Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 359
Filtrer
1.
ACS Appl Mater Interfaces ; 16(38): 51010-51019, 2024 Sep 25.
Article de Anglais | MEDLINE | ID: mdl-39283697

RÉSUMÉ

Oxide semiconductor thin-film transistors (TFTs) have shown great potential in emerging applications such as flexible displays, radio-frequency identification tags, sensors, and back-end-of-line compatible transistors for monolithic 3D integration beyond their well-established flat-plane display technology. To meet the requirements of these appealing applications, high current drivability is essential, necessitating exploration in materials science and device engineering. In this work, we report for the first time on a simple solution-based superacid (SA) treatment to enhance the current drivability of top-gate TiO2 TFTs with a gate-offset structure. The on-current of these transistors is limited by the relatively low mobility of TiO2 due to its d-orbital conduction nature. It is found that the on-current of TiO2 TFTs is nearly doubled via a quick dip in a SA solution at room temperature in ambient air. A series of experiments, including comparative I-V measurements of TFTs with different treatments and gate structures, C-V measurements, X-ray photoelectron spectroscopy, time-of-flight secondary ion mass spectrometry, and device simulation, were performed to uncover the underlying reason for the current enhancement. It is believed that the protons (H+) from SA are doped into the offset region of TiO2 TFTs, forming an electron double layer and thus boosting the on-current, with the top gate serving as a self-aligned mask for ionic doping. Furthermore, the ionic size and the proportion of the offset region to the channel play crucial roles in the effectiveness of ionic doping, while the position of the incorporated ions, whether in the channel or dielectric, may result in distinct shifts in the turn-on voltage (VON) and affect the functionality of ionic doping. This study provides a pathway for enhancing the current drivability of TiO2 TFTs via selective ionic doping enabled by SA treatment and deepens our understanding of ion incorporation in electronic devices. This approach could be applicable to other material systems and may also benefit TFTs with miniaturized dimensions, thus opening up unprecedented opportunities for TiO2 TFTs in future applications requiring high current drivability.

2.
Microbiol Spectr ; : e0082824, 2024 Sep 17.
Article de Anglais | MEDLINE | ID: mdl-39287455

RÉSUMÉ

In vivo imaging of bacterial infection models enables noninvasive and temporal analysis of individuals, enhancing our understanding of infectious disease pathogenesis. Conventional in vivo imaging methods for bacterial infection models involve the insertion of the bacterial luciferase LuxCDABE into the bacterial genome, followed by imaging using an expensive ultrasensitive charge-coupled device (CCD) camera. However, issues such as limited light penetration into the body and lack of versatility have been encountered. We focused on near-infrared (NIR) light, which penetrates the body effectively, and attempted to establish an in vivo imaging method to evaluate the number of lung-colonizing bacteria during the course of bacterial pneumonia. This was achieved by employing a novel versatile system that combines plasmid-expressing firefly luciferase bacteria, NIR substrate, and an inexpensive, scientific complementary metal-oxide semiconductor (sCMOS) camera. The D-luciferin derivative "TokeOni," capable of emitting NIR bioluminescence, was utilized in a mouse lung infection model of Acinetobacter baumannii, an opportunistic pathogen that causes pneumonia and is a concern due to drug resistance. TokeOni exhibited the highest sensitivity in detecting bacteria colonizing the mouse lungs compared with other detection systems such as LuxCDABE, enabling the monitoring of changes in bacterial numbers over time and the assessment of antimicrobial agent efficacy. Additionally, it was effective in detecting A. baumannii clinical isolates and Klebsiella pneumoniae. The results of this study are expected to be used in the analysis of animal models of infectious diseases for assessing the efficacy of therapeutic agents and understanding disease pathogenesis. IMPORTANCE: Conventional animal models of infectious diseases have traditionally relied upon average assessments involving numerous individuals, meaning they do not directly reflect changes in the pathology of an individual. Moreover, in recent years, ethical concerns have resulted in the demand to reduce the number of animals used in such models. Although in vivo imaging offers an effective approach for longitudinally evaluating the pathogenesis of infectious diseases in individual animals, a standardized method has not yet been established. To our knowledge, this study is the first to develop a highly versatile in vivo pulmonary bacterial quantification system utilizing near-infrared luminescence, plasmid-mediated expression of firefly luciferase in bacteria, and a scientific complementary metal-oxide semiconductor camera. Our research holds promise as a useful tool for assessing the efficacy of therapeutic drugs and pathogenesis of infectious diseases.

3.
Annu Rev Vis Sci ; 10(1): 171-198, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-39292550

RÉSUMÉ

This article reviews nearly 60 years of solid-state image sensor evolution and identifies potential new frontiers in the field. From early work in the 1960s, through the development of charge-coupled device image sensors, to the complementary metal oxide semiconductor image sensors now ubiquitous in our lives, we discuss highlights in the evolutionary chain. New frontiers, such as 3D stacked technology, photon-counting technology, and others, are briefly discussed.

4.
Gels ; 10(8)2024 Aug 20.
Article de Anglais | MEDLINE | ID: mdl-39195066

RÉSUMÉ

The current work presents a new structure based on Au/PVA/SiO2/p-Si/Al that has not been studied before. An aqueous solution of polyvinyl alcohol (PVA) polymer gel was deposited on the surface of SiO2/Si using the spin-coating technique. The silicon wafer was left to be oxidized in a furnace at 1170 k for thirty minutes, creating an interdiffusion layer of SiO2. The variations in the dielectric constant (Є'), dielectric loss (Є″), and dielectric tangent (tanδ) with the change in the frequency, voltage, and temperature were analyzed. The results showed an increase in the dielectric constant (Є') and a decrease in the dielectric loss (Є″) and tangent (tanδ); thus, the Au/PVA/SiO2/p-Si/Al heterostructure has opened up new frontiers for the semiconductor industry, especially for capacitor manufacturing. The Cole-Cole diagrams of the Є″ and Є' have been investigated at different temperatures and voltages. The ideality factor (n), barrier height (Φb), series resistance (Rs), shunt resistance (Rsh), and rectification ratio (RR) were also measured at different temperatures.

5.
Micromachines (Basel) ; 15(7)2024 Jul 03.
Article de Anglais | MEDLINE | ID: mdl-39064388

RÉSUMÉ

This paper presents a new framework using MEMS flow sensors on turbine blades (SOTB) to investigate unsteady flow features of a rotating wind turbine. Self-heating flow sensors were implemented by the U18 complementary metal-oxide semiconductor (CMOS) MEMS foundry provided by Taiwan Semiconductor Research Institute (TSRI). Flow sensor chips with a size of 1.5 mm × 1.5 mm were parylene-coated, output via a wireless data acquisition system (WDAQ), and mounted at the root, middle and tip of a 1.2 m diameter semi-rigid turbine blade of a 400 W horizontal axis wind turbine (HAWT). The instantaneous angles of attack (AOAs) of the SOTB were found to be 46~62°, much higher than the general stall AOA of 15°, but were accurate considering the normal detection of the flow sensors. The computational fluid dynamics (CFD) simulation of the HAWT was also compared with the SOTB output. The onsite measurement herein revealed that the 3D secondary flow increment, mostly obvious near the middle part of the turbine blades, degraded both the sensor and the turbine performance and initially justified the onsite measurement application.

6.
Article de Anglais | MEDLINE | ID: mdl-39012887

RÉSUMÉ

Recently, the growing demand for amorphous oxide semiconductor thin-film transistors (AOS TFTs) with high mobility and good stability to implement ultrahigh-resolution displays has made tracking the role of hydrogen in oxide semiconductor films increasingly important. Hydrogen is an essential element that contributes significantly to the field effect mobility and bias stability characteristics of AOS TFTs. However, because hydrogen is the lightest atom and has high reactivity to metal and oxide materials, elucidating its impact on AOS thin films has been challenging. Therefore, in this study, we propose controlling the hydrogen quantities in amorphous InSnZnO (a-ITZO) thin films through thermal dehydrogenation to precisely reveal the hydrogen influences on the electrical characteristics of a-ITZO TFTs. The as-deposited device containing 15.69 × 1015 atoms/cm2 of hydrogen exhibited a relatively low saturation mobility of 18.1 cm2/V·s and poor positive bias stress stability. However, depending on the extent of thermal dehydrogenation, not only did the hydrogen quantity and interface defect density (DIT) decrease but also the conductivity and surface energy increased due to the rise in oxygen vacancies and hydroxyl groups in a-ITZO thin films. As a result, the a-ITZO TFT with a hydrogen amount of 4.828 × 1015 atoms/cm2 showed that the saturation mobility improved up to 36.8 cm2/V·s, and positive bias stress stability was remarkably enhanced. Hence, we report the ability to manage the hydrogen quantity with thermal dehydrogenation and demonstrate that high-performance a-ITZO TFTs can be realized when an appropriate hydrogen concentration is achieved.

7.
ACS Appl Mater Interfaces ; 16(31): 41099-41106, 2024 Aug 07.
Article de Anglais | MEDLINE | ID: mdl-39047193

RÉSUMÉ

Optical encryption is receiving much attention with the rapid growth of information technology. Conventional optical encryption usually relies on specific configurations, such as metasurface-based holograms and structure colors, not meeting the requirements of increasing dynamic and programmable encryption. Here, we report a programmable optical encryption approach using WS2/SiO2/Au metal-oxide-semiconductor (MOS) devices, which is based on the electrical-field-controlled exciton-trion transitions in monolayer WS2. The modulation depth of the MOS device reflection amplitude up to 25% related to the excitons ensures the fidelity of information, and the decryption based on the near excitonic resonance assures security. With such devices, we successfully demonstrate their applications in real-time encryption of ASCII codes and visual images. For the latter, it can be implemented at the pixel level. The strategy shows significant potential for low-cost, low-energy-consumption, easily integrated, and high-security programmable optical encryptions.

8.
Nanotechnology ; 35(44)2024 Aug 14.
Article de Anglais | MEDLINE | ID: mdl-39082380

RÉSUMÉ

Gallium oxide (Ga2O3) is attracting attention as a next-generation semiconductor material for power device because it has a wide energy band gap and high breakdown electric field. We deposited a Sn polymer, poly-tetraallyl tin, on Ga2O3samples using a disclosed initiated chemical vapor deposition (iCVD) process. The Sn dopant of the Sn polymer layer is injected into the Ga2O3through a heat treatment process. Diffusion model of Sn into the Ga2O3is proposed through secondary ion mass spectroscopy analysis and bond dissociation energy. The fabricated device exhibited typical n-type field-effect transistor (FET) behavior. Ga2O3Sn-doping technology using iCVD will be applied to 3D structures and trench structures in the future, opening up many possibilities in the Ga2O3-based power semiconductor device manufacturing process.

9.
Sensors (Basel) ; 24(12)2024 Jun 12.
Article de Anglais | MEDLINE | ID: mdl-38931591

RÉSUMÉ

In recent years, there has been a growing interest in developing portable and personal devices for measuring air quality and surrounding pollutants, partly due to the need for ventilation in the aftermath of COVID-19 situation. Moreover, the monitoring of hazardous chemical agents is a focus for ensuring compliance with safety standards and is an indispensable component in safeguarding human welfare. Air quality measurement is conducted by public institutions with high precision but costly equipment, which requires constant calibration and maintenance by highly qualified personnel for its proper operation. Such devices, used as reference stations, have a low spatial resolution since, due to their high cost, they are usually located in a few fixed places in the city or region to be studied. However, they also have a low temporal resolution, providing few samples per hour. To overcome these drawbacks and to provide people with personalized and up-to-date air quality information, a personal device (smartwatch) based on MEMS gas sensors has been developed. The methodology followed to validate the performance of the prototype was as follows: firstly, the detection capability was tested by measuring carbon dioxide and methane at different concentrations, resulting in low detection limits; secondly, several experiments were performed to test the discrimination capability against gases such as toluene, xylene, and ethylbenzene. principal component analysis of the data showed good separation and discrimination between the gases measured.


Sujet(s)
COVID-19 , Dioxyde de carbone , Surveillance de l'environnement , Surveillance de l'environnement/instrumentation , Surveillance de l'environnement/méthodes , Humains , Dioxyde de carbone/analyse , Polluants atmosphériques/analyse , Pollution de l'air/analyse , Gaz/analyse , SARS-CoV-2/isolement et purification , Méthane/analyse
10.
Nano Lett ; 24(26): 7919-7926, 2024 Jul 03.
Article de Anglais | MEDLINE | ID: mdl-38836594

RÉSUMÉ

Schottky diode, capable of ultrahigh frequency operation, plays a critical role in modern communication systems. To develop cost-effective and widely applicable high-speed diodes, researchers have delved into thin-film semiconductors. However, a performance gap persists between thin-film diodes and conventional bulk semiconductor-based ones. Featuring high mobility and low permittivity, indium-tin-oxide has emerged to bridge this gap. Nevertheless, due to its high carrier concentration, indium-tin-oxide has predominantly been utilized as electrode rather than semiconductor. In this study, a remarkable quantum confinement induced dedoping phenomenon was discovered during the aggressive indium-tin-oxide thickness downscaling. By leveraging such a feature to change indium-tin-oxide from metal-like into semiconductor-like, in conjunction with a novel heterogeneous lateral design facilitated by an innovative digital etch, we demonstrated an indium-tin-oxide Schottky diode with a cutoff frequency reaching terahertz band. By pushing the boundaries of thin-film Schottky diodes, our research offers a potential enabler for future fifth-generation/sixth-generation networks, empowering diverse applications.

11.
Nanotechnology ; 35(37)2024 Jun 26.
Article de Anglais | MEDLINE | ID: mdl-38876085

RÉSUMÉ

This study introduces a novel heteroleptic indium complex, which incorporates an amidinate ligand, serving as a high-temperature atomic layer deposition (ALD) precursor. The most stable structure was determined using density functional theory and synthesized, demonstrating thermal stability up to 375 °C. We fabricated indium oxide thin-film transistors (In2O3TFTs) prepared with DBADMI precursor using ALD in wide range of window processing temperature of 200 °C, 300 °C, and 350 °C with an ozone (O3) as the source. The growth per cycle of ALD ranged from 0.06 to 0.1 nm cycle-1at different deposition temperatures. X-ray diffraction and transmission electron microscopy were employed to analyze the crystalline structure as it relates to the deposition temperature. At a relatively low deposition temperature of 200 °C, an amorphous morphology was observed, while at 300 °C and 350 °C, crystalline structures were evident. Additionally, x-ray photoelectron spectroscopy analysis was conducted to identify the In-O and OH-related products in the film. The OH-related product was found to be as low as 1% with an increase the deposition temperature. Furthermore, we evaluated In2O3TFTs and observed an increase in field-effect mobility, with minimal change in the threshold voltage (Vth), at 200 °C, 300 °C, and 350 °C. Consequently, the DBADMI precursor, given its stability at highdeposition temperatures, is ideal for producing high-quality films and stable crystalline phases, with wide processing temperature range makeing it suitable for various applications.

12.
ACS Sens ; 9(7): 3557-3572, 2024 Jul 26.
Article de Anglais | MEDLINE | ID: mdl-38857120

RÉSUMÉ

This study presents a novel, ultralow-power single-sensor-based electronic nose (e-nose) system for real-time gas identification, distinguishing itself from conventional sensor-array-based e-nose systems, whose power consumption and cost increase with the number of sensors. Our system employs a single metal oxide semiconductor (MOS) sensor built on a suspended 1D nanoheater, driven by duty cycling─characterized by repeated pulsed power inputs. The sensor's ultrafast thermal response, enabled by its small size, effectively decouples the effects of temperature and surface charge exchange on the MOS nanomaterial's conductivity. This provides distinct sensing signals that alternate between responses coupled with and decoupled from the thermally enhanced conductivity, all within a single time domain during duty cycling. The magnitude and ratio of these dual responses vary depending on the gas type and concentration, facilitating the early stage gas identification of five gas types within 30 s via a convolutional neural network (classification accuracy = 93.9%, concentration regression error = 19.8%). Additionally, the duty-cycling mode significantly reduces power consumption by up to 90%, lowering it to 160 µW to heat the sensor to 250 °C. Manufactured using only wafer-level batch microfabrication processes, this innovative e-nose system promises the facile implementation of battery-driven, long-term, and cost-effective IoT monitoring systems.


Sujet(s)
Apprentissage profond , Nez électronique , Gaz , Semiconducteurs , Gaz/composition chimique , Gaz/analyse , Alimentations électriques
13.
Sci Rep ; 14(1): 14881, 2024 Jun 27.
Article de Anglais | MEDLINE | ID: mdl-38937526

RÉSUMÉ

We report the growth of bulk ß-Ga2O3 crystals based on crystal pulling from a melt using a cold container without employing a precious-metal crucible. Our approach, named oxide crystal growth from cold crucible (OCCC), is a fusion between the skull-melting and Czochralski methods. The absence of an expensive precious-metal crucible makes this a cost-effective crystal growth method, which is a critical factor in the semiconductor industry. An original construction 0.4-0.5 MHz SiC MOSFET transistor generator with power up to 35 kW was used to successfully grow bulk ß-Ga2O3 crystals with diameters up to 46 mm. Also, an original diameter control system by generator frequency change was applied. In this preliminary study, the full width at half maximum of the X-ray rocking curve from the obtained ß-Ga2O3 crystals with diameters ≤ 46 mm was comparable to those of ß-Ga2O3 produced by edge-defined film fed growth. Moreover, as expected, the purity of the obtained crystals was high because only raw material-derived impurities were detected, and contamination from the process, such as insulation and noble metals, was below the detection limit. Our results indicate that the OCCC technique can be used to produce high-purity bulk ß-Ga2O3 single crystalline substrate.

14.
Nanotechnology ; 35(35)2024 Jun 14.
Article de Anglais | MEDLINE | ID: mdl-38838661

RÉSUMÉ

This study investigates the effect of an oxidized Ta capping layer on the boosting of field-effect mobility (µFE) of amorphous In-Ga-Zn-O (a-IGZO) Thin-film transistors (TFTs). The oxidation of Ta creates additional oxygen vacancies on the a-IGZO channel surface, leading to increased carrier density. We investigate the effect of increasing Ta coverage on threshold voltage (Vth), on-state current,µFEand gate bias stress stability of a-IGZO TFTs. A significant increase inµFEof over 8 fold, from 16 cm2Vs-1to 140 cm2Vs-1, was demonstrated with the Ta capping layer covering 90% of the channel surface. By partial leaving the a-IGZO uncovered at the contact region, a potential barrier region was created, maintaining the low off-state current and keeping the threshold voltage near 0 V, while the capped region operated as a carrier-boosted region, enhancing channel conduction. The results reported in this study present a novel methodology for realizing high-performance oxide semiconductor devices. The demonstrated approach holds promise for a wide range of next-generation device applications, offering new avenues for advancement in metal oxide semiconductor TFTs.

15.
ACS Appl Mater Interfaces ; 16(24): 31237-31246, 2024 Jun 19.
Article de Anglais | MEDLINE | ID: mdl-38842364

RÉSUMÉ

There is always a doubt that introducing water during oxide growing has a positive or negative effect on the properties of oxide films and devices. Herein, a comparison experiment on the condition of keeping the same oxygen atom flux in the sputtering chamber is designed to examine the influences of H2O on In-Sn-Zn-O (ITZO) films and their transistors. In comparison to no-water films, numerous unstable hydrogen-related defects are induced on with-water films at the as-deposited state. Paradoxically, this induction triggers an ordered enhancement in the microstructure of the films during conventional annealing, characterized by a reduction in H-related and vacancy (Vo) defects as well as an increase in film packing density and the M-O network ordering. Ultimately, the no-water thin-film transistors (TFTs) exhibit nonswitching behavior, whereas 5 sccm-water TFT demonstrates excellent electrical performance with a remarkable saturation field-effect mobility (µFE) of 122.10 ± 5.00 cm2·V-1·s-1, a low threshold (Vth) of -2.30 ± 0.40 V, a steep sub-threshold swing (SS) of 0.18 V·dec-1, a high output current (Ion) of 1420 µA, and a small threshold voltage shift ΔVth of -0.77 V in the negative bias stability test (3600 s).

16.
ACS Nano ; 18(21): 13849-13857, 2024 May 28.
Article de Anglais | MEDLINE | ID: mdl-38748609

RÉSUMÉ

With the demand for high-performance and miniaturized semiconductor devices continuously rising, the development of innovative tunneling transistors via efficient stacking methods using two-dimensional (2D) building blocks has paramount importance in the electronic industry. Hence, 2D semiconductors with atomically thin geometries hold significant promise for advancements in electronics. In this study, we introduced tunneling memtransistors with a thin-film heterostructure composed of 2D semiconducting MoS2 and WSe2. Devices with the dual function of tuning and memory operation were realized by the gate-regulated modulation of the barrier height at the heterojunction and manipulation of intrinsic defects within the exfoliated nanoflakes using solution processes. Further, our investigation revealed extensive edge defects and four distinct defect types, namely monoselenium vacancies, diselenium vacancies, tungsten vacancies, and tungsten adatoms, in the interior of electrochemically exfoliated WSe2 nanoflakes. Additionally, we constructed complementary metal-oxide semiconductor-based logic-in-memory devices with a small static power in the range of picowatts using the developed tunneling memtransistors, demonstrating a promising approach for next-generation low-power nanoelectronics.

17.
Biosens Bioelectron ; 259: 116407, 2024 Sep 01.
Article de Anglais | MEDLINE | ID: mdl-38776800

RÉSUMÉ

Metal-oxide semiconductors (MOSs) have emerged as pivotal components in technology related to biosensors and bioelectronics. Detecting biomarkers in sweat provides a glimpse into an individual's metabolism without the need for sample preparation or collection steps. The distinctive attributes of this biosensing technology position it as an appealing option for biomedical applications beyond the scope of diagnosis and healthcare monitoring. This review encapsulates ongoing developments of cutting-edge biosensors based on MOSs. Recent advances in MOS-based biosensors for human sweat analyses are reviewed. Also discussed is the progress in sweat-based biosensing technologies to detect and monitor diseases. Next, system integration of biosensors is demonstrated ultimately to ensure the accurate and reliable detection and analysis of target biomarkers beyond individual devices. Finally, the challenges and opportunities related to advanced biosensors and bioelectronics for biomedical applications are discussed.


Sujet(s)
Techniques de biocapteur , Métaux , Oxydes , Semiconducteurs , Sueur , Techniques de biocapteur/instrumentation , Techniques de biocapteur/méthodes , Humains , Sueur/composition chimique , Métaux/composition chimique , Oxydes/composition chimique , Conception d'appareillage , Marqueurs biologiques/analyse
18.
Nanotechnology ; 35(34)2024 Jun 07.
Article de Anglais | MEDLINE | ID: mdl-38806010

RÉSUMÉ

We report on improved high voltage operation of amorphous-In-Ga-Zn-O (a-IGZO) thin film transistors (TFTs) by increasing carrier density and distributing the high bias field over the length of the device which utilizes an off-set drain structure. By decreasing the O2partial pressure during sputter deposition of IGZO, the channel carrier density of the high voltage a-IGZO TFT (HiVIT) was increased to ∼1018cm-3. Which reduced channel resistance and therefore the voltage drop in the ungated offset region during the on-state. To further decrease the electric field in the offset region, we applied Ta capping and subsequent oxidation to locally increase the oxygen vacancy levels in the offset region thereby increasing local carrier density. The reduction of the drain field in the offset region from 1.90 Vµm-1to 1.46 Vµm-1at 200 V drain voltage, significantly improved the operational stability of the device by reducing high field degradation. At an extreme drain voltage of 500 V, the device showed an off-state current of ∼10-11A and on-state current of ∼1.59 mA demonstrating that with further enhancements the HiVIT may be applicable to thin-film form, low leakage, high voltage control applications.

19.
Nano Lett ; 24(19): 5737-5745, 2024 May 15.
Article de Anglais | MEDLINE | ID: mdl-38686670

RÉSUMÉ

Tungsten oxide (WO3) doped indium oxide (IWO) field-effect transistors (FET), synthesized using atomic layer deposition (ALD) for three-dimensional integration and back-end-of-line (BEOL) compatibility, are demonstrated. Low-concentration (1∼4 W atom %) WO3-doping in In2O3 films is achieved by adjusting cycle ratios of the indium and tungsten precursors with the oxidant coreactant. Such doping suppresses oxygen deficiency from In2O2.5 to In2O3 stoichiometry with only 1 atom % W, allowing devices to turn off stably and enhancing threshold voltage stability. The ALD IWO FETs exhibit superior performance, including a low subthreshold slope of 67 mV/decade and negligible hysteresis. Strong tunability of the threshold voltage (Vth) is achieved through W concentration tuning, with 2 atom % IWO FETs showing an optimized Vth for enhancement-mode and a high drain current. ALD IWO FETs have remarkable stability under bias stress and nearly ideal performance extending to sub-100 nm channel lengths, making them promising candidates for high-performance monolithic 3D integrated devices.

20.
Article de Anglais | MEDLINE | ID: mdl-38662878

RÉSUMÉ

Drain-induced barrier lowering (DIBL) is one of the most critical obstacles degrading the reliability of integrated circuits based on miniaturized transistors. Here, the effect of a crystallographic structure change in InGaO [indium gallium oxide (IGO)] thin-films on the DIBL was investigated. Preferentially oriented IGO (po-IGO) thin-film transistors (TFTs) have outstanding device performances with a field-effect mobility of 81.9 ± 1.3 cm2/(V s), a threshold voltage (VTH) of 0.07 ± 0.03 V, a subthreshold swing of 127 ± 2.0 mV/dec, and a current modulation ratio of (2.9 ± 0.2) × 1011. They also exhibit highly reliable electrical characteristics with a negligible VTH shift of +0.09 (-0.14) V under +2 (-2) MV/cm and 60 °C for 3600 s. More importantly, they reveal strong immunity to the DIBL of 17.5 ± 1.2 mV/V, while random polycrystalline In2O3 (rp-In2O3) and IGO (rp-IGO) TFTs show DIBL values of 197 ± 5.3 and 46.4 ± 1.2 mV/V, respectively. This is quite interesting because the rp- and po-IGO thin-films have the same cation composition ratio (In/Ga = 8:2). Given that the lateral diffusion of oxygen vacancies from the source/drain junction to the channel region via grain boundaries can reduce the effective length (Leff) of the oxide channel, this improved immunity could be attributed to suppressed lateral diffusion by preferential growth. In practice, the po-IGO TFTs have a longer Leff than the rp-In2O3 and -IGO TFTs even with the same patterned length. The effect of the crystallographic-structure-dependent Leff variation on the DIBL was corroborated by technological computer-aided design simulation. This work suggests that the atomic-layer-deposited po-IGO thin-film can be a promising candidate for next-generation electronic devices composed of the miniaturized oxide transistors.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE