Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 8 de 8
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Pharmaceuticals (Basel) ; 17(5)2024 May 09.
Article de Anglais | MEDLINE | ID: mdl-38794177

RÉSUMÉ

A non-structural SARS-CoV-2 protein, PLpro, is involved in post-translational modifications in cells, allowing the evasion of antiviral immune response mechanisms. In this study, potential PLpro inhibitory drugs were designed using QSAR, molecular docking, and molecular dynamics. A combined QSAR equation with physicochemical and Free-Wilson descriptors was formulated. The r2, q2, and r2test values were 0.833, 0.770, and 0.721, respectively. From the equation, it was found that the presence of an aromatic ring and a basic nitrogen atom is crucial for obtaining good antiviral activity. Then, a series of structures for the binding sites of C111, Y268, and H73 of PLpro were created. The best compounds were found to exhibit pIC50 values of 9.124 and docking scoring values of -14 kcal/mol. The stability of the compounds in the cavities was confirmed by molecular dynamics studies. A high number of stable contacts and good interactions over time were exhibited by the aryl-thiophenes Pred14 and Pred15, making them potential antiviral candidates.

2.
Front Mol Biosci ; 11: 1374364, 2024.
Article de Anglais | MEDLINE | ID: mdl-38601323

RÉSUMÉ

The papain-like protease (PLpro) found in coronaviruses that can be transmitted from animals to humans is a critical target in respiratory diseases linked to Severe Acute Respiratory Syndrome (SARS-CoV). Researchers have proposed designing PLpro inhibitors. In this study, a set of 89 compounds, including recently reported 2-phenylthiophenes with nanomolar inhibitory potency, were investigated as PLpro noncovalent inhibitors using advanced molecular modeling techniques. To develop the work with these inhibitors, multiple structures of the SARS-CoV-2 PLpro binding site were generated using a molecular sampling method. These structures were then clustered to select a group that represents the flexibility of the site. Subsequently, models of the protein-ligand complexes were created for the set of inhibitors within the chosen conformations. The quality of the complex models was assessed using LigRMSD software to verify similarities in the orientations of the congeneric series and interaction fingerprints to determine the recurrence of chemical interactions. With the multiple models constructed, a protocol was established to choose one per ligand, optimizing the correlation between the calculated docking energy values and the biological activities while incorporating the effect of the binding site's flexibility. A strong correlation (R2 = 0.922) was found when employing this flexible docking protocol.

3.
Front Mol Biosci ; 10: 1215499, 2023.
Article de Anglais | MEDLINE | ID: mdl-37426421

RÉSUMÉ

The papain-like protease (PLpro) from zoonotic coronaviruses (CoVs) has been identified as a target with an essential role in viral respiratory diseases caused by Severe Acute Respiratory Syndrome-associated coronaviruses (SARS-CoVs). The design of PLpro inhibitors has been proposed as an alternative to developing potential drugs against this disease. In this work, 67 naphthalene-derived compounds as noncovalent PLpro inhibitors were studied using molecular modeling methods. Structural characteristics of the bioactive conformations of these inhibitors and their interactions at the SARS-CoV-1 PLpro binding site were reported here in detail, taking into account the flexibility of the protein residues. Firstly, a molecular docking protocol was used to obtain the orientations of the inhibitors. After this, the orientations were compared, and the recurrent interactions between the PLpro residues and ligand chemical groups were described (with LigRMSD and interaction fingerprints methods). In addition, efforts were made to find correlations between docking energy values and experimentally determined binding affinities. For this, the PLpro was sampled by using Gaussian Accelerated Molecular Dynamics (GaMD), generating multiple conformations of the binding site. Diverse protein conformations were selected and a cross-docking experiment was performed, yielding models of the 67 naphthalene-derived compounds adopting different binding modes. Representative complexes for each ligand were selected to obtain the highest correlation between docking energies and activities. A good correlation (R 2 = 0.948) was found when this flexible docking protocol was performed.

4.
Pharmaceutics ; 15(2)2023 Jan 28.
Article de Anglais | MEDLINE | ID: mdl-36839758

RÉSUMÉ

Recent studies have shown that the peptide [des-Cys11,Lys12,Lys13-(p-BthTX-I)2K] (p-Bth) is a p-BthTX-I analog that shows enhanced antimicrobial activity, stability and hemolytic activity, and is easy to obtain compared to the wild-type sequence. This molecule also inhibits SARS-CoV-2 viral infection in Vero cells, acting on SARS-CoV-2 PLpro enzymatic activity. Thus, the present study aimed to assess the effects of structural modifications to p-Bth, such as dimerization, dendrimerization and chirality, on the antibacterial activity and inhibitory properties of PLpro. The results showed that the dimerization or dendrimerization of p-Bth was essential for antibacterial activity, as the monomeric structure led to a total loss of, or significant reduction in, bacterial activities. The dimers and tetramers obtained using branched lysine proved to be prominent compounds with antibacterial activity against Gram-positive and Gram-negative bacteria. In addition, hemolysis rates were below 10% at the corresponding concentrations. Conversely, the inhibitory activity of the PLpro of SARS-CoV-2 was similar in the monomeric, dimeric and tetrameric forms of p-Bth. Our findings indicate the importance of the dimerization and dendrimerization of this important class of antimicrobial peptides, which shows great potential for antimicrobial and antiviral drug-discovery campaigns.

5.
Comput Struct Biotechnol J ; 21: 1461-1472, 2023.
Article de Anglais | MEDLINE | ID: mdl-36817956

RÉSUMÉ

Since the advent of Covid-19, several natural products have been investigated regarding their in silico interactions with SARS-CoV-2 proteases - 3CLpro and PLpro, two of the most important pharmacological targets for antiviral development. Phenylethanoid glycosides (PG) are a class of natural products present in important medicinal plants and a drug containing this group of active ingredients has been successfully used in the treatment of Covid-19 in China. Thus, a dataset with 567 derivatives of this class was built from reviews published between 1994 and 2020, and their interaction against both SARS-CoV-2 proteases was investigated. The virtual screening was performed by filtering the PGs through the evaluation of scores based on the AutoDock Vina, GOLD/ChemPLP, and GOLD/GoldScore evaluation functions. The bRO5 pharmacokinetic parameters of the PGs ranked in the previous step were analyzed and their interaction with key amino acid residues of the 3CLpro and PLpro enzymes was evaluated. Ninety-eight compounds were identified by computational approaches against PLpro and 80 PGs against 3CLpro. Of these, four interacted with key catalytic residues of PLpro, which is an indicative of inhibitory activity, and three compounds interacted with catalytic key residues of 3CLpro. Of these, five PGs occur in plants of the Traditional Chinese Medicine (TCM), while two are components of plants/formulations currently used in the Covid-19 protocols in China. The data presented here show the potential of PGs as selective inhibitors of SARS-CoV-2 3CLpro and PLpro.

6.
3 Biotech ; 12(12): 344, 2022 Dec.
Article de Anglais | MEDLINE | ID: mdl-36382241

RÉSUMÉ

The current outbreak of COVID-19 cases worldwide has been responsible for a significant number of deaths, especially in hospitalized patients suffering from comorbidities, such as obesity, diabetes, hypertension. The disease not only has prompted an interest in the pathophysiology, but also it has propelled a massive race to find new anti-SARS-CoV-2 drugs. In this scenario, known drugs commonly used to treat other diseases have been suggested as alternative or complementary therapeutics. Herein we propose the use of sitagliptin, an inhibitor of dipeptidyl peptidase-4 (DPP4) used to treat type-II diabetes, as an agent to block and inhibit the activity of two proteases, 3CLpro and PLpro, related to the processing of SARS-CoV-2 structural proteins. Inhibition of these proteases may possibly reduce the viral load and infection on the host by hampering the synthesis of new viruses, thus promoting a better outcome. In silico assays consisting in the modeling of the ligand sitagliptin and evaluation of its capacity to interact with 3CLpro and PLpro through the prediction of the ligand bioactivity, molecular docking, overlapping of crystal structures, and molecular dynamic simulations were conducted. The experiments indicate that sitagliptin can interact and bind to both targets. However, this interaction seems to be stronger and more stable to 3CLpro (ΔG = -7.8 kcal mol-1), when compared to PLpro (ΔG = -7.5 kcal mol-1). This study suggests that sitagliptin may be suitable to treat COVID-19 patients, beyond its common use as an anti-diabetic medication. In vivo studies may further support this hypothesis. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-022-03406-w.

7.
Int J Mol Sci ; 23(18)2022 Sep 19.
Article de Anglais | MEDLINE | ID: mdl-36142848

RÉSUMÉ

The chymotrypsin-like cysteine protease (3CLpro, also known as main protease-Mpro) and papain-like protease (PLpro) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been used as the main targets for screening potential synthetic inhibitors for posterior in vitro evaluation of the most promising compounds. In this sense, the present work reports for the first time the evaluation of the interaction between Mpro/PLpro with a series of 17 porphyrin analogues-corrole (C1), meso-aryl-corrole (C2), and 15 fluorinated-meso-aryl-corrole derivatives (C3-C17) via molecular docking calculations. The impact of fluorine atoms on meso-aryl-corrole structure was also evaluated in terms of binding affinity and physical-chemical properties by two-dimensional quantitative structure-activity relationship (2D-QSAR). The presence of phenyl moieties increased the binding capacity of corrole for both proteases and depending on the position of fluorine atoms might impact positively or negatively the binding capacity. For Mpro the para-fluorine atoms might decrease drastically the binding capacity, while for PLpro there was a certain increase in the binding affinity of fluorinated-corroles with the increase of fluorine atoms into meso-aryl-corrole structure mainly from tri-fluorinated insertions. The 2D-QSAR models indicated two separated regions of higher and lower affinity for Mpro:C1-C17 based on dual electronic parameters (σI and σR), as well as one model was obtained with a correlation between the docking score value of Mpro:C2-C17 and the corresponding 13C nuclear magnetic resonance (NMR) chemical shifts of the sp2 carbon atoms (δC-1 and δC-2) of C2-C17. Overall, the fluorinated-meso-aryl-corrole derivatives showed favorable in silico parameters as potential synthetic compounds for future in vitro assays on the inhibition of SARS-CoV-2 replication.


Sujet(s)
Traitements médicamenteux de la COVID-19 , Porphyrines , Antiviraux/pharmacologie , Carbone , Chymotrypsine , Protéases 3C des coronavirus , Fluor , Humains , Simulation de docking moléculaire , Papaïne , Peptide hydrolases , Porphyrines/pharmacologie , Inhibiteurs de protéases/composition chimique , Inhibiteurs de protéases/pharmacologie , Relation quantitative structure-activité , SARS-CoV-2
8.
Curr Med Chem ; 29(14): 2530-2564, 2022.
Article de Anglais | MEDLINE | ID: mdl-34313197

RÉSUMÉ

BACKGROUND: COVID-19 is still causing long-term health consequences, mass deaths, and collapsing healthcare systems around the world. There are no efficient drugs for its treatment. However, previous studies revealed that SARS-CoV-2 and SARS-CoV have 96% and 86.5% similarities in cysteine proteases (3CLpro) and papain-like protease (PLpro) sequences, respectively. This resemblance could be important in the search for drug candidates with antiviral effects against SARS-CoV-2. OBJECTIVE: This paper is a compilation of natural products that inhibit SARS-CoV 3CLpro and PLpro and, concomitantly, reduce inflammation and/or modulate the immune system as a perspective strategy for COVID-19 drug discovery. It also presents in silico studies performed on these selected natural products using SARS-CoV-2 3CLpro and PLpro as targets to propose a list of hit compounds. METHODS: The plant metabolites were selected in the literature based on their biological activities on SARS-CoV proteins, inflammatory mediators, and immune response. The consensus docking analysis was performed using four different packages. RESULTS: Seventy-nine compounds reported in the literature with inhibitory effects on SARS-CoV proteins were reported as anti-inflammatory agents. Fourteen of them showed immunomodulatory effects in previous studies. Five and six of these compounds showed significant in silico consensus as drug candidates that can inhibit PLpro and 3CLpro, respectively. Our findings corroborated recent results reported on anti-SARS-CoV-2 in the literature. CONCLUSION: This study revealed that amentoflavone, rubranoside B, savinin, psoralidin, hirsutenone, and papyriflavonol A are good drug candidates for the search of antibiotics against COVID-19.


Sujet(s)
Produits biologiques , Traitements médicamenteux de la COVID-19 , Anti-inflammatoires/pharmacologie , Anti-inflammatoires/usage thérapeutique , Antiviraux/pharmacologie , Antiviraux/usage thérapeutique , Produits biologiques/pharmacologie , Produits biologiques/usage thérapeutique , Découverte de médicament , Humains , Immunité , Simulation de docking moléculaire , Inhibiteurs de protéases/pharmacologie , Inhibiteurs de protéases/usage thérapeutique , SARS-CoV-2
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE