Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 94
Filtrer
1.
Basic Clin Pharmacol Toxicol ; 135(3): 237-249, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-39020526

RÉSUMÉ

Alzheimer's disease is characterized by progressive cognitive decline, and behavioural and psychological symptoms of dementia are common. The APOE ε4 allele, a genetic risk factor, significantly increases susceptibility to the disease. Despite efforts to effectively treat the disease, only seven drugs are approved for its treatment, and only two of these prevent its progression. This highlights the need to identify new pharmacological options. This review focuses on mimetic peptides, small molecule correctors and HAE-4 antibodies that target ApoE. These drugs reduce ß-amyloid-induced neurodegeneration in preclinical models. In addition, loop diuretics such as bumetanide and furosemide show the potential to reduce the prevalence of Alzheimer's disease in humans, and antidepressants such as imipramine improve cognitive function in individuals diagnosed with Alzheimer's disease. Consistent with this, both classes of drugs have been shown to exert neuroprotective effects by inhibiting ApoE4-catalysed Aß aggregation in preclinical models. Moreover, peroxisome proliferator-activated receptor ligands, particularly pioglitazone and rosiglitazone, reduce ApoE4-induced neurodegeneration in animal models. However, they do not prevent the cognitive decline in APOE ε4 allele carriers. Finally, ApoE4 impairs the integrity of the blood-brain barrier and haemostasis. On this basis, ApoE4 modulation is a promising avenue for the treatment of late-onset Alzheimer's disease.


Sujet(s)
Maladie d'Alzheimer , Peptides bêta-amyloïdes , Apolipoprotéine E4 , Encéphale , Maladie d'Alzheimer/traitement médicamenteux , Maladie d'Alzheimer/métabolisme , Humains , Apolipoprotéine E4/métabolisme , Apolipoprotéine E4/génétique , Animaux , Peptides bêta-amyloïdes/métabolisme , Encéphale/effets des médicaments et des substances chimiques , Encéphale/métabolisme , Encéphale/anatomopathologie , Neuroprotecteurs/pharmacologie , Neuroprotecteurs/usage thérapeutique , Barrière hémato-encéphalique/effets des médicaments et des substances chimiques , Barrière hémato-encéphalique/métabolisme , Agrégation pathologique de protéines/traitement médicamenteux , Agrégation pathologique de protéines/métabolisme , Modèles animaux de maladie humaine
2.
Bol. latinoam. Caribe plantas med. aromát ; 23(4): 516-522, jul. 2024. graf, ilus
Article de Anglais | LILACS | ID: biblio-1538029

RÉSUMÉ

This article aimed to discuss the protection of trans - nerolidol on vascular endothelial cells (ECs) injured by lipopolysac charides. ECs were divided into four groups: normal, model, low and high dose trans - nerolidol treatment groups. The cell survival rate and the contents of NO in the cell culture supernatant were determined. The protein expression and transcript level of pe roxisome proliferator - activated receptor - γ (PPARγ), endothelial nitric oxide synthase (eNOS), and inducible nitric oxide synthase (iNOS) were determined by western blotting and RT - PCR respectively. Compared with the normal group, cell livability, protein e xpression and mRNA transcript level of PPARγ and eNOS decreased, NO contents, protein expression and mRNA transcript tlevel of iNOS increased in model group significantly. Compared with model group, all the changes recovered in different degree in treatmen t groups. Hence, it was concluded that trans - nerolidol can alleviate the ECs injuryby the regulation of iNOS/eNOS through activating PPARγ in a dose - dependent manner


Este artículo tiene como objetivo discutir la protección del trans - nerolidol en las células endoteliales vasculares (CE) dañadas por lipopolisacáridos. Las CE se di vidieron en cuatro grupos: normal, modelo, grupos de tratamiento con trans - nerolidol de baja y alta dosis. Se determinó la tasa de supervivencia de las células y los contenidos de óxido nítrico (NO) en el sobrenadante del cultivo celular. La expresión de p roteínas y el nivel de transcripción del receptor activado por proliferadores de peroxisomas - γ (PPARγ), el óxido nítrico sint et asa endotelial (eNOS) y el óxido nítrico sint et asa inducible (iNOS) se determinaron mediante western blot y RT - PCR, respectivamen te. En comparación con el grupo normal, la viabilidad celular, la expresión de proteínas y el nivel de transcripción de PPARγ y eNOS disminuyeron, los contenidos de NO, la expresión de proteínas y el nivel de transcripción de iNOS aumentaron significativam ente en el grupo modelo. En comparación con el grupo modelo, todos los cambios se recuperaron en diferentes grados en los grupos de tratamiento. Por lo tanto, se concluyó que el trans - nerolidol puede aliviar el daño en las CE regulando iNOS/eNOS a través d e la activación de PPARγ de manera dependiente de la dosis.


Sujet(s)
Sesquiterpènes/administration et posologie , Maladies vasculaires/traitement médicamenteux , Endothélium vasculaire/effets des médicaments et des substances chimiques , Endothélium vasculaire/traumatismes , Survie cellulaire , Lipopolysaccharides/toxicité , Technique de Western , Nitric oxide synthase , Réaction de polymérisation en chaine en temps réel
3.
Braz. j. med. biol. res ; 57: e13235, fev.2024. tab, graf
Article de Anglais | LILACS-Express | LILACS | ID: biblio-1550145

RÉSUMÉ

Abstract The imbalance between pro-inflammatory M1 and anti-inflammatory M2 macrophages plays a critical role in the pathogenesis of sepsis-induced acute lung injury (ALI). Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) may modulate macrophage polarization toward the M2 phenotype by altering mitochondrial activity. This study aimed to investigate the role of the PGC-1α agonist pioglitazone (PGZ) in modulating sepsis-induced ALI. A mouse model of sepsis-induced ALI was established using cecal ligation and puncture (CLP). An in vitro model was created by stimulating MH-S cells with lipopolysaccharide (LPS). qRT-PCR was used to measure mRNA levels of M1 markers iNOS and MHC-II and M2 markers Arg1 and CD206 to evaluate macrophage polarization. Western blotting detected expression of peroxisome proliferator-activated receptor gamma (PPARγ) PGC-1α, and mitochondrial biogenesis proteins NRF1, NRF2, and mtTFA. To assess mitochondrial content and function, reactive oxygen species levels were detected by dihydroethidium staining, and mitochondrial DNA copy number was measured by qRT-PCR. In the CLP-induced ALI mouse model, lung tissues exhibited reduced PGC-1α expression. PGZ treatment rescued PGC-1α expression and alleviated lung injury, as evidenced by decreased lung wet-to-dry weight ratio, pro-inflammatory cytokine secretion (tumor necrosis factor-α, interleukin-1β, interleukin-6), and enhanced M2 macrophage polarization. Mechanistic investigations revealed that PGZ activated the PPARγ/PGC-1α/mitochondrial protection pathway to prevent sepsis-induced ALI by inhibiting M1 macrophage polarization. These results may provide new insights and evidence for developing PGZ as a potential ALI therapy.

4.
Pharmaceuticals (Basel) ; 16(10)2023 Oct 18.
Article de Anglais | MEDLINE | ID: mdl-37895955

RÉSUMÉ

Mesenchymal stromal cells (MSCs) obtained from bone marrow are a promising tool for regenerative medicine, including kidney diseases. A step forward in MSCs studies is cellular conditioning through specific minerals and vitamins. The Omega-3 fatty acids (ω3) are essential in regulating MSCs self-renewal, cell cycle, and survival. The ω3 could act as a ligand for peroxisome proliferator-activated receptor gamma (PPAR-γ). This study aimed to demonstrate that ω3 supplementation in rats could lead to the up-regulation of PPAR-γ in the MSCs. The next step was to compare the effects of these MSCs through allogeneic transplantation in rats subjected to unilateral ureteral obstruction (UUO). Independent of ω3 supplementation in the diet of the rats, the MSCs in vitro conserved differentiation capability and phenotypic characteristics. Nevertheless, MSCs obtained from the rats supplemented with ω3 stimulated an increase in the expression of PPAR-γ. After allogeneic transplantation in rats subjected to UUO, the ω3 supplementation in the rats enhanced some nephroprotective effects of the MSCs through a higher expression of antioxidant enzyme (SOD-1), anti-inflammatory marker (IL-10), and lower expression of the inflammatory marker (IL-6), and proteinuria.

5.
World J Gastroenterol ; 29(26): 4136-4155, 2023 Jul 14.
Article de Anglais | MEDLINE | ID: mdl-37475842

RÉSUMÉ

The world is experiencing reflections of the intersection of two pandemics: Obesity and coronavirus disease 2019. The prevalence of obesity has tripled since 1975 worldwide, representing substantial public health costs due to its comorbidities. The adipose tissue is the initial site of obesity impairments. During excessive energy intake, it undergoes hyperplasia and hypertrophy until overt inflammation and insulin resistance turn adipocytes into dysfunctional cells that send lipotoxic signals to other organs. The pancreas is one of the organs most affected by obesity. Once lipotoxicity becomes chronic, there is an increase in insulin secretion by pancreatic beta cells, a surrogate for type 2 diabetes mellitus (T2DM). These alterations threaten the survival of the pancreatic islets, which tend to become dysfunctional, reaching exhaustion in the long term. As for the liver, lipotoxicity favors lipogenesis and impairs beta-oxidation, resulting in hepatic steatosis. This silent disease affects around 30% of the worldwide population and can evolve into end-stage liver disease. Although therapy for hepatic steatosis remains to be defined, peroxisome proliferator-activated receptors (PPARs) activation copes with T2DM management. Peroxisome PPARs are transcription factors found at the intersection of several metabolic pathways, leading to insulin resistance relief, improved thermogenesis, and expressive hepatic steatosis mitigation by increasing mitochondrial beta-oxidation. This review aimed to update the potential of PPAR agonists as targets to treat metabolic diseases, focusing on adipose tissue plasticity and hepatic and pancreatic remodeling.


Sujet(s)
COVID-19 , Diabète de type 2 , Stéatose hépatique , Insulinorésistance , Maladies métaboliques , Humains , Récepteurs activés par les proliférateurs de peroxysomes/agonistes , Récepteurs activés par les proliférateurs de peroxysomes/métabolisme , Insulinorésistance/physiologie , Diabète de type 2/traitement médicamenteux , Diabète de type 2/métabolisme , COVID-19/métabolisme , Tissu adipeux/métabolisme , Obésité/métabolisme , Pancréas/métabolisme , Stéatose hépatique/métabolisme
6.
Int J Mol Sci ; 24(7)2023 Apr 05.
Article de Anglais | MEDLINE | ID: mdl-37047733

RÉSUMÉ

The peroxisome proliferator-activated receptor gamma (PPARG) gene encodes a transcription factor involved in the regulation of complex metabolic and inflammatory diseases. We investigated whether single nucleotide polymorphisms (SNPs) and haplotypes of the PPARG gene could contribute with susceptibility to develop periodontitis alone or together with type 2 diabetes mellitus (T2DM). Moreover, we evaluated the gene-phenotype association by assessing the subjects' biochemical and periodontal parameters, and the expression of PPARG and other immune response-related genes. We examined 345 subjects with a healthy periodontium and without T2DM, 349 subjects with moderate or severe periodontitis but without T2DM, and 202 subjects with moderate or severe periodontitis and T2DM. PPARG SNPs rs12495364, rs1801282, rs1373640, and rs1151999 were investigated. Multiple logistic regressions adjusted for age, sex, and smoking status showed that individuals carrying rs1151999-GG had a 64% lower chance of developing periodontitis together with T2DM. The CCGT haplotype increased the risk of developing periodontitis together with T2DM. The rs1151999-GG and rs12495364-TC were associated with reduced risk of obesity, periodontitis, elevated triglycerides, and elevated glycated hemoglobin, but there was no association with gene expression. Polymorphisms of the PPARG gene were associated with developing periodontitis together with T2DM, and with obesity, lipid, glycemic, and periodontal characteristics.


Sujet(s)
Diabète de type 2 , Récepteur PPAR gamma , Parodontite , Humains , Brésil/épidémiologie , Diabète de type 2/génétique , Prédisposition génétique à une maladie , Génotype , Obésité/génétique , Parodontite/génétique , Polymorphisme de nucléotide simple , Récepteur PPAR gamma/génétique
7.
Ann Hepatol ; 28(3): 101082, 2023.
Article de Anglais | MEDLINE | ID: mdl-36893888

RÉSUMÉ

INTRODUCTION AND OBJECTIVES: As a fatal clinical syndrome, acute liver failure (ALF) is characterized by overwhelming liver inflammation and hepatic cell death. Finding new therapeutic methods has been a challenge in ALF research. VX-765 is a known pyroptosis inhibitor and has been reported to prevent damage in a variety of diseases by reducing inflammation. However, the role of VX-765 in ALF is still unclear. MATERIALS AND METHODS: ALF model mice were treated with D-galactosamine (D-GalN) and lipopolysaccharide (LPS). LO2 cells were stimulated with LPS. Thirty subjects were enrolled in clinical experiments. The levels of inflammatory cytokines, pyroptosis-associated proteins and peroxisome proliferator-activated receptor α (PPARα) were detected using quantitative reverse transcription-polymerase chain reaction (qRT‒PCR), western blotting and immunohistochemistry. An automatic biochemical analyzer was used to determine the serum aminotransferase enzyme levels. Hematoxylin and eosin (HE) staining was used to observe the pathological features of the liver. RESULTS: With the progression of ALF, the expression levels of interleukin (IL) -1ß, IL-18, caspase-1, and serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were increased. VX-765 could reduce the mortality rate of ALF mice, relieve liver pathological damage, and reduce inflammatory responses to protect against ALF. Further experiments showed that VX-765 could protect against ALF through PPARα, and this protective effect against ALF was reduced in the context of PPARα inhibition. CONCLUSIONS: As ALF progresses, inflammatory responses and pyroptosis deteriorate gradually. VX-765 can inhibit pyroptosis and reduce inflammatory responses to protect against ALF by upregulating PPARα expression, thus providing a possible therapeutic strategy for ALF.


Sujet(s)
Défaillance hépatique aigüe , Récepteur PPAR alpha , Souris , Animaux , Récepteur PPAR alpha/génétique , Récepteur PPAR alpha/métabolisme , Pyroptose , Lipopolysaccharides/métabolisme , Lipopolysaccharides/pharmacologie , Défaillance hépatique aigüe/induit chimiquement , Défaillance hépatique aigüe/prévention et contrôle , Foie/anatomopathologie , Inflammation/prévention et contrôle , Inflammation/métabolisme , Facteur de nécrose tumorale alpha/métabolisme , Souris de lignée C57BL
8.
Clin Transl Oncol ; 25(3): 601-610, 2023 Mar.
Article de Anglais | MEDLINE | ID: mdl-36348225

RÉSUMÉ

Obesity may create a mitogenic microenvironment that influences tumor initiation and progression. The obesity-associated adipokine, leptin regulates energy metabolism and has been implicated in cancer development. It has been shown that some cell types other than adipocytes can express leptin and leptin receptors in tumor microenvironments. It has been shown that peroxisome proliferator-activated receptors (PPAR) agonists can affect leptin levels and vice versa leptin can affect PPARs. Activation of PPARs affects the expression of several genes involved in aspects of lipid metabolism. In addition, PPARs regulate cancer cell progression through their action on the tumor cell proliferation, metabolism, and cellular environment. Some studies have shown an association between obesity and several types of cancer, including breast cancer. There is some evidence that suggests that there is crosstalk between PPARs and leptin during the development of breast cancer. Through a systematic review of previous studies, we have reviewed the published relevant articles regarding leptin signaling in breast cancer and its crosstalk with peroxisome proliferator-activated receptors α and γ.


Sujet(s)
Tumeurs du sein , Récepteurs activés par les proliférateurs de peroxysomes , Humains , Femelle , Récepteurs activés par les proliférateurs de peroxysomes/agonistes , Récepteurs activés par les proliférateurs de peroxysomes/métabolisme , Leptine , Récepteur PPAR alpha , Obésité , Transduction du signal , Microenvironnement tumoral
9.
Food Chem (Oxf) ; 6: 100155, 2023 Jul 30.
Article de Anglais | MEDLINE | ID: mdl-36582744

RÉSUMÉ

Chronic Non-Communicable Diseases (NCDs) have been considered a global health problem, characterized as diseases of multiple factors, which are developed throughout life, and regardless of genetics as a risk factor of important relevance, the increase in mortality attributed to the disease to environmental factors and the lifestyle one leads. Although the reactive species (ROS/RNS) are necessary for several physiological processes, their overproduction is directly related to the pathogenesis and aggravation of NCDs. In contrast, dietary polyphenols have been widely associated with minimizing oxidative stress and inflammation. In addition to their antioxidant power, polyphenols have also drawn attention for being able to modulate both gene expression and modify epigenetic alterations, suggesting an essential involvement in the prevention and/or development of some pathologies. Therefore, this review briefly explained the mechanisms in the development of some NCDs, followed by a summary of some evidence related to the interaction of polyphenols in oxidative stress, as well as the modulation of epigenetic mechanisms involved in the management of NCDs.

10.
Acta cir. bras ; Acta cir. bras;38: e387023, 2023. tab, graf, ilus
Article de Anglais | LILACS, VETINDEX | ID: biblio-1527595

RÉSUMÉ

Purpose: Cerebral ischemia-reperfusion (I/R) is a neurovascular disorder that leads to brain injury. In mice, Fasudil improves nerve injury induced by I/R. However, it is unclear if this is mediated by increased peroxisome proliferator-activated receptor-α (PPARα) expression and reduced oxidative damage. This study aimed to investigate the neuroprotective mechanism of action of Fasudil. Methods: MCAO (Middle cerebral artery occlusion) was performed in male C57BL/6J wild-type and PPARα KO mice between September 2021 to April 2023. Mice were treated with Fasudil and saline; 2,3,5-Triphenyltetrazolium chloride (TTC) staining was performed to analyze cerebral infarction. PPARα and Rho-associated protein kinase (ROCK) expression were detected using Western blot, and the expression of NADPH subunit Nox2 mRNA was detected using real-time polymerase chain reaction. The NADPH oxidase activity level and reactive oxygen species (ROS) content were also investigated. Results: After cerebral ischemia, the volume of cerebral necrosis was reduced in wild-type mice treated with Fasudil. The expression of PPARα was increased, while ROCK was decreased. Nox2 mRNA expression, NADPH oxidase activity, and ROS content decreased. There were no significant changes in cerebral necrosis volumes, NADPH oxidase activity, and ROS content in the PPARα KO mice treated with Fasudil. Conclusions: In mice, the neuroprotective effect of Fasudil depends on the expression of PPARα induced by ROCK-PPARα-NOX axis-mediated reduction in ROS and associated oxidative damage.


Sujet(s)
Animaux , Souris , Lésions encéphaliques , Lésion d'ischémie-reperfusion , Encéphalopathie ischémique , Stress oxydatif
12.
Front Cell Dev Biol ; 10: 979269, 2022.
Article de Anglais | MEDLINE | ID: mdl-36172271

RÉSUMÉ

One peculiarity of protists belonging to classes Kinetoplastea and Diplonemea within the phylum Euglenozoa is compartmentalisation of most glycolytic enzymes within peroxisomes that are hence called glycosomes. This pathway is not sequestered in peroxisomes of the third Euglenozoan class, Euglenida. Previous analysis of well-studied kinetoplastids, the 'TriTryps' parasites Trypanosoma brucei, Trypanosoma cruzi and Leishmania spp., identified within glycosomes other metabolic processes usually not present in peroxisomes. In addition, trypanosomatid peroxins, i.e. proteins involved in biogenesis of these organelles, are divergent from human and yeast orthologues. In recent years, genomes, transcriptomes and proteomes for a variety of euglenozoans have become available. Here, we track the possible evolution of glycosomes by querying these databases, as well as the genome of Naegleria gruberi, a non-euglenozoan, which belongs to the same protist supergroup Discoba. We searched for orthologues of TriTryps proteins involved in glycosomal metabolism and biogenesis. Predicted cellular location(s) of each metabolic enzyme identified was inferred from presence or absence of peroxisomal-targeting signals. Combined with a survey of relevant literature, we refine extensively our previously postulated hypothesis about glycosome evolution. The data agree glycolysis was compartmentalised in a common ancestor of the kinetoplastids and diplonemids, yet additionally indicates most other processes found in glycosomes of extant trypanosomatids, but not in peroxisomes of other eukaryotes were either sequestered in this ancestor or shortly after separation of the two lineages. In contrast, peroxin divergence is evident in all euglenozoans. Following their gain of pathway complexity, subsequent evolution of peroxisome/glycosome function is complex. We hypothesize compartmentalisation in glycosomes of glycolytic enzymes, their cofactors and subsequently other metabolic enzymes provided selective advantage to kinetoplastids and diplonemids during their evolution in changing marine environments. We contend two specific properties derived from the ancestral peroxisomes were key: existence of nonselective pores for small solutes and the possibility of high turnover by pexophagy. Critically, such pores and pexophagy are characterised in extant trypanosomatids. Increasing amenability of free-living kinetoplastids and recently isolated diplonemids to experimental study means our hypothesis and interpretation of bioinformatic data are suited to experimental interrogation.

13.
J Feline Med Surg ; 24(8): e251-e257, 2022 08.
Article de Anglais | MEDLINE | ID: mdl-35713593

RÉSUMÉ

OBJECTIVES: The aim of this study was to assess the short-term safety and efficacy of fenofibrate in controlling secondary hypertriglyceridemia in cats. METHODS: This was a prospective cohort study. Seventeen adult cats with hypertriglyceridemia (serum triglycerides [TG] >160 mg/dl) were enrolled. Cats received a median dose of 5 mg/kg (range 3.2-6) fenofibrate (q24h PO) for 1 month. Serum TG, total cholesterol (TC), creatine kinase and liver enzymes (alanine aminotransferase, aspartate aminotransferase and alkaline phosphatase) were evaluated before (t0) and after 1 month (t1) of fenofibrate treatment. RESULTS: The causes of secondary hypertriglyceridemia were diabetes mellitus (DM; 29.4%), obesity (29.4%), hyperadrenocorticism (HAC) and DM (11.7%), HAC without DM (5.9%), hypersomatotropism (HST) and DM (5.9%), hypothyroidism (5.9%), long-term treatment with glucocorticoids (5.9%) and chylothorax (5.9%). Serum TG (t0 median 920 mg/dl [range 237-1780]; t1 median 51 mg/dl [range 21-1001]; P = 0.0002) and TC (t0 median 278 mg/dl [range 103-502]; t1 median 156 mg/dl [range 66-244]; P = 0.0001) concentrations showed a significant decrease after 1 month of fenofibrate treatment. Fifteen cats normalized their TG concentration at t1 (88.2%). Of the eight cats that were hypercholesterolemic at t0, six (75%) normalized their TC concentrations at t1. One of 17 cats (5.9 %) presented with diarrhea; the remaining 16 did not show any adverse effects. CONCLUSIONS AND RELEVANCE: DM and obesity are the most common endocrine causes of secondary hyperlipidemia, although it can also be found in cats with HAC, HST or hypothyroidism. This study suggests that fenofibrate treatment was associated with reduction and normalization of TG and TC concentrations in cats with moderate and severe hypertriglyceridemia, regardless of the cause of secondary hypertriglyceridemia. Further work should focus on controlled studies with a greater number of cases.


Sujet(s)
Maladies des chats , Fénofibrate , Hypertriglycéridémie , Hypothyroïdie , Obésité , Animaux , Maladies des chats/induit chimiquement , Maladies des chats/traitement médicamenteux , Chats , Fénofibrate/usage thérapeutique , Humains , Hypertriglycéridémie/traitement médicamenteux , Hypertriglycéridémie/médecine vétérinaire , Hypolipémiants/usage thérapeutique , Hypothyroïdie/complications , Hypothyroïdie/traitement médicamenteux , Hypothyroïdie/médecine vétérinaire , Obésité/médecine vétérinaire , Études prospectives , Triglycéride
14.
J Endocrinol ; 254(1): 37-49, 2022 06 08.
Article de Anglais | MEDLINE | ID: mdl-35674008

RÉSUMÉ

The aim of this study was to evaluate the paternal programming of sex-dependent alterations in fetoplacental growth and placental lipid metabolism regulated by peroxisome proliferator-activated receptor (PPAR) target genes in F1 diabetic males born from F0 pregestational diabetic rats. F1 control and diabetic male rats were mated with control female rats. On day 21 of gestation, F2 male and female fetoplacental growth, placental lipid levels, and protein and mRNA levels of genes involved in lipid metabolism and transport were evaluated. Fetal but not placental weight was increased in the diabetic group. Triglyceride, cholesterol and free fatty acid levels were increased in placentas of male fetuses from the diabetic group. The mRNA levels of Pparα and Pparγ coactivator 1α (Pgc-1α) were increased only in placentas of male fetuses from the diabetic group. Protein levels of PPARα and PGC-1α were decreased only in placentas of male fetuses from the diabetic group. No differences were found in Pparγ mRNA and protein levels in placentas from the diabetic group. The mRNA levels of genes involved in lipid synthesis showed no differences between groups, whereas the mRNA levels of genes involved in lipid oxidation and transport were increased only in placentas of male fetuses from the diabetic group. In conclusion, paternal diabetes programs fetal overgrowth and sex-dependent effects on the regulation of lipid metabolism in the placenta, where only placentas of male fetuses show an increase in lipid accumulation and mRNA expression of enzymes involved in lipid oxidation and transport pathways.


Sujet(s)
Diabète expérimental , Diabète gestationnel , Animaux , Diabète expérimental/métabolisme , Diabète gestationnel/génétique , Diabète gestationnel/métabolisme , Femelle , Macrosomie foetale/métabolisme , Humains , Mâle , Récepteur PPAR alpha/génétique , Récepteur PPAR alpha/métabolisme , Récepteur PPAR gamma/génétique , Récepteur PPAR gamma/métabolisme , Placenta/métabolisme , Grossesse , ARN messager/génétique , ARN messager/métabolisme , Rats , Rat Wistar , Triglycéride/métabolisme
15.
Front Physiol ; 13: 803126, 2022.
Article de Anglais | MEDLINE | ID: mdl-35557975

RÉSUMÉ

Compelling evidence has demonstrated the effect of melatonin on exhaustive exercise tolerance and its modulatory role in muscle energy substrates at the end of exercise. In line with this, PGC-1α and NRF-1 also seem to act on physical exercise tolerance and metabolic recovery after exercise. However, the literature still lacks reports on these proteins after exercise until exhaustion for animals treated with melatonin. Thus, the aim of the current study was to determine the effects of acute melatonin administration on muscle PGC-1α and NRF-1, and its modulatory role in glycogen and triglyceride contents in rats subjected to exhaustive swimming exercise at an intensity corresponding to the anaerobic lactacidemic threshold (iLAn). In a randomized controlled trial design, thirty-nine Wistar rats were allocated into four groups: control (CG = 10), rats treated with melatonin (MG = 9), rats submitted to exercise (EXG = 10), and rats treated with melatonin and submitted to exercise (MEXG = 10). Forty-eight hours after the graded exercise test, the animals received melatonin (10 mg/kg) or vehicles 30 min prior to time to exhaustion test in the iLAn (tlim). Three hours after tlim the animals were euthanized, followed by muscle collection for specific analyses: soleus muscles for immunofluorescence, gluteus maximus, red and white gastrocnemius for the assessment of glycogen and triglyceride contents, and liver for the measurement of glycogen content. Student t-test for independent samples, two-way ANOVA, and Newman keuls post hoc test were used. MEXG swam 120.3% more than animals treated with vehicle (EXG; p < 0.01). PGC-1α and NRF-1 were higher in MEXG with respect to the CG (p < 0.05); however, only PGC-1α was higher for MEXG when compared to EXG. Melatonin reduced the triglyceride content in gluteus maximus, red and white gastrocnemius (F = 6.66, F = 4.51, and F = 6.02, p < 0.05). The glycogen content in red gastrocnemius was higher in MEXG than in CG (p = 0.01), but not in EXG (p > 0.05). In conclusion, melatonin was found to enhance exercise tolerance, potentiate exercise-mediated increases in PGC-1α, decrease muscle triglyceride content and increase muscle glycogen 3 h after exhaustive exercise, rapidly providing a better cellular metabolic environment for future efforts.

16.
Front Cell Dev Biol ; 10: 886710, 2022.
Article de Anglais | MEDLINE | ID: mdl-35547805

RÉSUMÉ

Eukaryotic cell development involves precise regulation of organelle activity and dynamics, which adapt the cell architecture and metabolism to the changing developmental requirements. Research in various fungal model organisms has disclosed that meiotic development involves precise spatiotemporal regulation of the formation and dynamics of distinct intracellular membrane compartments, including peroxisomes, mitochondria and distinct domains of the endoplasmic reticulum, comprising its peripheral domains and the nuclear envelope. This developmental regulation implicates changes in the constitution and dynamics of these organelles, which modulate their structure, abundance and distribution. Furthermore, selective degradation systems allow timely organelle removal at defined meiotic stages, and regulated interactions between membrane compartments support meiotic-regulated organelle dynamics. This dynamic organelle remodeling is implicated in conducting organelle segregation during meiotic differentiation, and defines quality control regulatory systems safeguarding the inheritance of functional membrane compartments, promoting meiotic cell rejuvenation. Moreover, organelle remodeling is important for proper activity of the cytoskeletal system conducting meiotic nucleus segregation, as well as for meiotic differentiation. The orchestrated regulation of organelle dynamics has a determinant contribution in the formation of the renewed genetically-diverse offspring of meiosis.

17.
World J Gastroenterol ; 28(17): 1814-1829, 2022 May 07.
Article de Anglais | MEDLINE | ID: mdl-35633911

RÉSUMÉ

BACKGROUND: Obesity and comorbidities onset encompass gut dysbiosis, altered intestinal permeability, and endotoxemia. Treatments that target gut dysbiosis can cope with obesity and nonalcoholic fatty liver disease (NAFLD) management. Peroxisome proliferator-activated receptor (PPAR)-alpha activation and dipeptidyl-peptidase-4 (DPP-4) inhibition alleviate NAFLD, but the mechanism may involve gut microbiota modulation and merits further investigation. AIM: To address the effects of PPAR-alpha activation and DPP-4 inhibition (isolated or combined) upon the gut-liver axis, emphasizing inflammatory pathways in NAFLD management in high-fat-fed C57BL/6J mice. METHODS: Male C57BL/6J mice were fed a control diet (C, 10% of energy as lipids) or a high-fat diet (HFD, 50% of energy as lipids) for 12 wk, when treatments started, forming the groups: C, HF, HFA (HFD + PPAR-alpha agonist WY14643, 2.5 mg/kg body mass), HFL (HFD + DPP-4 inhibitor linagliptin, 15 mg/kg body mass), and HFC (HFD + the combination of WY14643 and linagliptin). RESULTS: The HFD was obesogenic compared to the C diet. All treatments elicited significant body mass loss, and the HFC group showed similar body mass to the C group. All treatments tackled oral glucose intolerance and raised plasma glucagon-like peptide-1 concentrations. These metabolic benefits restored Bacteroidetes/Firmicutes ratio, resulting in increased goblet cells per area of the large intestine and reduced lipopolysaccharides concentrations in treated groups. At the gene level, treated groups showed higher intestinal Mucin 2, Occludin, and Zo-1 expression than the HFD group. The reduced endotoxemia suppressed inflammasome and macrophage gene expression in the liver of treated animals. These observations complied with the mitigation of liver steatosis and reduced hepatic triacylglycerol, reassuring the role of the proposed treatments on NAFLD mitigation. CONCLUSION: PPAR alpha activation and DPP-4 inhibition (isolated or combined) tackled NAFLD in diet-induced obese mice by restoration of gut-liver axis. The reestablishment of the intestinal barrier and the rescued phylogenetic gut bacteria distribution mitigated liver steatosis through anti-inflammatory signals. These results can cope with NAFLD management by providing pre-clinical evidence that drugs used to treat obesity comorbidities can help to alleviate this silent and harmful liver disease.


Sujet(s)
Inhibiteurs de la dipeptidyl-peptidase IV , Endotoxémie , Stéatose hépatique non alcoolique , Obésité , Récepteur PPAR alpha , Animaux , Dipeptidyl peptidase 4/métabolisme , Inhibiteurs de la dipeptidyl-peptidase IV/pharmacologie , Dysbiose/traitement médicamenteux , Dysbiose/métabolisme , Endotoxémie/complications , Endotoxémie/traitement médicamenteux , Linagliptine/pharmacologie , Linagliptine/usage thérapeutique , Métabolisme lipidique/effets des médicaments et des substances chimiques , Mâle , Souris , Souris de lignée C57BL , Souris obèse , Stéatose hépatique non alcoolique/métabolisme , Obésité/complications , Obésité/traitement médicamenteux , Obésité/métabolisme , Récepteur PPAR alpha/agonistes , Récepteur PPAR alpha/métabolisme , Phylogenèse
18.
J Muscle Res Cell Motil ; 43(1): 35-44, 2022 03.
Article de Anglais | MEDLINE | ID: mdl-35084659

RÉSUMÉ

Acute metabolic and molecular response to exercise may vary according to exercise's intensity and duration. However, there is a lack regarding specific tissue alterations after acute exercise with aerobic or anaerobic predominance. The present study investigated the effects of acute exercise performed at different intensities, but with equal total load on molecular and physiological responses in swimming rats. Sixty male rats were divided into a control group and five groups performing an acute bout of swimming exercise at different intensities (80, 90, 100, 110 and 120% of anaerobic threshold [AnT]). The exercise duration of each group was balanced so all groups performed at the same total load. Gene expression (HIF-1α, PGC-1α, MCT1 and MCT4 mRNA), blood biomarkers and tissue glycogen depletion were analyzed after the exercise session. ANOVA One-Way was used to indicate statistical mean differences considering 5% significance level. Blood lactate concentration was the only biomarker sensitive to acute exercise, with a significant increase in rats exercised above AnT intensities (p < 0.000). Glycogen stores of gluteus muscle were significantly reduced in all exercised animals in comparison to control group (p = 0.02). Hepatic tissue presented significant reduction in glycogen in animals exercised above AnT (p = 0.000, as well as reduced HIF-1α mRNA and increased MCT1 mRNA, especially at the highest intensity (p = 0.002). Physiological parameters did not alter amongst groups for most tissues. Our results indicate the hepatic tissue alterations (glycogen stores and gene expressions) in response to different exercise intensities of exercise, even with the total load matched.


Sujet(s)
Conditionnement physique d'animal , Natation , Seuil anaérobie , Animaux , Glycogène/métabolisme , Mâle , Muscles squelettiques/métabolisme , ARN messager/métabolisme , Rats , Natation/physiologie
19.
Front Fungal Biol ; 3: 1049690, 2022.
Article de Anglais | MEDLINE | ID: mdl-37746194

RÉSUMÉ

Diabetes mellitus is a metabolic disorder that affects millions of people worldwide and is linked to oxidative stress and inflammation. Thiazolidinediones (TZD) improve insulin sensitization and glucose homeostasis mediated by the activation of peroxisome proliferator-activated receptors γ (PPARγ) in patients with type 2 diabetes. However, their use is associated with severe adverse effects such as loss of bone mass, retention of body fluids, liver and heart problems, and increased risk of bladder cancer. Partial PPARγ agonists can promote the beneficial effects of thiazolidinediones with fewer adverse effects. Endophytic fungi colonize plant tissues and have a particularly active metabolism caused by the interaction with them, which leads to the production of natural products with significant biological effects that may be like that of the colonized plant. Here, we identify seven endophytic fungi isolated from Bauhinia variegata leaves that have antioxidant activities. Also, one of the extracts presented pan-agonist activity on PPAR, and another showed activity in PPARα and PPARß/δ. A better understanding of this relationship could help to comprehend the mechanism of action of antioxidants in treating diabetes and its complications. Moreover, compounds with these capabilities to reduce oxidative stress and activate the receptor that promotes glucose homeostasis are promising candidates in treatment of diabetes.

20.
J Cosmet Dermatol ; 21(3): 1234-1242, 2022 Mar.
Article de Anglais | MEDLINE | ID: mdl-33960120

RÉSUMÉ

BACKGROUND: French maritime pine bark (Pinus pinaster) extract (PBE), the registered trade name of which is Pycnogenol® , has been studied for its depigmenting action due to its antioxidant, anti-inflammatory, and anti-melanogenic activity. However, the mechanisms through which PBE are still not fully clear. OBJECTIVE: Evaluate the impact of PBE on four in vitro parameters closely associated with cutaneous pigmentation, including melanin synthesis, tyrosinase activity, endothelin-1 (ED1), and production of peroxisome proliferator-activated receptor α, δ, and γ (PPAR α, δ, and γ), by studying the modulation of action of ultraviolet radiation A (UVA)/ultraviolet radiation B (UVB), infrared-A (IR-A), visible light (VL), and association of UVA/UVB, IR-A, and VL (ASS). METHODS: Human melanocytes were incubated in a dry extract solution of PBE, exposed to UVA/UVB, IR-A, VL, and ASS for subsequent quantification of melanin, ED1, and PPAR α, δ, and γ. The effects of PBE on inhibition of tyrosinase activity were also performed by monophenolase activity assay. RESULTS: UVA/UVB, IR-A, VL, and ASS radiation caused significant increases in the synthesis of melanin, ED1, and PPAR α, δ, and γ when compared to baseline control. However, PBE significantly reduced the production of melanin, ED1, and PPAR α, δ, and γ, as well as reducing about 66.5% of the tyrosinase activity. CONCLUSIONS: PBE reduces in vitro melanin production by downregulating tyrosinase and reducing pigmentation-related mediators, such as ED1 and PPAR α, δ, and γ, therefore contributing to the inhibition of pathways associated with skin hyperpigmentation.


Sujet(s)
Mélanines , Monophenol monooxygenase , Endothéline-1/métabolisme , Endothéline-1/pharmacologie , Humains , Mélanocytes/métabolisme , Monophenol monooxygenase/métabolisme , Récepteurs activés par les proliférateurs de peroxysomes/métabolisme , Récepteurs activés par les proliférateurs de peroxysomes/pharmacologie , Écorce/métabolisme , Extraits de plantes/métabolisme , Extraits de plantes/pharmacologie , Rayons ultraviolets
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE