120, 2023. tab, graf
Article de Anglais | LILACS-Express | LILACS | ID: biblio-1439908

RÉSUMÉ

Abstract Objectives: The incidence of cerebellar Glioblastoma Multiforme (cGBM) is rare. Database like TCGA have not distinguish cGBM from GBM, our knowledge on cGBM gene expression characteristics is limited. The expression status of Oligodendrocyte Lineage Transcription factor 2 (OLIG2) and its clinical significance in cGBM is still unclear. Methods: The clinical data and tissue specimens of 73 cGBM patients were retrospectively studied. The association between OLIG2 expression level and the demographic characteristics of cGBM patients was identified by the Chi-Square test. The survival curves were drawn by Kaplan-Meier analysis. The independent prognostic factors was calculated according to Cox regression analysis. Results: The OLIG2 high expression was observed in about 57.5% (42/73) of the cGBM patients. Patients with high OLIG2 expression levels had a higher alive ratio at the end of follow-up (alive ratio: 70.6% vs. 29.4%, p = 0.04). The median survival time was 21 months and 13 months for high and low expression of OLIG2 (p < 0 .05). Univariate analysis and Multivariate analysis indicated that EOR (HR = 3.89, 95% CI 1.23−12.26, p = 0.02), low OLIG2 expression (HR = 5.26, 95% CI 1.13−24.59, p = 0.04), and without adjuvant therapy (HR = 4.95, 95% CI 1.22−20.00, p = 0.03) were independent risk factors for the OS of cGBM patients. Conclusion: High expression level of OLIG2 could be used as an independent favorable prognosis indicator in cGBM patients and be recognized as a characteristic biomarker of cGBM.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...