Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 4.226
Filtrer
1.
Sci Rep ; 14(1): 17806, 2024 Aug 01.
Article de Anglais | MEDLINE | ID: mdl-39090228

RÉSUMÉ

The paper investigated the possibility of extractive separation of palladium from platinum and rhodium with ionic liquid Cyphos IL 101. A technological solution obtained by dissolving waste materials was used as the test material. Based on the experiments performed, it was found that a 10% (v/v) solution of the Cyphos IL 101 ionic liquid in toluene allows the extraction of both Pd and Pt with an efficiency of 99% from the initial solution when extraction is carried out at the pH 0.5, vorg:vaq phase ratio 1:1 and contact time of 15 min. Moreover, the research proved that it is possible to separate Pd from Pt at the stripping stage using a 0.1 mol/dm3 thiourea solution while maintaining a high selectivity coefficient.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 323: 124908, 2024 Jul 30.
Article de Anglais | MEDLINE | ID: mdl-39096677

RÉSUMÉ

The development of an efficient palladium probe holds significant application value, considering the detrimental impact of palladium contaminants on human health. Thus, it is critical to create a sensitive detection method. To this end, a fluorescent probe TM-TPA-Pd based on benzothianone structure was designed, using allyl carbonate as the Pd0 recognition unit. TM-TPA-Pd exhibited high sensitivity (1.4 eq), selectivity, near-infrared (NIR) fluorescence (798 nm), and low detection limit (0.46 µM) for Pd0 with a rapid "turn-on" fluorescence signal (5 min). Furthermore, TM-TPA-Pd has extremely low cytotoxicity and has been successfully applied to detecting cells and zebrafish, which has great potential for palladium detection in biological systems.

3.
J Colloid Interface Sci ; 677(Pt A): 425-434, 2024 Jul 31.
Article de Anglais | MEDLINE | ID: mdl-39096710

RÉSUMÉ

In this study, a simple one-pot synthesis process is employed to introduce Pd dopant and abundant S vacancies into In2S3 nanosheets. The optimized Pd-doped In2S3 photocatalyst, with abundant S vacancies, demonstrates a significant enhancement in photocatalytic hydrogen evolution. The joint modification of Pd doping and rich S vacancies on the band structure of In2S3 result in an improvement in both the light absorption capacity and proton reduction ability. It is worth noting that photogenerated electrons enriched by S vacancies can rapidly migrate to adjacent Pd atoms through an efficient transfer path constructed by Pd-S bond, effectively suppressing the charge recombination. Consequently, the dual-defective In2S3 shows an efficient photocatalytic H2 production rate of 58.4 ± 2.0 µmol·h-1. Additionally, further work has been conducted on other ternary metal sulfide, ZnIn2S4. Our findings provide a new insight into the development of highly efficient photocatalysts through synergistic defect engineering.

4.
IUCrdata ; 9(Pt 7): x240555, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-39108936

RÉSUMÉ

The PdII complex bis-{(S)-(-)-N-[(biphenyl-2-yl)methyl-idene]1-(4-meth-oxy-phen-yl)ethanamine-κN}di-chlorido-palladium(II), [PdCl2(C22H21NO)2], crystallizes in the monoclinic Sohncke space group P21 with a single mol-ecule in the asymmetric unit. The coordination environment around the palladium is slightly distorted square planar. The N-Pd-Cl bond angles are 91.85 (19), 88.10 (17), 89.96 (18), and 90.0 (2)°, while the Pd-Cl and Pd-N bond lengths are 2.310 (2) and 2.315 (2) Šand 2.015 (2) and 2.022 (6) Å, respectively. The crystal structure features inter-molecular N-H⋯Cl and intramolecular C-H⋯Pd inter-actions, which lead to the formation of a supramolecular framework structure.

5.
Angew Chem Int Ed Engl ; : e202407682, 2024 Aug 05.
Article de Anglais | MEDLINE | ID: mdl-39103295

RÉSUMÉ

The transition metal-catalyzed asymmetric hydro-functionalization of 1,3-dienes has been well explored, but most reactions focus on electron-neutral substrates in an intermolecular manner. Here we first demonstrate that readily available 2,4-dienyl hydrazones and oximes can be efficiently utilized in the hydro-cyclization reaction under co-catalysis of a Brønsted acid and a chiral palladium complex, furnishing multifunctional dihydropyrazones and dihydroisoxazoles, respectively. Diverse substitution patterns for both types of electron-deficient diene compounds are tolerated, and corresponding heterocycles were generally constructed with moderate to excellent enantioselectivity, which can be elaborated to access products with higher molecular complexity and diversity. Control experiments and density functional theory calculations support that α-regioselective protonation of dienyl substrates by acid and concurrent π-Lewis base activation of Pd0 complex is energetically favoured in the formation of active π-allylpalladium intermediates, and an outer-sphere allylic amination or etherification mode is adopted to deliver the observed cyclized products enantioselectively.

6.
R Soc Open Sci ; 11(6): 231894, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-39100189

RÉSUMÉ

In this work, palladium nanoparticles (PdNPs)/p1,5-DAN/ carbon paste electrode (CPE) and p1,5-DAN/CPE sensors have been developed for determination of hydrogen peroxide. Both sensors showed a highly sensitive and selective electrochemical behaviour, which were derived from a large specific area of poly 1,5 DAN and super excellent electroconductibility of PdNPs. PdNPs/p1,5-DAN/CPE exhibited excellent performance over p1,5-DAN/CPE. Thus, it was used for detecting hydrogen peroxide (H2O2) with linear ranges of 0.1 to 250 µM and 0.2 to 300 µM as well as detection limits (S/N = 3) of 1.0 and 5.0 nM for square wave voltammetry (SWV) and cyclic voltammetry (C.V) techniques, respectively. The modified CPE has good reproducibility, adequate catalytic activity, simple synthesis and stability of peak response during H2O2 oxidation on long run that exceeds many probes. Both reproducibility and stability for H2O2 detection are attributable to the PdNPs immobilized on the surface of p1,5-DAN/CPE. The modified CPE was used for determining H2O2 in real specimens with good stability, sensitivity, and reproducibility.

7.
Angew Chem Int Ed Engl ; : e202408736, 2024 Aug 06.
Article de Anglais | MEDLINE | ID: mdl-39107260

RÉSUMÉ

The electrooxidation of catalyst surfaces is across various electrocatalytic reactions, directly impacting their activity, stability and selectivity. Precisely characterizing the electrooxidation on well-defined surfaces is essential to understanding electrocatalytic reactions comprehensively. Herein, we employed in situ Raman spectroscopy to monitor the electrooxidation process of palladium single crystal. Our findings reveal that the Pd surface's initial electrooxidation process involves forming *OH intermediate and ClO4- ions facilitate the deprotonation process, leading to the formation of PdOx. Subsequently, under deep electrooxidation potential range, the oxygen atoms within PdOx contribute to creating surface-bound peroxide species, ultimately resulting in oxygen generation. The adsorption strength of *OH and the coverage of ClO4- can be adjusted by the controllable electronic effect, resulting in different oxidation rates. This study offers valuable insights into elucidating the electrooxidation mechanisms underlying a range of electrocatalytic reactions, thereby contributing to the rational design of catalysts.

8.
Angew Chem Int Ed Engl ; : e202410646, 2024 Jul 07.
Article de Anglais | MEDLINE | ID: mdl-38972838

RÉSUMÉ

Ethylene dimerization is an industrial process that is currently carried out using homogeneous catalysts. Here we present a highly active heterogeneous catalyst containing minute amounts of atomically dispersed Pd. It requires no co-catalyst(s) or activator(s) and significantly outperforms previously reported catalysts tested under similar reaction conditions. The selectivity to C4- and C6-hydrocarbons was about 80% and 10% at 42% ethylene conversion at 200°C using an industrially relevant feed containing 50 vol% ethylene, respectively. Our kinetic and catalyst characterization experiments complemented by density functional theory calculations provide molecular insights into the local environment of isolated Pd(II)Ox species and their role in achieving high activity in the target reaction. When the developed catalyst was rationally integrated with a Mo-containing olefin metathesis catalyst in the same reactor, the formed butenes reacted with ethylene to propylene with a selectivity of 98% at about 24% ethylene conversion.

9.
Adv Mater ; : e2404291, 2024 Jul 08.
Article de Anglais | MEDLINE | ID: mdl-38975670

RÉSUMÉ

The transition toward hydrogen gas (H2) as an eco-friendly and renewable energy source necessitates advanced safety technologies, particularly robust sensors for H2 leak detection and concentration monitoring. Although palladium (Pd)-based materials are preferred for their strong H2 affinity, intense palladium-hydrogen (Pd-H) interactions lead to phase transitions to palladium hydride (PdHx), compromising sensors' durability and detection speeds after multiple uses. In response, this study introduces a high-performance H2 sensor designed from thiolate-protected Pd nanoclusters (Pd8SR16), which leverages the synergistic effect between the metal and protective ligands to form an intermediate palladium-hydrogen-sulfur (Pd-H-S) state during H2 adsorption. Striking a balance, it preserves Pd-H binding affinity while preventing excessive interaction, thus lowering the energy required for H2 desorption. The dynamic adsorption-dissociation-recombination-desorption process is efficiently and highly reversible with Pd8SR16, ensuring robust and rapid H2 sensing at parts per million (ppm). The Pd8SR16-based sensor demonstrates exceptional stability (50 cycles; 0.11% standard deviation in response), prompt response/recovery (t90 = 0.95 s/6 s), low limit of detection (LoD, 1 ppm), and ambient temperature operability, ranking it among the most sensitive Pd-based H2 sensors. Furthermore, a multifunctional prototype demonstrates the practicality of real-world gas sensing using ligand-protected metal nanoclusters.

10.
Adv Sci (Weinh) ; : e2403470, 2024 Jul 05.
Article de Anglais | MEDLINE | ID: mdl-38970207

RÉSUMÉ

A Pd-catalyzed enantioselective aminosilylation of alkenes via tandem Aza-Heck/silylation reaction under Pd/Sadphos catalysis is disclosed. A wide array of oxime esters and silicon reagents are tolerated, furnishing the chiral pyrrolines bearing one quaternary or two contiguous stereocenters in good yield with high enantioselectivity. Not only terminal alkenes but also tri-substituented internal alkenes successfully participate in the reaction, delivering vicinal stereocenters in complete diastereoselectivity and high enantioselectivity. DFT study is conducted to probe the reaction pathway and the origin of the enantioselectivity, which revealed that the stereoinduction arises from the weak interaction between the aromatic ring of the substrate fragment and naphthyl group in the ligand.

11.
Chemosphere ; 363: 142935, 2024 Jul 23.
Article de Anglais | MEDLINE | ID: mdl-39053777

RÉSUMÉ

The marine chemistry of platinum group elements is poorly documented despite robust evidence of their widespread emissions and deposition around the globe. Here, we report the concentrations and discuss the geochemical behaviours of Ag, Pd and other trace and ultra-trace elements in the Estuary and Gulf of St. Lawrence (EGSL). We highlight the contrasting mixing behaviours of these elements, i.e., conservative (Cd, Re) vs. non-conservative (Ag, Pd), in samples collected during the winter and under ice-covered conditions. We ascribe the contrasting geochemical behaviour of these elements to their differential affinity for reactive surfaces carried into the estuary from the frozen watersheds. We also report an increase of the concentrations of Ag (up to 40 pmol L-1), Pd (up to 10 pmol L-1) and Pt (up to 0.4 pmol L-1) in the bottom and oxygen-depleted waters of the Gulf of St. Lawrence (GSL). A strong correlation between dissolved Pt concentrations and the stable carbon isotopic composition of the dissolved inorganic carbon (δ13C-DIC) suggests that the increased mobility of Pt may result from the aerobic mineralization of organic carbon or the oxidation of Pt-bearing organic complexes. Molar Pt/Pd ratios in the three water masses that compose the water column in the EGSL highlight a potential influence of anthropogenic sources near urban centers. The signature of continental end-members will be required to confirm the impacts of road traffic on the estuarine geochemistry of these elements.

12.
Biomedicines ; 12(7)2024 Jul 05.
Article de Anglais | MEDLINE | ID: mdl-39062073

RÉSUMÉ

There is a rising awareness of the toxicity of micro- and nanoplastics (MNPs); however, fundamental precise information on MNP-biodistribution in organisms is currently not available. X-ray fluorescence imaging (XFI) is introduced as a promising imaging modality to elucidate the effective MNP bioavailability and is expected to enable exact measurements on the uptake over the physical barriers of the organism and bioaccumulation in different organs. This is possible because of the ability of XFI to perform quantitative studies with a high spatial resolution and the possibility to conduct longitudinal studies. The focus of this work is a numerical study on the detection limits for a selected XFI-marker, here, palladium, to facilitate the design of future preclinical in vivo studies. Based on Monte Carlo simulations using a 3D voxel mouse model, the palladium detection thresholds in different organs under in vivo conditions in a mouse are estimated. The minimal Pd-mass in the scanning position at a reasonable significance level is determined to be <20 ng/mm2 for abdominal organs and <16 µg/mm2 for the brain. MNPs labelled with Pd and homogeneously distributed in the organ would be detectable down to a concentration of <1 µg/mL to <2.5 mg/mL in vivo. Long-term studies with a chronic MNP exposure in low concentrations are therefore possible such that XFI measurements could, in the future, contribute to MNP health risk assessment in small animals and humans.

13.
Angew Chem Int Ed Engl ; : e202410806, 2024 Jul 27.
Article de Anglais | MEDLINE | ID: mdl-39072955

RÉSUMÉ

Pd-catalysis has stood as a pivotal force in synthetic transformations for decades, maintaining its status as a paramount tool in the realm of C-H bond activation. While functionalization at proximal positions has become commonplace, achieving selective and sustainable access to distal positions continues to captivate scientific endeavors. Recently, a noteworthy trend has emerged, focusing on the utilization of non-covalent interactions to address the challenges associated with remote functionalization. The integration of these non-covalent interactions into palladium catalysis stands as a justified response to the demands of achieving selective transformations at distal positions. This review delves into the latest advancements and trends surrounding the incorporation of non-covalent interactions within the field of palladium catalysis. Furthermore, it is noteworthy to emphasize that multifunctional templates, particularly those harnessing hydrogen bonding, present an elegant and sophisticated approach to activate C-H bonds in a highly directed fashion. These templates showcase versatility and demonstrate potential applications across diverse contexts within the area of remote functionalization.

14.
Mikrochim Acta ; 191(8): 489, 2024 07 27.
Article de Anglais | MEDLINE | ID: mdl-39066938

RÉSUMÉ

A novel and simple ratiometric fluorescent aptasensor was developed for the sensitive detection of aflatoxin B1 (AFB1). A hairpin DNA (h-DNA) was independently synthesized as the basic skeleton, and the bidirectional hybridization of h-DNA can increase the load of aptamer and signal probes, thereby realizing signal amplification. The high-efficiency fluorescence resonance energy transfer interaction between gold-palladium nanoparticles (Au-Pd NPs) and the self-synthesized fluorescent probe carbon dots (CDs) was utilized. Moreover, the label-free probe SYBR Green I (SG I) dye was introduced to form a double-signal probe with CDs, and a ratiometric sensor with FCDs/FSG I as a response signal was constructed. The ratio strategy can eliminate the fluctuation of external factors, thus improving the accuracy and reliability of the sensor. The quenching effect of Au-Pd NPs on CDs was 1.4 times that of AuNPs and 3.4 times that of Pd NPs, respectively. In the range 1-100 ng/mL, FCDs/FSG I showed a good linear relationship with the logarithm of the concentration of AFB1, and the limit of detection was as low as 0.07 ng/mL. The sensor was used to detect AFB1 in spiked peanuts and wine samples, and the recovery was between 91 and 115%, indicating that the sensor has high application potential in real sample analysis.


Sujet(s)
Aflatoxine B1 , Aptamères nucléotidiques , Techniques de biocapteur , Carbone , Colorants fluorescents , Or , Limite de détection , Nanoparticules métalliques , Palladium , Boîtes quantiques , Or/composition chimique , Aflatoxine B1/analyse , Palladium/composition chimique , Nanoparticules métalliques/composition chimique , Aptamères nucléotidiques/composition chimique , Colorants fluorescents/composition chimique , Techniques de biocapteur/méthodes , Carbone/composition chimique , Boîtes quantiques/composition chimique , Hybridation d'acides nucléiques , Vin/analyse , ADN/composition chimique , Transfert d'énergie par résonance de fluorescence/méthodes , Arachis/composition chimique , Séquences répétées inversées
15.
ChemistryOpen ; : e202400180, 2024 Jul 25.
Article de Anglais | MEDLINE | ID: mdl-39051713

RÉSUMÉ

A selective direct arylation of the different Csp2-H bonds of imidazo[2,1-b]thiazole with (hetero) aryl halides can be achieved simply by switching from a palladium catalyst system to the use of stoichiometric amounts of copper. The observed selectivity, also rationalized by DFT calculations, can be explained by a change in the mechanistic pathways between electrophilic palladation and base-promoted C-H metalation.

16.
Nano Lett ; 24(30): 9360-9367, 2024 Jul 31.
Article de Anglais | MEDLINE | ID: mdl-39012487

RÉSUMÉ

The application of scattered light via an antenna-reactor configuration is promising for converting thermocatalysts into photocatalysts. However, the efficiency of dielectric antennas in photon-to-chemical conversion remains suboptimal. Herein, we present an effective approach to promote light utilization efficiency by designing dielectric antenna-hybrid bilayered reactors. Experimental studies and finite-difference time-domain simulations demonstrate that the engineered SiO2-carbon/metal dielectric antenna-hybrid bilayered reactors exhibit a synergy of absorption superposition and electric field confinement between carbon and metals, leading to the improved absorption of scattered light, upgraded charge carriers density, and ultimately promoted photoactivity in hydrogenating chlorobenzene with an average benzene formation rate of 18 258 µmol g-1 h-1, outperforming the reported results. Notably, the carbon interlayer proves to be more effective than the commonly explored dielectric TiO2 interlayer in boosting the benzene formation rate by over 3 times. This research paves the way for promoting near-field scattered photon-to-chemical conversion through a dielectric antenna-hybrid reactor configuration.

17.
Food Chem ; 460(Pt 1): 140488, 2024 Jul 22.
Article de Anglais | MEDLINE | ID: mdl-39043075

RÉSUMÉ

Salmonella screening is essential to avoid food poisoning. A simple, fast and sensitive colorimetric biosensor was elaborately developed for Salmonella detection on a microfluidic chip through limiting air chambers for precise air control, switching rotary valves for accurate fluid selection, a convergence-and-divergence passive micromixer and an extrusion-and-suction active micromixer for efficient fluid mixing, and immune gold@platinum palladium nanocatalysts for effective signal amplification. The mixture of bacteria, immune magnetic nanobeads and nanocatalysts was first rapidly mixed to form nanobead-bacteria-nanocatalyst conjugates and magnetically separated for enrichment. After washing with water, the conjugates were used to catalyze colorless substrate and blue product was finally analyzed using ImageJ for quantifying bacterial concentration. The finger-actuated microfluidic chip enabled designated control of designated fluids in designated places towards designated directions by simple press-release operations on designated air chambers without any external power. Under optimal conditions, this sensor could detect Salmonella at 45 CFU/mL in 25 min.

18.
Chem Biodivers ; : e202400415, 2024 Jul 21.
Article de Anglais | MEDLINE | ID: mdl-39034296

RÉSUMÉ

To evaluate the biotransformation and the mechanism of binding as well as the biological impact of metal-based- drugs involving Pd(II), known to have high potency and low toxicity for use as anticancer therapeutics, in the present study, a newly synthesized palladium (II) complex, [Pd(CPF)(OH2)2]2+ (where CPF is ciprofloxacin), has been synthesized and characterized and thoroughly evaluated for its antimicrobial properties. The interaction of the diaqua complex with CT-DNA and BSA was studied through various techniques, including UV-vis spectroscopy, thermal denaturation, viscometry, gel electrophoresis, ethanol precipitation, and molecular docking studies. The results indicate that the complex exhibits a robust binding interaction with CT-DNA, possibly via minor groove binding and (or) electrostatic interactions. Furthermore, the complex displays good binding affinity towards BSA, indicating its potential as a target for DNA and BSA in biological media. The invitro cytotoxicity assay reveals that this complex can be classified as a promising cell growth inhibitor against MCF-7, HT-29, and A549. Thus, this newly synthesized palladium (II) complex is a promising candidate for further exploration as a potential anticancer therapeutic.

19.
Angew Chem Int Ed Engl ; : e202409987, 2024 Jul 15.
Article de Anglais | MEDLINE | ID: mdl-39008709

RÉSUMÉ

This work reports the development of a novel synthetic approach for the highly strained atrop-Tyr C-6-to-Trp N-1' linkage, which can be executed on a decagram scale using a modular strategy involving Pd-catalyzed C-H arylation followed by Larock macrocyclization. Moreover, the first total synthesis of lapparbin (1) was achieved by applying this synthetic strategy. Furthermore, the modular synthesis utilizing C-H arylation and Larock macrocyclization, discovered in the total synthesis of lapparbin (1), was demonstrated to be applicable to various arbitrary biaryl linkages, including non-natural types.

20.
Water Sci Technol ; 90(1): 256-269, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-39007318

RÉSUMÉ

Palladium is now frequently utilized in fuel cells, electroplating, electronics, and catalysis. Due to their rarity and high cost, precious metal recovery has taken on a significant role. The extraction method frequently utilized in polymer inclusion membranes (PIMs) is both efficient and simple since it has been demonstrated that precious metal adsorption on the membrane significantly controls the mechanism of chemical adsorption. In this study, polyvinyl chloride (PVC) as a polymer, A336 as a plasticizer, and trioctylamine (TOA) as a carrier were used to produce a PIM by evaporation. After the production of PIMs, palladium extract was studied. The stripping phase, palladium concentration in the feed phase, and components of the membrane were changed to determine the optimum condition with better extraction ability. When 0.5 M of HCl was used, higher kinetic parameter results and higher than 85% extraction efficiency were achieved compared to other concen- trations. When the EDX results were examined, 3.3% palladium was retained on the membrane surface. When the palladium concentration was selected at 2.5 ppm, higher kinetic parameters were observed, and the extraction efficiency was over 90%. The best membrane was the PIM containing 40% PVC-40% A336-20% TOA.


Sujet(s)
Membrane artificielle , Palladium , Palladium/composition chimique , Polymères/composition chimique , Poly(chlorure de vinyle)/composition chimique , Polluants chimiques de l'eau/composition chimique
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE