Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 146
Filtrer
1.
Front Microbiol ; 15: 1425034, 2024.
Article de Anglais | MEDLINE | ID: mdl-39027109

RÉSUMÉ

Introduction: Phosphorus (P) readily forms insoluble complexes in soil, thereby inhibiting the absorption and utilization of this essential nutrient by plants. Phosphorus deficiency can significantly impede the growth of forage grass. While Trichoderma viride (T. viride) has been recognized for promoting the assimilation of otherwise unobtainable nutrients, its impact on P uptake remains understudied. Consequently, it is imperative to gain a more comprehensive insight into the role of T. viride in facilitating the uptake and utilization of insoluble P in forage grass. Methods: This research explored the influence of T. viride inoculation on P absorption and the growth of Chloris virgata (C. virgata) across various P sources. We treated plants with control P (P), tricalcium phosphate (TCP), calcium phytate (PHY), and low P (LP), with and without T. viride inoculation (P+T, TCP+T, PHY+T, LP+T). We analyzed photosynthesis parameters, growth indices, pigment accumulation, P content, leaf acid phosphatase activity. Results: Results demonstrated that T. viride inoculation alleviated inhibition of photosynthesis, reduced leaf acid phosphatase activity, and enhanced growth of C. virgata in the presence of insoluble P sources. Additionally, T. viride inoculation enabled the plants to extract more available P from insoluble P sources, as evidenced by a substantial increase in P content: shoot P content surged by 58.23 to 59.08%, and root P content rose by 55.13 to 55.2%. Biomass P-use efficiency (PUE) declined by 38% upon inoculation with T. viride compared to the non-inoculated insoluble P sources, paralleled by a reduction in photosynthetic P-use efficiency (PPUE) by 26 to 29%. Inoculation under insoluble P sources further triggered a lower allocation to root biomass (25 to 26%) and a higher investment in shoot biomass (74 to 75%). However, its application under low P condition curtailed the growth of C. virgata. Discussion: Our results suggest that T. viride inoculation represents an innovative approach for plants to acquire available P from insoluble P sources, thereby promoting growth amid environmental P limitations. This insight is crucial for comprehending the synergy among forage grass, P, and T. viride.

2.
Sci Total Environ ; 946: 174174, 2024 Oct 10.
Article de Anglais | MEDLINE | ID: mdl-38925384

RÉSUMÉ

Human urine contains 9 g/L of nitrogen (N) and 0.7 g/L of phosphorus (P). The recovery of N and P from urine helps close the nutrient loop and increase resource circularity in the sewage treatment sector. Urine contributes an average of 80 % N and 50 % P in sewage, whereby urine source segregation could reduce the burden of nutrient removal in sewage treatment plants (STPs) but result in N and P deficiency and unintended negative consequences. This review examines the potential impacts of N and P deficiency on the removal of organic carbon and nutrients, sludge characteristics and greenhouse gas emissions in activated sludge processes. The details of how these impacts affect the operation of STPs were also included. This review helps foresee operational challenges that established STPs may face when dealing with nutrient-deficient sewage in a future where source separation of urine is the norm. The findings indicate that the requirement of nitrification-denitrification and biological P removal processes could shrink at urine segregation above 80 % and 100 %, respectively. Organic carbon, N and biological P removal processes can be severely affected under full urine segregation. The decrease in solid retention time due to urine segregation increases treatment capacity up to 48 %. Sludge flocculation and settleability would deteriorate due to changes in extracellular polymeric substances and induce various forms of bulking. Beneficially, N deficiency reduces nitrous oxide emissions. These findings emphasise the importance of considering and preparing for impacts caused by urine source segregation-induced nutrient deficiency in sewage treatment processes.


Sujet(s)
Azote , Phosphore , Eaux d'égout , Élimination des déchets liquides , Élimination des déchets liquides/méthodes , Humains , Urine/composition chimique , Nutriments/analyse
3.
BMC Plant Biol ; 24(1): 480, 2024 May 30.
Article de Anglais | MEDLINE | ID: mdl-38816792

RÉSUMÉ

Phosphorus, a crucial macronutrient essential for plant growth and development. Due to widespread phosphorus deficiency in soils, phosphorus deficiency stress has become one of the major abiotic stresses that plants encounter. Despite the evolution of adaptive mechanisms in plants to address phosphorus deficiency, the specific strategies employed by species such as Epimedium pubescens remain elusive. Therefore, this study observed the changes in the growth, physiological reponses, and active components accumulation in E. pubescensunder phosphorus deficiency treatment, and integrated transcriptome and miRNA analysis, so as to offer comprehensive insights into the adaptive mechanisms employed by E. pubescens in response to phosphorus deficiency across various stages of phosphorus treatment. Remarkably, our findings indicate that phosphorus deficiency induces root growth stimulation in E. pubescens, while concurrently inhibiting the growth of leaves, which are of medicinal value. Surprisingly, this stressful condition results in an augmented accumulation of active components in the leaves. During the early stages (30 days), leaves respond by upregulating genes associated with carbon metabolism, flavonoid biosynthesis, and hormone signaling. This adaptive response facilitates energy production, ROS scavenging, and morphological adjustments to cope with short-term phosphorus deficiency and sustain its growth. As time progresses (90 days), the expression of genes related to phosphorus cycling and recycling in leaves is upregulated, and transcriptional and post-transcriptional regulation (miRNA regulation and protein modification) is enhanced. Simultaneously, plant growth is further suppressed, and it gradually begins to discard and decompose leaves to resist the challenges of long-term phosphorus deficiency stress and sustain survival. In conclusion, our study deeply and comprehensively reveals adaptive strategies utilized by E. pubescens in response to phosphorus deficiency, demonstrating its resilience and thriving potential under stressful conditions. Furthermore, it provides valuable information on potential target genes for the cultivation of E. pubescens genotypes tolerant to low phosphorus.


Sujet(s)
Epimedium , microARN , Phosphore , Transcriptome , Phosphore/déficit , Phosphore/métabolisme , microARN/génétique , microARN/métabolisme , Epimedium/génétique , Epimedium/métabolisme , Epimedium/physiologie , Adaptation physiologique/génétique , Régulation de l'expression des gènes végétaux , Analyse de profil d'expression de gènes , Feuilles de plante/génétique , Feuilles de plante/métabolisme , Stress physiologique/génétique , ARN des plantes/génétique , ARN des plantes/métabolisme , Racines de plante/génétique , Racines de plante/métabolisme , Racines de plante/croissance et développement
4.
Plants (Basel) ; 13(7)2024 Mar 23.
Article de Anglais | MEDLINE | ID: mdl-38611459

RÉSUMÉ

Aluminum (Al) toxicity and phosphorus (P) deficiency are widely recognized as major constraints to agricultural productivity in acidic soils. Under this scenario, the development of ryegrass plants with enhanced P use efficiency and Al resistance is a promising approach by which to maintain pasture production. In this study, we assessed the contribution of growth traits, P efficiency, organic acid anion (OA) exudation, and the expression of Al-responsive genes in improving tolerance to concurrent low-P and Al stress in ryegrass (Lolium perenne L.). Ryegrass plants were hydroponically grown under optimal (0.1 mM) or low-P (0.01 mM) conditions for 21 days, and further supplied with Al (0 and 0.2 mM) for 3 h, 24 h and 7 days. Accordingly, higher Al accumulation in the roots and lower Al translocation to the shoots were found in ryegrass exposed to both stresses. Aluminum toxicity and P limitation did not change the OA exudation pattern exhibited by roots. However, an improvement in the root growth traits and P accumulation was found, suggesting an enhancement in Al tolerance and P efficiency under combined Al and low-P stress. Al-responsive genes were highly upregulated by Al stress and P limitation, and also closely related to P utilization efficiency. Overall, our results provide evidence of the specific strategies used by ryegrass to co-adapt to multiple stresses in acid soils.

5.
Front Plant Sci ; 15: 1324608, 2024.
Article de Anglais | MEDLINE | ID: mdl-38645387

RÉSUMÉ

Introduction: Phosphorus (P) deficiency in plants creates a variety of metabolic perturbations that decrease photosynthesis and growth. Phosphorus deficiency is especially challenging for the production of bioenergy feedstock plantation species, such as poplars (Populus spp.), where fertilization may not be practically or economically feasible. While the phenotypic effects of P deficiency are well known, the molecular mechanisms underlying whole-plant and tissue-specific responses to P deficiency, and in particular the responses of commercially valuable hardwoods, are less studied. Methods: We used a multi-tissue and multi-omics approach using transcriptomic, proteomic, and metabolomic analyses of the leaves and roots of black cottonwood (Populus trichocarpa) seedlings grown under P-deficient (5 µM P) and replete (100 µM P) conditions to assess this knowledge gap and to identify potential gene targets for selection for P efficiency. Results: In comparison to seedlings grown at 100 µM P, P-deficient seedlings exhibited reduced dry biomass, altered chlorophyll fluorescence, and reduced tissue P concentrations. In line with these observations, growth, C metabolism, and photosynthesis pathways were downregulated in the transcriptome of the P-deficient plants. Additionally, we found evidence of strong lipid remodeling in the leaves. Metabolomic data showed that the roots of P-deficient plants had a greater relative abundance of phosphate ion, which may reflect extensive degradation of P-rich metabolites in plants exposed to long-term P-deficiency. With the notable exception of the KEGG pathway for Starch and Sucrose Metabolism (map00500), the responses of the transcriptome and the metabolome to P deficiency were consistent with one another. No significant changes in the proteome were detected in response to P deficiency. Discussion and conclusion: Collectively, our multi-omic and multi-tissue approach enabled the identification of important metabolic and regulatory pathways regulated across tissues at the molecular level that will be important avenues to further evaluate for P efficiency. These included stress-mediating systems associated with reactive oxygen species maintenance, lipid remodeling within tissues, and systems involved in P scavenging from the rhizosphere.

6.
J Proteome Res ; 23(8): 3108-3123, 2024 Aug 02.
Article de Anglais | MEDLINE | ID: mdl-38648199

RÉSUMÉ

The expansion of agriculture and the need for sustainable practices drives breeders to develop plant varieties better adapted to abiotic stress such as nutrient deficiency, which negatively impacts yields. Phosphorus (P) is crucial for photosynthesis and plant growth, but its availability in the soil is often limited, hampering crop development. In this study, we examined the response of two popcorn inbred lines, L80 and P7, which have been characterized previously as P-use inefficient and P-use efficient, respectively, under low (stress) and high P (control) availability. Physiological measurements, proteomic analysis, and metabolite assays were performed to unravel the physiological and molecular responses associated with the efficient use of P in popcorn. We observed significant differences in protein abundances in response to the P supply between the two inbred lines. A total of 421 differentially expressed proteins (DEPs) were observed in L80 and 436 DEPs in P7. These proteins were involved in photosynthesis, protein biosynthesis, biosynthesis of secondary metabolites, and energy metabolism. In addition, flavonoids accumulated in higher abundance in P7. Our results help us understand the major components of P utilization in popcorn, providing new insights for popcorn molecular breeding programs.


Sujet(s)
Phosphore , Photosynthèse , Protéines végétales , Protéomique , Zea mays , Phosphore/métabolisme , Zea mays/métabolisme , Zea mays/génétique , Zea mays/croissance et développement , Protéomique/méthodes , Protéines végétales/métabolisme , Protéines végétales/génétique , Régulation de l'expression des gènes végétaux , Stress physiologique , Flavonoïdes/métabolisme , Protéome/métabolisme
7.
Int J Mol Sci ; 25(3)2024 Feb 01.
Article de Anglais | MEDLINE | ID: mdl-38339080

RÉSUMÉ

Nitrogen fixation, occurring through the symbiotic relationship between legumes and rhizobia in root nodules, is crucial in sustainable agriculture. Nodulation and soybean production are influenced by low levels of phosphorus stress. In this study, we discovered a MADS transcription factor, GmAGL82, which is preferentially expressed in nodules and displays significantly increased expression under conditions of phosphate (Pi) deficiency. The overexpression of GmAGL82 in composite transgenic plants resulted in an increased number of nodules, higher fresh weight, and enhanced soluble Pi concentration, which subsequently increased the nitrogen content, phosphorus content, and overall growth of soybean plants. Additionally, transcriptome analysis revealed that the overexpression of GmAGL82 significantly upregulated the expression of genes associated with nodule growth, such as GmENOD100, GmHSP17.1, GmHSP17.9, GmSPX5, and GmPIN9d. Based on these findings, we concluded that GmAGL82 likely participates in the phosphorus signaling pathway and positively regulates nodulation in soybeans. The findings of this research may lay the theoretical groundwork for further studies and candidate gene resources for the genetic improvement of nutrient-efficient soybean varieties in acidic soils.


Sujet(s)
Phosphore , Nodulation racinaire , Phosphore/métabolisme , Nodulation racinaire/génétique , Nodules racinaires de plante/métabolisme , Glycine max/génétique , Fixation de l'azote/génétique , Symbiose , Régulation de l'expression des gènes végétaux , Protéines végétales/génétique , Protéines végétales/métabolisme
8.
J Environ Manage ; 351: 119759, 2024 Feb.
Article de Anglais | MEDLINE | ID: mdl-38091729

RÉSUMÉ

While it is widely recognized that hydrogen sulfide (H2S) promotes plant stress tolerance, the precise processes through which H2S modulates this process remains unclear. The processes by which H2S promotes phosphorus deficiency (PD) and salinity stress (SS) tolerance, simulated individually or together, were examined in this study. The adverse impacts on plant biomass, total chlorophyll and chlorophyll fluorescence were more pronounced with joint occurrence of PD and SS than with individual application. Malondialdehyde (MDA), hydrogen peroxide (H2O2), and electrolyte leakage (EL) levels in plant leaves were higher in plants exposed to joint stresses than in plants grown under an individual stress. When plants were exposed to a single stress as opposed to both stressors, sodium hydrosulfide (NaHS) treatment more efficiently decreased EL, MDA, and H2O2 concentrations. Superoxide dismutase, peroxidase, glutathione reductase and ascorbate peroxidase activities were increased by SS alone or in conjunction with PD, whereas catalase activity decreased significantly. The favorable impact of NaHS on all the evaluated attributes was reversed by supplementation with 0.2 mM hypotaurine (HT), a H2S scavenger. Overall, the unfavorable effects caused to NaHS-supplied plants by a single stress were less severe compared with those caused by the combined administration of both stressors.


Sujet(s)
Capsicum , Sulfure d'hydrogène , Sulfures , Sulfure d'hydrogène/pharmacologie , Peroxyde d'hydrogène , Antioxydants , Chlorophylle , Compléments alimentaires , Phosphates , Plant
9.
Planta ; 259(1): 29, 2023 Dec 22.
Article de Anglais | MEDLINE | ID: mdl-38133691

RÉSUMÉ

MAIN CONCLUSION: Different lupin species exhibited varied biomass, P allocation, and physiological responses to P-deprivation. White and yellow lupins had higher carboxylate exudation rates, while blue lupin showed the highest phosphatase activity. White lupin (Lupinus albus) can produce specialized root structures, called cluster roots, which are adapted to low-phosphorus (P) soil. Blue lupin (L. angustifolius) and yellow lupin (L. luteus), which are two close relatives of white lupin, do not produce cluster roots. This study characterized plant responses to nutrient limitation by analyzing biomass accumulation and P distribution, absorption kinetics and root exudation in white, blue, and yellow lupins. Plants were grown in hydroponic culture with (64 µM NaH2PO4) or without P for 31 days. Under P limitation, more biomass was allocated to roots to improve P absorption. Furthermore, the relative growth rate of blue lupin showed the strongest inhibition. Under + P conditions, the plant total-P contents of blue lupin and yellow lupin were higher than that of white lupin. To elucidate the responses of lupins via the perspective of absorption kinetics and secretion analysis, blue and yellow lupins were confirmed to have stronger affinity and absorption capacity for orthophosphate after P-deprivation cultivation, whereas white lupin and yellow lupin had greater ability to secrete organic acids. The exudation of blue lupin had higher acid phosphatase activity. This study elucidated that blue lupin was more sensitive to P-scarcity stress and yellow had the greater tolerance of P-deficient condition than either of the other two lupin species. The three lupin species have evolved different adaptation strategies to cope with P deficiency.


Sujet(s)
Lupinus , Phosphore alimentaire , Phosphore , Phosphates , Acides carboxyliques , Racines de plante
10.
Harmful Algae ; 129: 102532, 2023 11.
Article de Anglais | MEDLINE | ID: mdl-37951614

RÉSUMÉ

Polyphosphate (polyP) has long been recognized as a crucial intracellular reservoir for phosphorus in microorganisms. However, the dynamics of polyP and its regulatory mechanism in eukaryotic phytoplankton in response to variations in external phosphorus conditions remain poorly understood. A comprehensive investigation was conducted to examine the intracellular polyP-associated metabolic response of the dinoflagellate Karenia mikimotoi, a harmful algal bloom species, through integrated physiological, biochemical, and transcriptional analyses under varying external phosphorus conditions. Comparable growth curves and Fv/Fm between phosphorus-replete conditions and phosphorus-depleted conditions suggested that K. mikimotoi has a strong capability to mobilize the intracellular phosphorus pool for growth under phosphorus deficiency. Intracellular phosphate (IPi) and polyP contributed approximately 6-23 % and 1-3 %, respectively, to the overall particulate phosphorus (PP) content under different phosphorus conditions. The significant decrease in PP and increase in polyP:PP suggested that cellular phosphorus components other than polyP are preferred for utilization under phosphorus deficiency. Genes involved in polyP synthesis and hydrolysis were upregulated to maintain phosphorus homeostasis in K. mikimotoi. These findings provide novel insights into the specific cellular strategies for phosphorus storage and the transcriptional response in intracellular polyP metabolism in K. mikimotoi. Additionally, these results also indicate that polyP may not play a crucial role in cellular phosphorus storage in phytoplankton, at least in dinoflagellates.


Sujet(s)
Dinoflagellida , Dinoflagellida/génétique , Phosphore , Polyphosphates , Prolifération d'algues nuisibles , Phytoplancton , Expression des gènes
11.
Plants (Basel) ; 12(21)2023 Nov 02.
Article de Anglais | MEDLINE | ID: mdl-37960107

RÉSUMÉ

Centipedegrass (Eremochloa ophiuroides (Munro.) Hack.) is a species originating in China and is an excellent warm-season turfgrass. As a native species in southern China, it is naturally distributed in the phosphorus-deficient and aluminum-toxic acid soil areas. It is important to research the molecular mechanism of centipedegrass responses to phosphorus-deficiency and/or aluminum-toxicity stress. Quantitative Real-Time PCR (qRT-PCR) is a common method for gene expression analysis, and the accuracy of qRT-PCR results depends heavily on the stability of internal reference genes. However, there are still no reported stable and effective reference genes for qRT-PCR analysis of target genes under the acid-soil-related stresses in different organs of centipedegrass. For scientific rigor, the gene used as a reference for any plant species and/or any stress conditions should be first systematically screened and evaluated. This study is the first to provide a group of reliable reference genes to quantify the expression levels of functional genes of Eremochloa ophiuroides under multiple stresses of P deficiency and/or aluminum toxicity. In this study, centipedegrass seedlings of the acid-soil-resistant strain 'E041' and acid-soil-sensitive strain 'E089' were used for qRT-PCR analysis. A total of 11 candidate reference genes (ACT, TUB, GAPDH, TIP41, CACS, HNR, EP, EF1α, EIF4α, PP2A and actin) were detected by qRT-PCR technology, and the stability of candidate genes was evaluated with the combination of four internal stability analysis software programs. The candidate reference genes exhibited differential stability of expression in roots, stems and leaves under phosphorus-deficiency and/or aluminum-toxicity stress. On the whole, the results showed that GAPDH, TIP41 and HNR were the most stable in the total of samples. In addition, for different tissues under various stresses, the selected reference genes were also different. CACS and PP2A were identified as two stable reference genes in roots through all three stress treatments (phosphate deficiency, aluminum toxicity, and the multiple stress treatment of aluminum toxicity and phosphate deficiency). Moreover, CACS was also stable as a reference gene in roots under each treatment (phosphate deficiency, aluminum toxicity, or multiple stresses of aluminum toxicity and phosphate deficiency). In stems under all three stress treatments, GAPDH and EIF4α were the most stable reference genes; for leaves, PP2A and TIP41 showed the two highest rankings in all three stress treatments. Finally, qRT-PCR analysis of the expression patterns of the target gene ALMT1 was performed to verify the selected reference genes. The application of the reference genes identified as internal controls for qRT-PCR analysis will enable accurate analysis of the target gene expression levels and expression patterns in centipedegrass under acid-soil-related stresses.

12.
Metallomics ; 15(12)2023 12 09.
Article de Anglais | MEDLINE | ID: mdl-37994650

RÉSUMÉ

The molecular mechanism of aluminum toxicity in biological systems is not completely understood. Saccharomyces cerevisiae is one of the most used model organisms in the study of environmental metal toxicity. Using an unbiased metallomic approach in yeast, we found that aluminum treatment caused phosphorus deprivation, and the lack of phosphorus increased as the pH of the environment decreased compared to the control strain. By screening the phosphate signaling and response pathway (PHO pathway) in yeast with the synthetic lethality of a new phosphorus-restricted aluminum-sensitive gene, we observed that pho84Δ mutation conferred severe growth defect to aluminum under low-phosphorus conditions, and the addition of phosphate alleviated this sensitivity. Subsequently, the data showed that PHO84 determined the intracellular aluminum-induced phosphorus deficiency, and the expression of PHO84 was positively correlated with aluminum stress, which was mediated by phosphorus through the coordinated regulation of PHO4/PHO2. Moreover, aluminum reduced phosphorus absorption and inhibited tobacco plant growth in acidic media. In addition, the high-affinity phosphate transporter NtPT1 in tobacco exhibited similar effects to PHO84, and overexpression of NtPT1 conferred aluminum resistance in yeast cells. Taken together, positive feedback regulation of the PHO pathway centered on the high-affinity phosphate transporters is a highly conservative mechanism in response to aluminum toxicity. The results may provide a basis for aluminum-resistant microorganisms or plant engineering and acidic soil treatment.


Sujet(s)
Phosphore alimentaire , Protéines de Saccharomyces cerevisiae , Saccharomyces cerevisiae/génétique , Saccharomyces cerevisiae/métabolisme , Nicotiana/génétique , Protéines de Saccharomyces cerevisiae/génétique , Protéines de Saccharomyces cerevisiae/métabolisme , Aluminium/toxicité , Aluminium/métabolisme , Phosphore alimentaire/métabolisme , Phosphore , Symporteurs des ions proton-phosphate/génétique , Symporteurs des ions proton-phosphate/métabolisme , Phosphates/métabolisme , Protéines à homéodomaine/métabolisme
13.
Metabolites ; 13(10)2023 Oct 13.
Article de Anglais | MEDLINE | ID: mdl-37887403

RÉSUMÉ

Phosphorus (P) is an important nutritional element needed by plants. Roots obtain P as inorganic phosphate (Pi), mostly in H2PO-4 form. It is vital for plants to have a sufficient supply of Pi since it participates in important processes like photosynthesis, energy transfer, and protein activation, among others. The physicochemical properties and the organic material usually make Pi bioavailability in soil low, causing crops and undomesticated plants to experience variations in accessibility or even a persistent phosphate limitation. In this study, transcriptome data from pepper roots under low-Pi stress was analyzed in order to identify Pi starvation-responsive genes and their relationship with metabolic pathways and functions. Transcriptome data were obtained from pepper roots with Pi deficiency by RNASeq and analyzed with bioinformatic tools. A total of 97 differentially expressed genes (DEGs) were identified; Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment revealed that metabolic pathways, such as porphyrin and chlorophyll metabolism, were down-regulated, and galactose and fatty acid metabolism were up-regulated. The results indicate that bell pepper follows diverse processes related to low Pi tolerance regulation, such as the remobilization of internal Pi, alternative metabolic pathways to generate energy, and regulators of root development.

14.
Plants (Basel) ; 12(20)2023 Oct 15.
Article de Anglais | MEDLINE | ID: mdl-37896043

RÉSUMÉ

The study is aimed at revealing the effects of Rhizophagus irregularis inoculation on the transcriptome of Medicago lupulina leaves at the early (second leaf formation) and later (flowering) stages of plant development. A pot experiment was conducted under conditions of low phosphorus (P) level in the substrate. M. lupulina plants were characterized by high mycorrhizal growth response and mycorrhization parameters. Library sequencing was performed on the Illumina HiseqXTen platform. Significant changes in the expression of 4863 (padj < 0.01) genes from 34049 functionally annotated genes were shown by Massive Analysis of cDNA Ends (MACE-Seq). GO enrichment analysis using the Kolmogorov-Smirnov test was performed, and 244 functional GO groups were identified, including genes contributing to the development of effective AM symbiosis. The Mercator online tool was used to assign functional classes of differentially expressed genes (DEGs). The early stage was characterized by the presence of six functional classes that included only upregulated GO groups, such as genes of carbohydrate metabolism, cellular respiration, nutrient uptake, photosynthesis, protein biosynthesis, and solute transport. At the later stage (flowering), the number of stimulated GO groups was reduced to photosynthesis and protein biosynthesis. All DEGs of the GO:0016036 group were downregulated because AM plants had higher resistance to phosphate starvation. For the first time, the upregulation of genes encoding thioredoxin in AM plant leaves was shown. It was supposed to reduce ROS level and thus, consequently, enhance the mechanisms of antioxidant protection in M. lupulina plants under conditions of low phosphorus level. Taken together, the obtained results indicate genes that are the most important for the effective symbiosis with M. lupulina and might be engaged in other plant species.

15.
Sci Total Environ ; 903: 166832, 2023 Dec 10.
Article de Anglais | MEDLINE | ID: mdl-37673240

RÉSUMÉ

The surplus of nitrogen plays a key role in the maintenance of cyanobacterial bloom when phosphorus has already been limited. However, the interplay between high nitrogen and low phosphorus conditions is not fully understood. Nitrogen metabolism is critical for the metabolism of cyanobacteria. Transcriptomic analysis in the present study suggested that nitrogen metabolism and ribosome biogenesis were the two most significantly changed pathways in long-term phosphorus-starved bloom-forming cyanobacteria Microcystis aeruginosa FACHB-905. Notably, the primary glutamine synthetase/glutamate synthase cycle, crucial for nitrogen metabolism, was significantly downregulated. Concurrently, nitrogen uptake showed a marked decrease due to reduced expression of nitrogen source transporters. The content of intracellular nitrogen reservoir phycocyanin also showed a drastic decrease upon phosphorus starvation. Our study demonstrated that long-term phosphorus-starved cells also suffered from nitrogen deficiency because of the reduction in nitrogen assimilation, which might be limited by the reduced ribosome biogenesis and the shortage of adenosine triphosphate. External nitrogen supply will not change the transcriptions of nitrogen metabolism-related genes significantly like that under phosphorus-rich conditions, but still help to maintain the survival of phosphorus-starved cells. The study deepens our understanding about the survival strategies of Microcystis cells under phosphorus starvation and the mutual dependence between nitrogen and phosphorus, which would provide valuable information for nutrient management in the eutrophicated water body.

16.
Plant Physiol Biochem ; 203: 108006, 2023 Oct.
Article de Anglais | MEDLINE | ID: mdl-37696192

RÉSUMÉ

Phosphorus (P) plays a crucial role in plant growth. Insufficient availability of inorganic phosphate (Pi) can significantly impact crop yields. To address this, we previously developed transgenic rice expressing the low polyphosphate kinase gene (ppk) - known as ETRS - to enhance the efficiency of P resource utilization. Previous studies have shown that ETRS thrives and presents high yields in the low P culture. ETRS and wild-type rice (WT) were cultivated to the heading stage at 15 µM of P in the low P (LP) culture and 300 µM of P in the normal culture (CK) to identify the molecular pathways behind low P tolerance. Our findings revealed that polyphosphate (polyP) significantly enhanced the growth performance of ETRS in the LP culture. This enhanced tolerance can be attributed to polyP's capacity to mitigate oxidative damage induced by LP. This was evidenced by the reduction in levels of superoxide radicals, hydrogen peroxide, and malondialdehyde. PolyP also improved the antioxidant capacity of ETRS under LP stress by regulating enzymatic antioxidants viz., superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), as well as non-enzymatic antioxidants such as ascorbate (AsA) and glutathione (GSH). In addition, transcriptomics analysis suggested that polyP synthesis positively promoted the expressions of SOD, POD, and CAT related genes and played an active role in regulating the expression of AsA-GSH cycle system related genes in ETRS in the LP culture. These results strongly support the notion that polyP within ETRS mitigates oxidative damage through enhancement of the antioxidant system, ultimately bolstering tolerance to LP conditions.

17.
Plants (Basel) ; 12(15)2023 Aug 03.
Article de Anglais | MEDLINE | ID: mdl-37571014

RÉSUMÉ

Phosphorus (P), an essential macronutrient, plays a pivotal role in the growth and development of plants. However, the limited availability of phosphorus in soil presents significant challenges for crop productivity, especially when plants are subjected to abiotic stresses such as drought, salinity and extreme temperatures. Unraveling the intricate mechanisms through which phosphorus participates in the physiological responses of plants to abiotic stresses is essential to ensure the sustainability of agricultural production systems. This review aims to analyze the influence of phosphorus supply on various aspects of plant growth and plant development under hostile environmental conditions, with a special emphasis on stomatal development and operation. Furthermore, we discuss recently discovered genes associated with P-dependent stress regulation and evaluate the feasibility of implementing P-based agricultural practices to mitigate the adverse effects of abiotic stress. Our objective is to provide molecular and physiological insights into the role of P in regulating plants' tolerance to abiotic stresses, underscoring the significance of efficient P use strategies for agricultural sustainability. The potential benefits and limitations of P-based strategies and future research directions are also discussed.

18.
Gene ; 884: 147695, 2023 Oct 30.
Article de Anglais | MEDLINE | ID: mdl-37549856

RÉSUMÉ

The planktonic diatom Chaetoceros tenuissimus sometimes forms blooms in coastal surface waters where dissolved inorganic phosphorus (P) is typically deficient. To understand the molecular mechanisms for survival under P-deficient conditions, we compared whole transcripts and metabolites with P-sufficient conditions using stationary growth cells. Under P-deficient conditions, cell numbers and photosynthetic activities decreased as cells entered the stationary growth phase, with downregulation of transcripts related to the Calvin cycle and glycolysis/gluconeogenesis. Therefore, metabolites varied across nutritional conditions. Alkaline phosphatase, phosphodiesterase, phytase, phosphate transporter, and transcription factor genes were drastically upregulated under dissolved inorganic P deficiency. Genes related to phospholipid degradation and nonphospholipid synthesis were also upregulated. These results indicate that C. tenuissimus rearranges its membrane composition from phospholipids to nonphospholipids to conserve phosphate. To endure in P-deficient conditions, C. tenuissimus modifies its gene responses, suggesting a potential survival strategy in nature.


Sujet(s)
Diatomées , Diatomées/génétique , Photosynthèse , Plancton , Phosphates/métabolisme , Phosphore/métabolisme
19.
Front Plant Sci ; 14: 1203924, 2023.
Article de Anglais | MEDLINE | ID: mdl-37496859

RÉSUMÉ

Introduction: The drought and phosphorus deficiency have inevitably become environmental issues globally in the future. The analysis of plants functional trait variation and response strategies under the stress of phosphorus deficiency and drought is important to explore their ability to respond to potential ecological stress. Methods: In this study, Carex breviculmis was selected as the research object, and a 14-week pot experiment was conducted in a greenhouse, with two phosphorus treatment (add 0.5mmol/L or 0.05µmol/L phosphorus) and four drought treatment (add 0-5%PEG6000), totaling eight treatments. Biomass allocation characteristics, leaf anatomical characteristics, biochemical parameters, root morphology, chemical element content, and photosynthetic parameters were measured. Results: The results showed that the anatomical characteristics, chemical elements, and photosynthetic parameters of Carex breviculmis responded more significantly to main effect of phosphorus deficiency. Stomatal width, leaf phosphorus content and maximum net photosynthetic rate decreased by 11.38%, 59.39%, 38.18% significantly (p<0.05), while the change in biomass was not significant (p>0.05). Biomass allocation characteristics and root morphology responded more significantly to main effect of drought. Severe drought significantly decreased leaf fresh weight by 61% and increased root shoot ratio by 223.3% compared to the control group (p<0.05). The combined effect of severe drought and phosphorus deficiency produced the highest leaf N/P ratio (291.1% of the control) and MDA concentration (243.6% of the control). Correlation analysis and redundancy analysis showed that the contributions of phosphorus and drought to functional trait variation were similar. Lower epidermal cell thickness was positively correlated with maximum net photosynthetic rate, leaf phosphorus, chlorophyll ab, and leaf fresh weight (p<0.05). Discussion: In terms of response strategy, Carex breviculmis was affected at the microscopic level under phosphorus deficiency stress, but could maintain the aboveground and underground biomass well through a series of mechanisms. When affected by drought, it adopted the strategy of reducing leaf yield and improving root efficiency to maintain life activities. Carex breviculmis could maintain its traits well under low phosphorus and moderate drought, or better conditions. So it may have good ecological service potential in corresponding areas if promoted. This study also provided a reference for plant response to combined drought and phosphorus deficiency stresses.

20.
Front Plant Sci ; 14: 1082496, 2023.
Article de Anglais | MEDLINE | ID: mdl-37304714

RÉSUMÉ

Camellia oleifera Abel. is an economically important woody edible-oil species that is mainly cultivated in hilly areas of South China. The phosphorus (P) deficiency in the acidic soils poses severe challenges for the growth and productivity of C. oleifera. WRKY transcription factors (TFs) have been proven to play important roles in biological processes and plant responses to various biotic/abiotic stresses, including P deficiency tolerance. In this study, 89 WRKY proteins with conserved domain were identified from the C. oleifera diploid genome and divided into three groups, with group II further classified into five subgroups based on the phylogenetic relationships. WRKY variants and mutations were detected in the gene structure and conserved motifs of CoWRKYs. Segmental duplication events were considered as the primary driver in the expanding process of WRKY gene family in C. oleifera. Based on transcriptomic analysis of two C. oleifera varieties characterized with different P deficiency tolerances, 32 CoWRKY genes exhibited divergent expression patterns in response to P deficiency stress. qRT-PCR analysis demonstrated that CoWRKY11, -14, -20, -29 and -56 had higher positive impact on P-efficient CL40 variety compared with P-inefficient CL3 variety. Similar expression trends of these CoWRKY genes were further observed under P deficiency with longer treatment period of 120d. The result indicated the expression sensitivity of CoWRKYs on the P-efficient variety and the C. oleifera cultivar specificity on the P deficiency tolerance. Tissue expression difference showed CoWRKYs may play a crucial role in the transportation and recycling P in leaves by affecting diverse metabolic pathways. The available evidences in the study conclusively shed light on the evolution of the CoWRKY genes in C. oleifera genome and provided a valuable resource for further investigation of functional characterization of WRKY genes involved to enhance the P deficiency tolerance in C. oleifera.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE