Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 92
Filtrer
1.
Article de Anglais | MEDLINE | ID: mdl-39256215

RÉSUMÉ

AIM: The recently introduced Long-Axial-Field-of-View (LAFOV) PET-CT scanners allow for the first-time whole-body dynamic- and parametric imaging. Primary aim of this study was the comparison of direct and indirect Patlak imaging as well as the comparison of different time frames for Patlak calculation with the LAFOV PET-CT in oncological patients. Secondary aims of the study were lesion detectability and comparison of Patlak analysis with a two-tissue-compartment model (2TCM). METHODOLOGY: 50 oncological patients with 346 tumor lesions were enrolled in the study. All patients underwent [18F]FDG PET/CT (skull to upper thigh). Here, the Image-Derived-Input-Function) (IDIF) from the descending aorta was used as the exclusive input function. Four sets of images have been reviewed visually and evaluated quantitatively using the target-to-background (TBR) and contrast-to-noise ratio (CNR): short-time (30 min)-direct (STD) Patlak Ki, short-time (30 min)-indirect (STI) Patlak Ki, long-time (59.25 min)-indirect (LTI) Patlak Ki, and 50-60 min SUV (sumSUV). VOI-based 2TCM was used for the evaluation of tumor lesions and normal tissues and compared with the results of Patlak model. RESULTS: No significant differences were observed between the four approaches regarding the number of tumor lesions. However, we found three discordant results: a true positive liver lesion in all Patlak Ki images, a false positive liver lesion delineated only in LTI Ki which was a hemangioma according to MRI and a true negative example in a patient with an atelectasis next to a lung tumor. STD, STI and LTI Ki images had superior TBR in comparison with sumSUV images (2.9-, 3.3- and 4.3-fold higher respectively). TBR of LTI Ki were significantly higher than STD Ki. VOI-based k3 showed a 21-fold higher TBR than sumSUV. Parameters of different models vary in their differential capability between tumor lesions and normal tissue like Patlak Ki which was better in normal lung and 2TCM k3 which was better in normal liver. 2TCM Ki revealed the highest correlation (r = 0.95) with the LTI Patlak Ki in tumor lesions group and demonstrated the highest correlation with the STD Patlak Ki in all tissues group and normal tissues group (r = 0.93 and r = 0.74 respectively). CONCLUSIONS: Dynamic [18F]-FDG with the new LAFOV PET/CT scanner produces Patlak Ki images with better lesion contrast than SUV images, but does not increase the lesion detection rate. The time window used for Patlak imaging plays a more important role than the direct or indirect method. A combination of different models, like Patlak and 2TCM may be helpful in parametric imaging to obtain the best TBR in the whole body in future.

2.
Eur Radiol ; 2024 Aug 16.
Article de Anglais | MEDLINE | ID: mdl-39150487

RÉSUMÉ

OBJECTIVES: On 18F-Fludeoxyglucose (FDG) PET/CT, active sarcoid lesions are often difficult to differentiate from malignant lesions. We investigated the potential of the glucose metabolic rate (MRglc, mg/min/100 mL), a new quantification of glucose metabolic kinetics derived from direct reconstruction based on linear Patlak analysis, to distinguish between sarcoidosis and malignant lesions. MATERIALS AND METHODS: A total of 100 patients with cardiac sarcoidosis (CS) and 67 patients with cancer who underwent four-dimensional FDG PET/CT were enrolled. The lesions with a standardized uptake value (SUV) ≥ 2.7 on the standard scan were included as active lesions in the analysis. SUV and MRglc were derived using data acquired between 30 min and 50 min on four-dimensional FDG PET/CT. The mean value in the volume of interest (size 1.5 cm3) was measured. The diagnostic performance of sarcoidosis using MRglc and SUV was evaluated using receiver-operating-characteristic (ROC) analysis. RESULTS: A total of 90 sarcoidosis lesions from 44 CS patients (18 males, 63.4 ± 12.2 years) and 87 malignant lesions from 57 cancer-bearing patients (32 males, 65 ± 14 years) were analyzed. SUV and MRglc for sarcoid lesions were significantly lower than those for malignant lesions (SUV, 4.98 ± 2.00 vs 6.21 ± 2.14; MRglc, 2.52 ± 1.39 vs 3.68 ± 1.61; p < 0.01). ROC analysis indicated that the ability to discriminate sarcoid patients from those with malignancy yielded areas under the curves of 0.703 and 0.754, with sensitivities of 64% and 77% and specificities of 75% and 72% for SUV 5.025 and MRglc 2.855, respectively. CONCLUSION: MRglc was significantly lower in sarcoid lesions than malignant lesions, and improved sarcoid lesions identification over SUV alone. CLINICAL RELEVANCE STATEMENT: MRglc improves sarcoid lymph node identification over SUV alone and is expected to shorten the examination time by eliminating delayed scans. KEY POINTS: Active sarcoid lesions are sometimes associated with FDG accumulation and should be differentiated from malignant lesions. SUV and metabolic rate of glucose (MRglc) strongly positively correlated, and MRglc could differentiate sarcoid and malignant lesions. MRglc allows for accurate evaluation and staging of malignant lesions.

3.
J Nucl Med ; 65(9): 1349-1356, 2024 Sep 03.
Article de Anglais | MEDLINE | ID: mdl-39142828

RÉSUMÉ

In oncologic PET, the SUV and standardized uptake ratio (SUR) of a viable tumor generally increase during the postinjection period. In contrast, the net influx rate (Ki ), which is derived from dynamic PET data, should remain relatively constant. Uptake-time-corrected SUV (cSUV) and SUR (cSUR) have been proposed as uptake-time-independent, static alternatives to Ki Our primary aim was to quantify the intrascan repeatability of Ki , SUV, cSUV, SUR, and cSUR among malignant lesions on PET/CT. An exploratory aim was to assess the ability of cSUR to estimate Ki Methods: This prospective, single-center study enrolled adults undergoing standard-of-care oncologic PET/CT. SUV and Ki images were reconstructed from dynamic PET data obtained before (∼35-50 min after injection) and after (∼75-90 min after injection) standard-of-care imaging. Tumors were manually segmented. Quantitative metrics were extracted. cSUVs and cSURs were calculated for a 60-min postinjection reference uptake time. The magnitude of the intrascan test-retest percent change (test-retest |%Δ|) was calculated. Coefficients of determination (R 2) and intraclass correlation coefficients (ICC) were also computed. Differences between metrics were assessed via the Wilcoxon signed-rank test (α, 0.05). Results: This study enrolled 78 subjects; 41 subjects (mean age, 63.8 y; 24 men) with 116 lesions were analyzed. For both tracers, SUVmax and maximum SUR (SURmax) had large early-to-late increases (i.e., poor intrascan repeatability). Among [18F]FDG-avid lesions (n = 93), there were no differences in intrascan repeatability (median test-retest |%Δ|; ICC) between the maximum Ki (Ki ,max) (13%; 0.97) and either the maximum cSUV (cSUVmax) (12%, P = 0.90; 0.96) or the maximum cSUR (cSURmax) (13%, P = 0.67; 0.94). For DOTATATE-avid lesions (n = 23), there were no differences in intrascan repeatability between the Ki ,max (11%; 0.98) and either the cSUVmax (13%, P = 0.41; 0.98) or the cSURmax (11%, P = 0.08; 0.94). The SUVmax, cSUVmax, SURmax, and cSURmax were all strongly correlated with the Ki ,max for both [18F]FDG (R 2, 0.81-0.92) and DOTATATE (R 2, 0.88-0.96), but the cSURmax provided the best agreement with the Ki ,max across early-to-late time points for [18F]FDG (ICC, 0.69-0.75) and DOTATATE (ICC, 0.90-0.91). Conclusion: Ki ,max, cSUVmax, and cSURmax had low uptake time dependence compared with SUVmax and SURmax The Ki ,max can be predicted from cSURmax.


Sujet(s)
Tumeurs , Tomographie par émission de positons couplée à la tomodensitométrie , Humains , Tomographie par émission de positons couplée à la tomodensitométrie/méthodes , Mâle , Femelle , Adulte d'âge moyen , Tumeurs/imagerie diagnostique , Tumeurs/métabolisme , Sujet âgé , Facteurs temps , Reproductibilité des résultats , Adulte , Fluorodésoxyglucose F18 , Transport biologique , Études prospectives , Traitement d'image par ordinateur/méthodes , Traceurs radioactifs , Sujet âgé de 80 ans ou plus , Radiopharmaceutiques/pharmacocinétique
4.
Mol Imaging Biol ; 2024 Aug 22.
Article de Anglais | MEDLINE | ID: mdl-39174787

RÉSUMÉ

PURPOSE: To evaluate the potential of whole-body dynamic (WBD) 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography/computed tomography ([18F]FDG PET/CT) multiparametric imaging in the differential diagnosis between benign and malignant lung lesions. PROCEDURES: We retrospectively analyzed WBD PET/CT scans from patients with lung lesions performed between April 2020 and March 2023. Multiparametric images including standardized uptake value (SUV), metabolic rate (MRFDG) and distribution volume (DVFDG) were visually interpreted and compared. We adopted SUVmax, metabolic tumor volume (MTV) and total lesion glycolysis (TLG) for semi-quantitative analysis, MRmax and DVmax values for quantitative analysis. We also collected the patients' clinical characteristics. The variables above with P-value < 0.05 in the univariate analysis were entered into a multivariate logistic regression. The statistically significant metrics were plotted on receiver-operating characteristic (ROC) curves. RESULTS: A total of 60 patients were included for data evaluation. We found that most malignant lesions showed high uptake on MRFDG and SUV images, and low or absent uptake on DVFDG images, while benign lesions showed low uptake on MRFDG images and high uptake on DVFDG images. Most malignant lesions showed a characteristic pattern of gradually increasing FDG uptake, whereas benign lesions presented an initial rise with rapid fall, then kept stable at a low level. The AUC values of MRmax and SUVmax are 0.874 (95% CI: 0.763-0.946) and 0.792 (95% CI: 0.667-0.886), respectively. DeLong's test showed the difference between the areas is statistically significant (P < 0.001). CONCLUSIONS: Our study demonstrated that dynamic [18F]FDG PET/CT imaging based on the Patlak analysis was a more accurate method of distinguishing malignancies from benign lesions than conventional static PET/CT scans.

5.
Nucl Med Biol ; 136-137: 108930, 2024 May 23.
Article de Anglais | MEDLINE | ID: mdl-38833768

RÉSUMÉ

PURPOSE: Triple-negative breast cancer (TNBC) is a highly aggressive subtype of breast cancer that lacks effective diagnostic and therapeutic options. Membrane type 1 matrix metalloproteinase (MT1-MMP) is an attractive biomarker for improving patient selection. This study aimed to develop a theranostic tool using a highly tumour-selective anti-MT1-MMP antibody (LEM2/15) radiolabelled with 89Zr for PET and 177Lu for therapy in a TNBC murine model. METHODS: The LEM2/15 antibody and IgG isotype control were radiolabelled with 89Zr. PET imaging was performed in a TNBC orthotopic mouse model at 1, 2, 4, and 7 days after administration. Tissue biodistribution and pharmacokinetic parameters were analysed and Patlak linearisation was used to calculate the influx rate of irreversible uptake. The TNBC mice were treated with [177Lu]Lu-DOTA-LEM2/15 (single- or 3-dose regimen) or saline. Efficacy of [177Lu]Lu-DOTA-LEM2/15 was evaluated as tumour growth and DNA damage (γH2AX) in MDA 231-BrM2-831 tumours. RESULTS: At 7 days post-injection, PET uptake in tumour xenografts revealed a 1.6-fold and 2.4-fold higher tumour-to-blood ratio for [89Zr]Zr-Df-LEM2/15 in the non-blocked group compared to the blocked and IgG isotype control groups, respectively. Specific uptake of LEM2/15 in TBNC tumours mediated by MT1-MMP-binding was demonstrated by the Patlak linearisation method, providing insights into the potential efficacy of LEM2/15-based treatments. A similar uptake was found for [89Zr]Zr-Df-LEM2/15 and [177Lu]Lu-DOTA-LEM2/15 in tumours 7 days post-injection (6.80 ± 1.31 vs. 5.61 ± 0.66 %ID/g). Tumour doubling time was longer in the [177Lu]Lu-DOTA-LEM2/15 3-dose regimen treated group compared to the control (50 vs. 17 days, respectively). The percentage of cells with γH2AX-foci was higher in tumours treated with [177Lu]Lu-DOTA-LEM2/15 3-dose regimen compared to tumours non-treated or treated with [177Lu]Lu-DOTA-LEM2/15 single-dose (12 % vs. 4-5 %). CONCLUSIONS: The results showed that the 89Zr/177Lu-labelled anti-MT1-MMP mAb (LEM2/15) pair facilitated immune-PET imaging and reduced tumour growth in a preclinical TNBC xenograft model.

6.
Diagnostics (Basel) ; 14(9)2024 Apr 24.
Article de Anglais | MEDLINE | ID: mdl-38732298

RÉSUMÉ

Patlak slope (PS) images have the potential to improve lesion conspicuity compared with standardized uptake value (SUV) images but may be more artifact-prone. This study compared PS versus SUV image quality and hepatic tumor-to-background ratios (TBRs) at matched time points. Early and late SUV and PS images were reconstructed from dynamic positron emission tomography (PET) data. Two independent, blinded readers scored image quality metrics (a four-point Likert scale) and counted tracer-avid lesions. Hepatic lesions and parenchyma were segmented and quantitatively analyzed. Differences were assessed via the Wilcoxon signed-rank test (alpha, 0.05). Forty-three subjects were included. For overall quality and lesion detection, early PS images were significantly inferior to other reconstructions. For overall quality, late PS images (reader 1 [R1]: 3.95, reader 2 [R2]: 3.95) were similar (p > 0.05) to early SUV images (R1: 3.88, R2: 3.84) but slightly superior (p ≤ 0.002) to late SUV images (R1: 2.97, R2: 3.44). For lesion detection, late PS images were slightly inferior to late SUV images (R1 only) but slightly superior to early SUV images (both readers). PS-based TBRs were significantly higher than SUV-based TBRs at the early time point, with opposite findings at the late time point. In conclusion, late PS images are similar to early/late SUV images in image quality and lesion detection; the superiority of SUV versus PS hepatic TBRs is time-dependent.

7.
Eur J Nucl Med Mol Imaging ; 51(11): 3346-3359, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-38763962

RÉSUMÉ

BACKGROUND: The long axial field of view, combined with the high sensitivity of the Biograph Vision Quadra PET/CT scanner enables the precise deviation of an image derived input function (IDIF) required for parametric imaging. Traditionally, this requires an hour-long dynamic PET scan for [18F]-FDG, which can be significantly reduced by using a population-based input function (PBIF). In this study, we expand these examinations and include the scanner's ultra-high sensitivity (UHS) mode in comparison to the high sensitivity (HS) mode and evaluate the potential for further shortening of the scan time. METHODS: Patlak Ki and DV estimates were determined by the indirect and direct Patlak methods using dynamic [18F]-FDG data of 6 oncological patients with 26 lesions (0-65 min p.i.). Both sensitivity modes for different number/duration of PET data frames were compared, together with the potential of using abbreviated scan durations of 20, 15 and 10 min by using a PBIF. The differences in parametric images and tumour-to-background ratio (TBR) due to the shorter scans using the PBIF method and between the sensitivity modes were assessed. RESULTS: A difference of 3.4 ± 7.0% (Ki) and 1.2 ± 2.6% (DV) was found between both sensitivity modes using indirect Patlak and the full IDIF (0-65 min). For the abbreviated protocols and indirect Patlak, the UHS mode resulted in a lower bias and higher precision, e.g., 45-65 min p.i. 3.8 ± 4.4% (UHS) and 6.4 ± 8.9% (HS), allowing shorter scan protocols, e.g. 50-65 min p.i. 4.4 ± 11.2% (UHS) instead of 7.3 ± 20.0% (HS). The variation of Ki and DV estimates for both Patlak methods was comparable, e.g., UHS mode 3.8 ± 4.4% and 2.7 ± 3.4% (Ki) and 14.4 ± 2.7% and 18.1 ± 7.5% (DV) for indirect and direct Patlak, respectively. Only a minor impact of the number of Patlak frames was observed for both sensitivity modes and Patlak methods. The TBR obtained with direct Patlak and PBIF was not affected by the sensitivity mode, was higher than that derived from the SUV image (6.2 ± 3.1) and degraded from 20.2 ± 12.0 (20 min) to 10.6 ± 5.4 (15 min). Ki and DV estimate images showed good agreement (UHS mode, RC: 6.9 ± 2.3% (Ki), 0.1 ± 3.1% (DV), peak signal-to-noise ratio (PSNR): 64.5 ± 3.3 dB (Ki), 61.2 ± 10.6 dB (DV)) even for abbreviated scan protocols of 50-65 min p.i. CONCLUSIONS: Both sensitivity modes provide comparable results for the full 65 min dynamic scans and abbreviated scans using the direct Patlak reconstruction method, with good Ki and DV estimates for 15 min short scans. For the indirect Patlak approach the UHS mode improved the Ki estimates for the abbreviated scans.


Sujet(s)
Fluorodésoxyglucose F18 , Humains , Tomographie par émission de positons couplée à la tomodensitométrie/instrumentation , Tomographie par émission de positons couplée à la tomodensitométrie/méthodes , Traitement d'image par ordinateur/méthodes , Mâle , Femelle , Radiopharmaceutiques , Adulte d'âge moyen , Facteurs temps , Sujet âgé , Tumeurs/imagerie diagnostique , Tomographie par émission de positons/instrumentation , Tomographie par émission de positons/méthodes , Sensibilité et spécificité
8.
Sci Rep ; 14(1): 12536, 2024 05 31.
Article de Anglais | MEDLINE | ID: mdl-38822011

RÉSUMÉ

This study investigated whether Ki-Patlak derived from a shortened scan time for dynamic 18F-NaF PET/CT in chronic kidney disease (CKD) patients undergoing hemodialysis can provide predictive accuracy comparable to that obtained from a longer scan. Twenty-seven patients on chronic hemodialysis, involving a total of 42 scans between December 2021 and August 2023 were recruited. Dynamic 18F-NaF PET/CT scans, lasting 60-90 min, were immediately acquired post-injection, covering the mid-twelfth thoracic vertebra to the pelvis region. Ki-Patlak analysis was performed on bone time-activity curves at 15, 30, 45, 60, and 90 min in the lumbar spine (L1-L4) and both anterior iliac crests. Spearman's rank correlation (rs) and interclass correlation coefficient were used to assess the correlation and agreement of Ki-Patlak between shortened and standard scan times. Bone-specific alkaline phosphatase (BsAP) and tartrate-resistant acid phosphatase isoform 5b (TRAP5b) were tested for their correlation with individual Ki-Patlak. Strong correlations and good agreement were observed between Ki-Patlak values from shortened 30-min scans and longer 60-90-min scans in both lumbar spine (rs = 0.858, p < 0.001) and anterior iliac crest regions (rs = 0.850, p < 0.001). The correlation between BsAP and Ki-Patlak in the anterior iliac crests was weak and statistically insignificant. This finding suggests that a proposed shortened dynamic 18F-NaF PET/CT scan is effective in assessing bone metabolic flux in CKD patients undergoing hemodialysis, offering a non-invasive alternative approach for bone turnover prediction.


Sujet(s)
Tomographie par émission de positons couplée à la tomodensitométrie , Dialyse rénale , Insuffisance rénale chronique , Fluorure de sodium , Humains , Tomographie par émission de positons couplée à la tomodensitométrie/méthodes , Mâle , Femelle , Adulte d'âge moyen , Insuffisance rénale chronique/thérapie , Insuffisance rénale chronique/métabolisme , Insuffisance rénale chronique/complications , Insuffisance rénale chronique/imagerie diagnostique , Sujet âgé , Radio-isotopes du fluor , Remodelage osseux , Vertèbres lombales/imagerie diagnostique , Vertèbres lombales/métabolisme , Adulte , Phosphatase alcaline/métabolisme , Tartrate-resistant acid phosphatase/métabolisme , Ilium/imagerie diagnostique , Ilium/métabolisme
9.
Phys Med ; 121: 103336, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38626637

RÉSUMÉ

PURPOSE: We aimed to investigate whether a clinically feasible dual time-point (DTP) approach can accurately estimate the metabolic uptake rate constant (Ki) and to explore reliable acquisition times through simulations and clinical assessment considering patient comfort and quantification accuracy. METHODS: We simulated uptake kinetics in different tumors for four sets of DTP PET images within the routine clinical static acquisition at 60-min post-injection (p.i.). We determined Ki for a total of 81 lesions. Ki quantification from full dynamic PET data (Patlak-Ki) and Ki from DTP (DTP-Ki) were compared. In addition, we scaled a population-based input function (PBIFscl) with the image-derived blood pool activity sampled at different time points to assess the best scaling time-point for Ki quantifications in the simulation data. RESULTS: In the simulation study, Ki estimated using DTP via (30,60-min), (30,90-min), (60,90-min), and (60,120-min) samples showed strong correlations (r ≥ 0.944, P < 0.0001) with the true value of Ki. The DTP results with the PBIFscl at 60-min time-point in (30,60-min), (60,90-min), and (60,120-min) were linearly related to the true Ki with a slope of 1.037, 1.008, 1.013 and intercept of -6 × 10-4, 2 × 10-5, 5 × 10-5, respectively. In a clinical study, strong correlations (r ≥ 0.833, P < 0.0001) were observed between Patlak-Ki and DTP-Ki. The Patlak-derived mean values of Ki, tumor-to-background-ratio, signal-to-noise-ratio, and contrast-to-noise-ratio were linearly correlated with the DTP method. CONCLUSIONS: Besides calculating the retention index as a commonly used quantification parameter inDTP imaging,our DTP method can accurately estimate Ki.


Sujet(s)
Études de faisabilité , Fluorodésoxyglucose F18 , Tomographie par émission de positons , Humains , Fluorodésoxyglucose F18/métabolisme , Tomographie par émission de positons/méthodes , Facteurs temps , Traitement d'image par ordinateur/méthodes , Cinétique , Tumeurs/imagerie diagnostique , Tumeurs/métabolisme , Transport biologique , Mâle , Femelle , Adulte d'âge moyen , Sujet âgé , Simulation numérique
10.
Mol Imaging Biol ; 26(2): 284-293, 2024 Apr.
Article de Anglais | MEDLINE | ID: mdl-38466523

RÉSUMÉ

PURPOSE: We aimed to determine the test-retest repeatability of quantitative metrics based on the Patlak slope (PS) versus the standardized uptake value (SUV) among lesions and normal organs on oncologic [18F]FDG-PET/CT. PROCEDURES: This prospective, single-center study enrolled adults undergoing standard-of-care oncologic [18F]FDG-PET/CTs. Early (35-50 min post-injection) and late (75-90 min post-injection) SUV and PS images were reconstructed from dynamic whole-body PET data. Repeat imaging occurred within 7 days. Relevant quantitative metrics were extracted from lesions and normal organs. Repeatability was assessed via mean test-retest percent changes [T-RT %Δ], within-subject coefficients of variation (wCVs), and intra-class correlation coefficients (ICCs). RESULTS: Nine subjects (mean age, 61.7 ± 6.2 years; 6 females) completed the test-retest protocol. Four subjects collectively had 17 [18F]FDG-avid lesions. Lesion wCVs were higher (i.e., worse repeatability) for PS-early-max (16.2%) and PS-early-peak (15.6%) than for SUV-early-max (8.9%) and SUV-early-peak (8.1%), with similar early metric ICCs (0.95-0.98). Lesion wCVs were similar for PS-late-max (8.5%) and PS-late-peak (6.4%) relative to SUV-late-max (9.7%) and SUV-late-peak (7.2%), with similar late metric ICCs (0.93-0.98). There was a significant bias toward higher retest SUV and PS values in the lesion analysis (T-RT %Δ [95% CI]: SUV-late-max, 10.0% [2.6%, 17.0%]; PS-late-max, 20.4% [14.3%, 26.4%]) but not in the normal organ analysis. CONCLUSIONS: Among [18F]FDG-avid lesions, the repeatability of PS-based metrics is similar to equivalent SUV-based metrics at late post-injection time points, indicating that PS-based metrics may be suitable for tracking response to oncologic therapies. However, further validation is required in light of our study's limitations, including small sample size and bias toward higher retest values for some metrics.


Sujet(s)
Fluorodésoxyglucose F18 , Tomographie par émission de positons couplée à la tomodensitométrie , Adulte , Femelle , Humains , Adulte d'âge moyen , Sujet âgé , Tomographie par émission de positons couplée à la tomodensitométrie/méthodes , Études prospectives , Reproductibilité des résultats , Tomographie par émission de positons/méthodes
11.
Proc Natl Acad Sci U S A ; 121(3): e2309251121, 2024 Jan 16.
Article de Anglais | MEDLINE | ID: mdl-38194458

RÉSUMÉ

Chemotactic bacteria not only navigate chemical gradients, but also shape their environments by consuming and secreting attractants. Investigating how these processes influence the dynamics of bacterial populations has been challenging because of a lack of experimental methods for measuring spatial profiles of chemoattractants in real time. Here, we use a fluorescent sensor for aspartate to directly measure bacterially generated chemoattractant gradients during collective migration. Our measurements show that the standard Patlak-Keller-Segel model for collective chemotactic bacterial migration breaks down at high cell densities. To address this, we propose modifications to the model that consider the impact of cell density on bacterial chemotaxis and attractant consumption. With these changes, the model explains our experimental data across all cell densities, offering insight into chemotactic dynamics. Our findings highlight the significance of considering cell density effects on bacterial behavior, and the potential for fluorescent metabolite sensors to shed light on the complex emergent dynamics of bacterial communities.


Sujet(s)
Facteurs chimiotactiques , Chimiotaxie , Transport biologique , Acide aspartique , Agents colorants
12.
Quant Imaging Med Surg ; 14(1): 291-304, 2024 Jan 03.
Article de Anglais | MEDLINE | ID: mdl-38223020

RÉSUMÉ

Background: Dynamic course of flourine-18 fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) Patlak muti-parametric imaging spatial distribution in the targeted tissues may reveal highly useful clinical information about the tissue's metabolic properties. The characteristics of the Patlak multi-parametric imaging in lung cancer and the influence of different delineation methods on quantitative parameters may provide reference for the clinical application of this new technology. Methods: A total of 27 patients with pathologically diagnosed lung cancer underwent whole-body dynamic 18F-FDG PET/CT examination before treatment. Parametric images of metabolic rate of FDG (MRFDG) and Patlak intercept (or distribution volume; DV) were generated using Patlak reconstruction. The values of primary lung cancer lesions, target-to-background ratio (TBR), and contrast-to-noise ratio (CNR) were investigated using contour delineation and boundary delineation. Statistical analysis was performed to analyze the relationship between multi-parametric images and clinicopathological features, and to compare the effects of contour delineation and boundary delineation on quantitative parameters. Results: MRFDG images showed higher TBR and CNR than did standardized uptake value (SUV) images. There were significant differences in MRFDG-max, MRFDG-mean, and MRFDG-peak among groups with different tumor diameters and pathology types (P<0.05). Moreover, the metabolic parameters of MRFDG were higher in patients with tumor diameters ≥3 cm and squamous carcinoma. The differences of the maximum and peak values of MRFDG and DV were not statistically significant in the different outlining method subgroups (all P>0.05). However, the difference of the mean values of MRFDG and DV were statistically significant in the different outline method groupings (all P<0.05). Conclusions: Dynamic 18F-FDG PET/CT Patlak multi-parametric imaging can obtain quantitative values for lung cancer with high TBR and CNR. Moreover, the multi-parameters are various from different pathology types to tumor size. Different delineation methods have a greater influence on the mean value of quantitative parameters.

13.
EJNMMI Res ; 14(1): 6, 2024 Jan 10.
Article de Anglais | MEDLINE | ID: mdl-38198060

RÉSUMÉ

BACKGROUND: 68Ga-PSMA-11 positron emission tomography enables the detection of primary, recurrent, and metastatic prostate cancer. Regional radiopharmaceutical uptake is generally evaluated in static images and quantified as standard uptake values (SUVs) for clinical decision-making. However, analysis of dynamic images characterizing both tracer uptake and pharmacokinetics may offer added insights into the underlying tissue pathophysiology. This study was undertaken to evaluate the suitability of various kinetic models for 68Ga-PSMA-11 PET analysis. Twenty-three lesions in 18 patients were included in a retrospective kinetic evaluation of 55-min dynamic 68Ga-PSMA-11 pre-prostatectomy PET scans from patients with biopsy-demonstrated intermediate- to high-risk prostate cancer. Three kinetic models-a reversible one-tissue compartment model, an irreversible two-tissue compartment model, and a reversible two-tissue compartment model, were evaluated for their goodness of fit to lesion and normal reference prostate time-activity curves. Kinetic parameters obtained through graphical analysis and tracer kinetic modeling techniques were compared for reference prostate tissue and lesion regions of interest. RESULTS: Supported by goodness of fit and information loss criteria, the irreversible two-tissue compartment model optimally fit the time-activity curves. Lesions exhibited significant differences in kinetic rate constants (K1, k2, k3, Ki) and semiquantitative measures (SUV and %ID/kg) when compared with reference prostatic tissue. The two-tissue irreversible tracer kinetic model was consistently appropriate across prostatic zones. CONCLUSIONS: An irreversible tracer kinetic model is appropriate for dynamic analysis of 68Ga-PSMA-11 PET images. Kinetic parameters estimated by Patlak graphical analysis or full compartmental analysis can distinguish tumor from normal prostate tissue.

14.
Med Phys ; 51(1): 156-166, 2024 Jan.
Article de Anglais | MEDLINE | ID: mdl-38043120

RÉSUMÉ

BACKGROUND: The prostate-specific membrane antigen (PSMA) targeted positron-emitting tomography (PET) tracers are increasingly used in clinical practice, with novel tracers constantly being developed. Recently, 18 F-PSMA-11 has been gaining growing interest for several merits; however, direct in vivo visualization of its kinetic features in humans remains lacking. PURPOSE: To visualize the kinetic features of 18 F-PSMA-11 in healthy subjects and patients with prostate cancer derived from the total-body dynamic PET scans. METHODS: A total of 8 healthy volunteers (7 males; 1 female) and 3 patients with prostate cancer underwent total-body PET/CT imaging at 1 and 2 h post injection (p.i.) of 18 F-PSMA-11, of which 7 healthy subjects and 3 patients underwent total-body dynamic PET scans lasting 30 min. Reversible two-tissue compartments (2TC) and Patlak models were fitted based on the voxel-based time activity curves (TACs), with the parametric images generated subsequently. Additionally, semi-automated segmentation of multiple organs was performed in the dynamic images to measure the SUVmean at different time points and in the parametric images to estimate the mean value of the kinetic parameters of these organs. RESULTS: 18 F-PSMA-11 showed quick accumulation within prostate cancer, as early as 45 s after tracer injection. It was rapidly cleared from blood circulation and predominantly excreted through the urinary system. High and rapid radiotracer accumulation was observed in the liver, spleen, lacrimal glands, and salivary glands, whereas gradual accumulation was observed in the skeleton. Prostate cancer tissue is visualized in all parametric images, and best seen in DV and Patlak Ki images. Patlak Ki showed a good correlation with 2TC Ki values (r = 0.858, p < 0.05) but less noise than 2TC images. A scanning time point of 30-35 min p.i. was then suggested for satisfactory tumor to background ratio. CONCLUSION: Prostate cancer tissue is visible in most parametric images, and is better shown by Patlak Ki and 2TC DV images. Patlak Ki is consistent with, and thus is preferred over, 2TC Ki images for substantially quicker calculation. Based on the dynamic imaging analysis, a shorter uptake time (30-35 min) might be preferred for a better balance of tumor to background ratio.


Sujet(s)
Tomographie par émission de positons couplée à la tomodensitométrie , Tumeurs de la prostate , Mâle , Humains , Tomographie par émission de positons couplée à la tomodensitométrie/méthodes , Tomographie par émission de positons/méthodes , Radio-isotopes du gallium , Tumeurs de la prostate/imagerie diagnostique , Tumeurs de la prostate/anatomopathologie
15.
Article de Chinois | WPRIM (Pacifique Occidental) | ID: wpr-1017234

RÉSUMÉ

Objective To investigate the application value of quantitative parameters MRFDGmax and SUVmax in the stages of hepatitis,liver fibrosis and cirrhosis in rats by whole-body dynamic 18 F-FDG PET/CT Patlak imaging.Methods Twenty-four SD rats were randomly divided into four groups of six rats each,which were the normal group,hepatitis group,liver fibrosis group and cirrhosis group.According to the experimental grouping,rats in each group were induced by the CC14 oil solution complex method.Whole-body dynamic 18 F-FDG PET/CT patlak imaging was performed on each group of rats separately at the completion of induction.After the imaging was com-pleted,the MRFDGmax,SUVmax and CT values of the livers of each group were analyzed;subsequently,the serum of rats in each group was extracted for the detection of liver function indexes(AST,ALT and ALP),and HE staining was performed on the livers of rats in the normal,hepatitis and cirrhosis groups,and Masson staining was performed on those in the liver fibrosis group;the α-SMA expression in the liver tissues of each group was analyzed by immu-nohistochemical method.The data were analyzed by one-way ANOVA,two independent samples t-test and Pearson correlation analysis.Results MRFDGmax,SUVmax values were statistically significant differences among normal,hep-atitis,liver fibrosis and cirrhosis groups(F=84.54,38.35,P<0.001).The difference in CT values between liver fibrosis and cirrhosis groups was not statistically significant(t=-0.407,P=0.693),and the difference was statistically significant when compared between the rest of the groups(F=112.25,P<0.001).Compared with the normal group,AST,ALT and ALP of the experimental group showed a staged increase,and the differences were statistically significant(F=93.32,64.63,145.03,P<0.001).HE staining showed that hepatocytes of the normal group were neatly arranged and structurally intact;a large number of inflammatory cells infiltrated the hepa-titis group with steatosis;pseudo lobe formation was observed in the cirrhosis group.Masson staining of the liver fi-brosis group showed collagen fiber proliferation and thickening of the peritoneum.Immunohistochemistry test results showed that α-SMA expression increased in hepatitis group,liver fibrosis group and cirrhosis group,with a staged increase,and the difference was statistically significant(F=80.57,P<0.001).Correlation analysis showed a positive correlation between SUVmax and MRFDGmax(r=0.967,P<0.01).α-SMA was positively correlated with AST,ALT and ALP in the hepatitis,liver fibrosis and cirrhosis groups,respectively(r=0.924,0.756,0.934,P<0.01).Conclusion Whole-body dynamic 18F-FDG PET/CT Patlak imaging has application value in monitoring hepatitis,liver fibrosis and cirrhosis stages through quantitative parameters MRFDGmax and SUVmax changes.

16.
Res Sq ; 2023 Nov 01.
Article de Anglais | MEDLINE | ID: mdl-37961116

RÉSUMÉ

BACKGROUND: 68Ga-PSMA-11 positron emission tomography enables the detection of primary, recurrent, and metastatic prostate cancer. Regional radiopharmaceutical uptake is generally evaluated in static images and quantified as standard uptake values (SUV) for clinical decision-making. However, analysis of dynamic images characterizing both tracer uptake and pharmacokinetics may offer added insights into the underlying tissue pathophysiology. This study was undertaken to evaluate the suitability of various kinetic models for 68Ga-PSMA-11 PET analysis. Twenty-three lesions in 18 patients were included in a retrospective kinetic evaluation of 55-minute dynamic 68Ga-PSMA-11 pre-prostatectomy PET scans from patients with biopsy-demonstrated intermediate to high-risk prostate cancer. A reversible one-tissue compartment model, irreversible two-tissue compartment model, and a reversible two-tissue compartment model were evaluated for their goodness-of-fit to lesion and normal reference prostate time-activity curves. Kinetic parameters obtained through graphical analysis and tracer kinetic modeling techniques were compared for reference prostate tissue and lesion regions of interest. RESULTS: Supported by goodness-of-fit and information loss criteria, the irreversible two-tissue compartment model was selected as optimally fitting the time-activity curves. Lesions exhibited significant differences in kinetic rate constants (K1, k2, k3, Ki) and semiquantitative measures (SUV) when compared with reference prostatic tissue. The two-tissue irreversible tracer kinetic model was consistently appropriate across prostatic zones. CONCLUSIONS: An irreversible tracer kinetic model is appropriate for dynamic analysis of 68Ga-PSMA-11 PET images. Kinetic parameters estimated by Patlak graphical analysis or full compartmental analysis can distinguish tumor from normal prostate tissue.

17.
Heliyon ; 9(9): e19749, 2023 Sep.
Article de Anglais | MEDLINE | ID: mdl-37809527

RÉSUMÉ

Objective: This study aims to investigate the significance of interim whole-body dynamic 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) Patlak parameters for predicting the prognosis of patients with diffuse large B-cell lymphoma. To estimate the predictive value of the whole-body dynamic 18F-FDG PET/CT Patlak parameter for 2-year progression-free survival (PFS) and 2-year overall survival (OS). Methods: This study reports the findings of 67 patients with diffuse large B-cell lymphoma (DLBCL). These patients underwent interim whole-body dynamic 18F-FDG PET/CT scans from June 2021 to January 2023 at the Department of Nuclear Medicine, First Affiliated Hospital of Anhui Medical University. The predictive values of maximum standard uptake value (SUVmax), maximum of net glucose uptake rate (Kimax) and the predictive model combining Kimax and interim treatment response on the prognosis of patients was analyzed using receiver operating characteristic (ROC) curves. Kaplan-Meier survival curves and log-rank tests were used for survival analysis. Univariate and multivariate analyses were performed to screen for independent prognostic risk factors. Results: After a median follow-up of 18 months, 21 patients (31.3%) experienced disease recurrence or death. The cut-off values for the SUVmax and the Kimax were 6.1 and 0.13 µmol min-1·ml-1, respectively. Ann Arbor stage, IPI, SUVmax, Kimax and interim treatment response were associated with PFS and OS in the univariate analysis. However, only Kimax and interim treatment response were independent influences on PFS and OS in multivariate analysis. Conclusion: Interim whole-body dynamic 18F-FDG PET/CT Patlak imaging has significant prognostic value in patients with DLBCL. Among them, the interim dynamic parameter Kimax showed the best predictive value for prognosis compared with the interim SUVmax and interim treatment response. The predictive model established by Kimax and the interim treatment response allowed for the accurate stratification of the prognostic risk of DLBCL.

18.
EJNMMI Phys ; 10(1): 54, 2023 Sep 12.
Article de Anglais | MEDLINE | ID: mdl-37698773

RÉSUMÉ

PURPOSE: Total-body PET imaging with ultra-high sensitivity makes high-temporal-resolution framing protocols possible for the first time, which allows to capture rapid tracer dynamic changes. However, whether protocols with higher number of temporal frames can justify the efficacy with substantially added computation burden for clinical application remains unclear. We have developed a kinetic modeling software package (uKinetics) with the advantage of practical, fast, and automatic workflow for dynamic total-body studies. The aim of this work is to verify the uKinetics with PMOD and to perform framing protocol optimization for the oncological Patlak parametric imaging. METHODS: Six different protocols with 100, 61, 48, 29, 19 and 12 temporal frames were applied to analyze 60-min dynamic 18F-FDG PET scans of 10 patients, respectively. Voxel-based Patlak analysis coupled with automatically extracted image-derived input function was applied to generate parametric images. Normal tissues and lesions were segmented manually or automatically to perform correlation analysis and Bland-Altman plots. Different protocols were compared with the protocol of 100 frames as reference. RESULTS: Minor differences were found between uKinetics and PMOD in the Patlak parametric imaging. Compared with the protocol with 100 frames, the relative difference of the input function and quantitative kinetic parameters remained low for protocols with at least 29 frames, but increased for the protocols with 19 and 12 frames. Significant difference of lesion Ki values was found between the protocols with 100 frames and 12 frames. CONCLUSION: uKinetics was proved providing equivalent oncological Patlak parametric imaging comparing to PMOD. Minor differences were found between protocols with 100 and 29 frames, which indicated that 29-frame protocol is sufficient and efficient for the oncological 18F-FDG Patlak applications, and the protocols with more frames are not needed. The protocol with 19 frames yielded acceptable results, while that with 12 frames is not recommended.

19.
Mol Imaging Biol ; 25(5): 815-823, 2023 10.
Article de Anglais | MEDLINE | ID: mdl-37433895

RÉSUMÉ

BACKGROUND: Chronic kidney disease (CKD) is prevalent in the aging population and increases the risk of fracture 2-4 times. We compared optimized quantitative [18F]fluoride PET/CT methods to the reference standard with arterial input function (AIF) to identify a clinically accessible method for evaluation of bone turnover in patients with CKD. METHODS: Ten patients on chronic hemodialysis treatment and ten control patients were recruited. A dynamic 60-min [18F]fluoride PET scan was obtained from the 5th lumbar vertebra to the proximal femur simultaneously with arterial blood sampling to achieve an AIF. Individual AIFs were time-shifted to compute a population curve (PDIF). Bone and vascular volumes-of-interest (VOIs) were drawn, and an image-derived-input-function (IDIF) was extracted. PDIF and IDIF were scaled to plasma. Bone turnover (Ki) was calculated with the AIF, PDIF, and IDIF and bone VOIs using a Gjedde-Patlak plot. Input methods were compared using correlations and precision errors. RESULTS: The calculated Ki from the five non-invasive methods all correlated to the Ki from the AIF method with the PDIF scaled to a single late plasma sample showing the highest correlations (r > 0.94), and the lowest precision error of 3-5%. Furthermore, the femoral bone VOI's correlated positively to p-PTH and showed significant differences between patients and controls. CONCLUSIONS: Dynamic 30 min [18F]fluoride PET/CT with a population based input curve scaled to a single venous plasma sample is a feasible and precise non-invasive diagnostic method for the assessment of bone turnover in patients with CKD. The method may potentially allow for earlier and more precise diagnosis and may be useful for assessment of treatment effects, which is crucial for development of future treatment strategies.


Sujet(s)
Fluorures , Insuffisance rénale chronique , Humains , Sujet âgé , Tomographie par émission de positons couplée à la tomodensitométrie , Tomographie par émission de positons/méthodes , Insuffisance rénale chronique/imagerie diagnostique , Remodelage osseux
20.
J Clin Med ; 12(12)2023 Jun 09.
Article de Anglais | MEDLINE | ID: mdl-37373636

RÉSUMÉ

BACKGROUND: Static [18F]FDG-PET/CT is the imaging method of choice for the evaluation of indeterminate lung lesions and NSCLC staging; however, histological confirmation of PET-positive lesions is needed in most cases due to its limited specificity. Therefore, we aimed to evaluate the diagnostic performance of additional dynamic whole-body PET. METHODS: A total of 34 consecutive patients with indeterminate pulmonary lesions were enrolled in this prospective trial. All patients underwent static (60 min p.i.) and dynamic (0-60 min p.i.) whole-body [18F]FDG-PET/CT (300 MBq) using the multi-bed-multi-timepoint technique (Siemens mCT FlowMotion). Histology and follow-up served as ground truth. Kinetic modeling factors were calculated using a two-compartment linear Patlak model (FDG influx rate constant = Ki, metabolic rate = MR-FDG, distribution volume = DV-FDG) and compared to SUV using ROC analysis. RESULTS: MR-FDGmean provided the best discriminatory power between benign and malignant lung lesions with an AUC of 0.887. The AUC of DV-FDGmean (0.818) and SUVmean (0.827) was non-significantly lower. For LNM, the AUCs for MR-FDGmean (0.987) and SUVmean (0.993) were comparable. Moreover, the DV-FDGmean in liver metastases was three times higher than in bone or lung metastases. CONCLUSIONS: Metabolic rate quantification was shown to be a reliable method to detect malignant lung tumors, LNM, and distant metastases at least as accurately as the established SUV or dual-time-point PET scans.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE