Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 15 de 15
Filtrer
Plus de filtres











Gamme d'année
1.
Materials (Basel) ; 17(4)2024 Feb 08.
Article de Anglais | MEDLINE | ID: mdl-38399069

RÉSUMÉ

Blast furnace dust waste (BFDW) proved efficient as a photocatalyst for the decolorization of methylene blue (MB) dye in water. Structural analysis unequivocally identified α-Fe2O3 as the predominant phase, constituting approximately 92%, with a porous surface showcasing unique 10-30 nm agglomerated nanoparticles. Chemical and thermal analyses indicated surface-bound water and carbonate molecules, with the main phase's thermal stability up to 900 °C. Electrical conductivity analysis revealed charge transfer resistance values of 616.4 Ω and electrode resistance of 47.8 Ω. The Mott-Schottky analysis identified α-Fe2O3 as an n-type semiconductor with a flat band potential of 0.181 V vs. Ag/AgCl and a donor density of 1.45 × 1015 cm-3. The 2.2 eV optical bandgap and luminescence stem from α-Fe2O3 and weak ferromagnetism arises from structural defects and surface effects. With a 74% photocatalytic efficiency, stable through three photodegradation cycles, BFDW outperforms comparable waste materials in MB degradation mediated by visible light. The elemental trapping experiment exposed hydroxyl radicals (OH•) and superoxide anions (O2-•) as the primary species in the photodegradation process. Consequently, iron oxide-based BFDW emerges as an environmentally friendly alternative for wastewater treatment, underscoring the pivotal role of its unique physical properties in the photocatalytic process.

2.
Polymers (Basel) ; 15(16)2023 Aug 11.
Article de Anglais | MEDLINE | ID: mdl-37631429

RÉSUMÉ

Ethylene is a phytohormone that is responsible of fruit and vegetable ripening. TiO2 has been studied as a possible solution to slowing down unwanted ripening processes, due to its photocatalytic capacity which enables it to remove ethylene. Thus, the objective of this study was to develop nanocomposites based on two types of eco-friendly materials: Mater-Bi® (MB) and poly(lactic acid) (PLA) combined with nano-TiO2 for ethylene removal and to determine their ethylene-removal capacity. First, a physical-chemical characterization of nano-TiO2 of different particle sizes (15, 21, 40 and 100 nm) was done through structural and morphological analysis (DRX, FTIR and TEM). Then, its photocatalytic activity and the ethylene-removal capacity were determined, evaluating the effects of time and the type of light irradiation. With respect to the analysis of TiO2 nanoparticles, the whole samples had an anatase structure. According to the photocatalytic activity, nanoparticles of 21 nm showed the highest activity against ethylene (~73%). The results also showed significant differences in ethylene-removal activity when comparing particle size and type and radiation time. Thus, 21 nm nano-TiO2 was used to produce nanocomposites through the melt-extrusion process to simulate industrial processing conditions. With respect to the nanocomposites' ethylene-removing properties, there were significant differences between TiO2 concentrations, with samples with 5% of active showed the highest activity (~57%). The results obtained are promising and new studies are needed to focus on changes in material format and the evaluation in ethylene-sensitive fruits.

3.
Materials (Basel) ; 16(13)2023 Jun 21.
Article de Anglais | MEDLINE | ID: mdl-37444826

RÉSUMÉ

Composites of Ag and TiO2 nanoparticles were synthesized in situ on cotton fabrics using sonochemical and solvothermal methods achieving the successive formation of Ag-NPs and Ti-NPs directly on the fabric. The impregnated fabrics were characterized using ATR-FTIR spectroscopy; high-resolution microscopy (HREM); scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy (SEM-EDS); Raman, photoluminescence, UV-Vis, and DRS spectroscopies; and by tensile tension tests. Results showed the successful formation and impregnation of NPs on the cotton fabric, with negligible leaching of NPs after several washing cycles. The photocatalytic activity of supported NPs was assessed by the degradation of methyl blue dye (MB) under solar and UV irradiation revealing improved photocatalytic activity of the Ag-TiO2/cotton composites due to a synergy of both Ag and TiO2 nanoparticles. This behavior is attributed to a diminished electron-hole recombination effect in the Ag-TiO2/cotton samples. The biocide activity of these composites on the growth inhibition of Staphylococcus aureus (Gram+) and Escherichia coli (Gram-) was confirmed, revealing interesting possibilities for the utilization of the functionalized cotton fabric as protective cloth for medical applications.

4.
Nanomaterials (Basel) ; 13(5)2023 Mar 04.
Article de Anglais | MEDLINE | ID: mdl-36903813

RÉSUMÉ

The use of sulfidogenic bioreactors is a biotechnology trend to recover valuable metals such as copper and zinc as sulfide biominerals from mine-impacted waters. In the present work, ZnS nanoparticles were produced using "green" H2S gas generated by a sulfidogenic bioreactor. ZnS nanoparticles were physico-chemically characterized by UV-vis and fluorescence spectroscopy, TEM, XRD and XPS. The experimental results showed spherical-like shape nanoparticles with principal zinc-blende crystalline structure, a semiconductor character with an optical band gap around 3.73 eV, and fluorescence emission in the UV-visible range. In addition, the photocatalytic activity on the degradation of organic dyes in water, as well as bactericidal properties against several bacterial strains, were studied. ZnS nanoparticles were able to degrade methylene blue and rhodamine in water under UV radiation, and also showed high antibacterial activity against different bacterial strains including Escherichia coli and Staphylococcus aureus. The results open the way to obtain valorous ZnS nanoparticles from the use of dissimilatory reduction of sulfate using a sulfidogenic bioreactor.

5.
Materials (Basel) ; 17(1)2023 Dec 29.
Article de Anglais | MEDLINE | ID: mdl-38204042

RÉSUMÉ

In this study, the photocatalytic activity of coating mortars with synthetized and commercial TiO2 nanoparticles added has been evaluated at 2, 3 and 5% by weight of cement by calculating the degradation efficiency of methyl orange and red wine dyes exposed to both visible-light and UV radiation; also, the self-cleaning effect of coatings exposed to weather conditions (warm sub-humid climate) was assessed. TiO2 nanoparticles were synthesized via the sol-gel method to a low synthesis temperature and characterized via X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM). The results show synthesized TiO2 particles in anatase phase with a crystallite size of 14.69 nm, and hemispherical particles with sizes of submicron order. The addition percentage with the best performance in the coating mortars was 3%, with both commercial and synthesized TiO2; however, coating mortars with synthesized TiO2 exhibited the highest degradation efficiency for both dyes when they were exposed to visible light, while mortars with commercial TiO2 exhibited the highest degradation efficiency when exposed to UV radiation. In addition, in coating mortars with synthesized TiO2, the self-cleaning effect was evident from the beginning of exposure to weather, reaching the largest dye-free surface at the end of exposure. The compressive strength increased significantly in mortars with TiO2 addition.

6.
Nanomaterials (Basel) ; 12(19)2022 Sep 23.
Article de Anglais | MEDLINE | ID: mdl-36234445

RÉSUMÉ

Size and morphology control during the synthesis of materials requires a molecular-level understanding of how the addition of surface ligands regulates nucleation and growth. In this work, this control is achieved by using three carboxylic acids (tartaric, benzoic, and citric) during sonochemical syntheses. The presence of carboxylic acids affects the kinetics of the nucleation process, alters the growth rate, and governs the size and morphology. Samples synthesized with citric acid revealed excellent photocatalytic activity for the degradation process of Rhodamine B, and recyclability experiments demonstrate that it retains 91% of its photocatalytic activity after four recycles. Scavenger experiments indicate that both the hydroxyl radical and the hole are key species for the success of the transformation. A reaction pathway is proposed that involves a series of dissolution-hydration-dehydration and precipitation processes, mediated by the complexation of Ag+. We believe these studies contribute to a fundamental understanding of the crystallization process and provide guidance as to how carboxylic acids can influence the synthesis of materials with controlled size and morphology, which is promising for multiple other scientific fields, such as sensor and catalysis fields.

7.
Nanomaterials (Basel) ; 12(16)2022 Aug 22.
Article de Anglais | MEDLINE | ID: mdl-36014752

RÉSUMÉ

ZnO nanocrystals with three different morphologies have been synthesized via a simple sol-gel-based method using Brosimum parinarioides (bitter Amapá) and Parahancornia amapa (sweet Amapá) latex as chelating agents. X-ray diffraction (XRD) and electron diffraction patterns (SAED) patterns showed the ZnO nanocrystals were a pure hexagonal wurtzite phase of ZnO. XRD-based spherical harmonics predictions and HRTEM images depicted that the nanocrystallites constitute pitanga-like (~15.8 nm), teetotum-like (~16.8 nm), and cambuci-like (~22.2 nm) shapes for the samples synthesized using bitter Amapá, sweet Amapá, and bitter/sweet Amapá chelating agent, respectively. The band gap luminescence was observed at ~2.67-2.79 eV along with several structural defect-related, blue emissions at 468-474 nm (VO, VZn, Zni), green emissions positioned at 513.89-515.89 (h-VO+), and orange emission at 600.78 nm (VO+-VO++). The best MB dye removal efficiency (85%) was mainly ascribed to the unique shape and oxygen vacancy defects found in the teetotum-like ZnO nanocrystals. Thus, the bitter Amapá and sweet Amapá latex are effective chelating agents for synthesizing distinctive-shaped ZnO nanocrystals with highly defective and remarkable photocatalytic activity.

8.
Int J Mol Sci ; 23(7)2022 Apr 04.
Article de Anglais | MEDLINE | ID: mdl-35409363

RÉSUMÉ

The desire to harness solar energy to address current global environmental problems led us to investigate two-dimensional (2D) core-shell hybrid photocatalysts in the form of a 2D-TiO2-surfactant, mainly composed of fatty acids. The bulk products, prepared by two slightly different methods, consist of stacked host-guest hybrid sheets held together by van der Waals forces between alkyl carboxylate moieties, favoring the synergistic conjugation of the photophysical properties of the core and the hydrophobicity of the self-assembled surfactant monolayer of the shell. X-ray diffraction and the vibrational characteristics of the products revealed the influence of synthesis strategies on two types of supramolecular aggregates that differ in the core chemical structure, guest conformers of alkyl surfactant tails and type, and the bilayer and monolayer of the structure of nanocomposites. The singular ability of the TiO2 core to anchor carboxylate leads to commensurate hybrids, in contrast to both layered clay and layered double-hydroxide-based ion exchangers which have been previously reported, making them potentially interesting for modeling the role of fatty acids and lipids in bio-systems. The optical properties and photocatalytic activity of the products, mainly in composites with smaller bandgap semiconductors, are qualitatively similar to those of nanostructured TiO2 but improve their photoresponse due to bandgap shifts and the extreme aspect-ratio characteristics of two-dimensional TiO2 confinement. These results could be seen as a proof-of-concept of the potential of these materials to create custom-designed 2D-TiO2-surfactant supramolecular photocatalysts.


Sujet(s)
Nanocomposites , Tensioactifs , Catalyse , Acides gras , Nanocomposites/composition chimique , Titane/composition chimique
9.
Environ Sci Pollut Res Int ; 29(3): 3794-3807, 2022 Jan.
Article de Anglais | MEDLINE | ID: mdl-34396477

RÉSUMÉ

The pollution of wastewater with dyes has become a serious environmental problem around the world. In this context, the work aims to synthesize and characterize a supported nanocatalyst (NZ-180) from rice husk (RH) and alum sludge (AS) incorporating silver (AgNPs@NZ-180) and titanium nanoparticles (TiNPs@NZ-180) for Rhodamine B (RhB) dye degradation, under UV and visible irradiation. Central rotatable composite design (CRCD) was used to determine ideal conditions, using nanocatalyst and dye concentration such as input variables and degradation percentage like response variable. Samples were characterized by XRD, SEM-EDS, N2 porosimetry, DLS, and zeta potential analyses. TiNPs@NZ-180 showed the best photocatalytic activity (62.62 and 50.82% under UV and visible irradiation, respectively). Specific surface area has increased from 35.90 to 418.90 m2 g-1 for NZ-180 and TiNPs@NZ-180, respectively. Photocatalytic performance of TiNPs@NZ-180 has reduced to 8 and 10% after 5 cycles under UV and visible light irradiation. Ideal conditions found by CRCD were 2.75 g L-1 and 20 mg L-1 for nanocatalyst and RhB concentrations, respectively. Therefore, (agro)industrial waste present such an alternative material for application in the removal of wastewater with dyes, which helps in the reduction of the impact of chemicals/pollutants on human and animal health.


Sujet(s)
Déchets industriels , Argent , Animaux , Catalyse , Agents colorants , Humains , Lumière , Titane , Eaux usées
10.
Environ Sci Pollut Res Int ; 28(21): 27147-27161, 2021 Jun.
Article de Anglais | MEDLINE | ID: mdl-33502707

RÉSUMÉ

This study reports the preparation of TiO2 and CeO2 doped with different quantities of terbium and discusses the influence of this dopant on the photocatalytic activity of the semiconductors, with respect to the degradation of methylene blue, under ultraviolet and solar radiations. The oxides obtained were characterized by X-ray diffraction, infrared vibrational spectroscopy, diffuse reflectance spectroscopy, scanning electron microscopy, and dispersive energy spectroscopy. The results indicate that the presence of the dopant in TiO2 favored the formation of the anatase crystalline phase to the detriment of rutile, increased the band gap energy, and decreased the size of the nanoparticles. Doping CeO2 with Tb resulted in a fluorite-type crystalline structure, reduced band gap, and smaller particle size. The photocatalytic activity decreases as the concentration of terbium increases regardless of the radiation source and nature of the oxide. Furthermore, a better performance was observed for all semiconductors excited by solar radiation in comparison to ultraviolet light. The samples of pure TiO2 and TiO2 doped with 0.5 and 1% terbium showed total removal of the dye after less than 120 min of reaction, while the samples of pure CeO2 and CeO2 doped with 0.5% terbium showed approximately 80% and 57% of dye removal after 120 min, suggesting that these materials can be promising for the treatment of industrial effluents.


Sujet(s)
Bleu de méthylène , Terbium , Catalyse , Titane
11.
Article de Anglais | MEDLINE | ID: mdl-32163004

RÉSUMÉ

This study aimed to synthesize Bi2Fe4O9 and apply it to the degradation of tartrazine yellow dye. Bi2Fe4O9 was synthesized using the solid-state reaction and the Pechini method. The materials obtained were characterized using X-ray diffraction (XRD), visible ultraviolet spectroscopy (UV-Vis) and field emission scanning electron microscopy (FEG). The microscopic images revealed a morphological difference between the two materials in which the material obtained by the Pechini method is the most porous and have the largest surface area. The pellet obtained by the Pechini method was seen to have a lower bandgap value when compared with the sample solid state reaction. In the photocatalysis tests, the best performance was also that of the material obtained by the Pechini method, with 99.34% degradation, while the material obtained by solid state reaction showed 85.86% in 120 minutes. The solution degraded with the material obtained by the Pechini method presented 81.66% of mineralization while the solution with the material obtained by solid state reaction showed 60.97% of mineralization. The results confirmed that the material obtained by both syntheses is able to maintain its effectiveness after 10 repetitions of the photocatalytic process, proving to be promising for waste treatment in the industrial field.


Sujet(s)
Bismuth/composition chimique , Agents colorants/analyse , Composés du fer III/composition chimique , Tartrazine/analyse , Eaux usées/composition chimique , Polluants chimiques de l'eau/analyse , Purification de l'eau/méthodes , Catalyse , Composés du fer III/synthèse chimique , Microscopie électronique à balayage , Diffraction des rayons X
12.
ACS Appl Mater Interfaces ; 12(1): 914-924, 2020 Jan 08.
Article de Anglais | MEDLINE | ID: mdl-31805231

RÉSUMÉ

Within the most mesmerizing materials in the world of optoelectronics, mixed halide perovskites (MHPs) have been distinguished because of the tunability of their optoelectronic properties, balancing both the light-harvesting efficiency and the charge extraction into highly efficient solar devices. This feature has drawn the attention of analogous hot topics as photocatalysis for carrying out more efficiently the degradation of organic compounds. However, the photo-oxidation ability of perovskite depends not only on its excellent light-harvesting properties but also on the surface chemical environment provided during its synthesis. Accordingly, we studied the role of surface chemical states of MHP-based nanocrystals (NCs) synthesized by hot-injection (H-I) and anion-exchange (A-E) approaches on their photocatalytic (PC) activity for the oxidation of ß-naphthol as a model system. We concluded that iodide vacancies are the main surface chemical states that facilitate the formation of superoxide ions, O2●-, which are responsible for the PC activity in A-E-MHP. Conversely, the PC performance of H-I-MHP is related to the appropriate balance between band gap and a highly oxidizing valence band. This work offers new insights on the surface properties of MHP related to their catalytic activity in photochemical applications.

13.
Ultrason Sonochem ; 48: 340-348, 2018 Nov.
Article de Anglais | MEDLINE | ID: mdl-30080559

RÉSUMÉ

TiO2 is a common inorganic filter used in sunscreens due to its photoprotective effect on the skin against UV radiation. However, the use of this kind of material in cosmetics is limited by its inherent photocatalytic activity. It is known that coating on TiO2 surface can improve some features. Although, many of the methodologies used for this purpose are still laborious and time-consuming. Thus, this work reports a novel, easy, cheap and fast strategy to coat TiO2 particles by using a sonochemistry approach, aiming to decrease photocatalytic activity and to enhance colloidal stability. For this proposal, SiO2, Al2O3, ZrO2 and sodium polyacrylate (PAANa) were used to tune the surface of commercial TiO2 particles and they were applied in a sunscreen formulation. The samples were characterized by XRPD, FT-IR, DLS, EDS, SEM and TEM. The photocatalytic activity and UV-shielding ability were also evaluated. The sunscreen formulations were prepared and characterized by zeta potential, DLS, and Sun Protection Factor (SPF). FT-IR, EDS, and charge surface of the particles confirmed the success of the sonochemistry coating. Additionally, TiO2@Al2O3, TiO2@SiO2 and TiO2@PAANa show a lower photocatalytic activity than original TiO2 with similar UV-shielding ability. The sunscreens produced with the coated TiO2 have similar SPF to the one with commercial TiO2. Specifically, the sunscreen with TiO2@PAANa shows an increase in colloidal stability. Herein, the incorporation of the sonochemical-coated TiO2 particles in sunscreen formulations may produce sunscreens with better aesthetic appearance and a greater health security due to its lower free radicals production.

14.
Rev. cuba. invest. bioméd ; 35(4): 387-402, oct.-dic. 2016. ilus, tab
Article de Espagnol | LILACS | ID: biblio-844946

RÉSUMÉ

La aparición constante de microorganismos multiresistentes (bacterias, virus, hongos), ha elevado el esfuerzo por la búsqueda de materiales antibacterianos, que sean efectivos para su aplicación en áreas tan diversas como la industria textil, alimentación animal, el tratamiento de aguas, industria médica, farmacéutica y cosmética. Es bien conocido que agentes antibacterianos inorgánicos tales como las nanopartículas de plata, de cobre, de óxido de zinc y de óxido de cobre, han atraído una atención especial a lo largo del tiempo, debido a su estabilidad y a que no presentan problemas de bioseguridad. Aun así, recién las nanopartículas de dióxido de titanio han venido ganando atención para aplicaciones biomédicas, dado que estas partículas se vuelven antibacteriales mediante un proceso de fotoactivación y presentan absorción de ciertas longitudes de onda que dependen de su fase inorgánica (anatasa, rutilo o brookita). No obstante, la actividad fotocatalítica del dióxido de titanio oscila en la región UV (ƛ>387nm), y ello ha representado el mayor esfuerzo en investigación, en búsqueda de conseguir que el dióxido de titanio tenga función de autodesinfección en la región de luz visible, aumentándose así sus aplicaciones en la industria biomédica. En este artículo se realizó una revisión crítica de la literatura disponible, sobre el uso de nanopartículas para materiales antibacterianos y aplicaciones del dióxido de titanio, haciéndose énfasis en el mecanismo de acción de estas partículas con sistemas biológicos y posibles modificaciones para mejorar su actividad fotocatalítica mediante la interacción con luz visible.


The constant occurrence of multiresistant microorganisms (bacteria, viruses, fungi) has increased the search for antibacterial materials that may be effective to be applied in various areas such as textile industry, animal feeding, water treatment, medical, drug and cosmetic industry. It is well known that inorganic antibacterial agents as silver, copper, zinc oxide and copper oxide nanoparticles have attired special attention in the course of time due to their stability and the absence of biosafety problems. Despite this, just recently, have the titanium dioxide nanoparticles been gaining more attention for biomedical application, since these particles become antibacterial agents through a process of photo-activation and present absorption of certain wavelengths depending on their inorganic phase (anatase, rutile or brookite). Nevertheless, the photocatalytic activity of the titanium dioxide ranges in the UV zone ((?>387nm), and this has required greater efforts in terms of research, to make the titanium dioxide have the auto-disinfection function in the visible light zone, so as to increase the number of uses in the biomedical industry. This article was aimed at making a critical literature review on the use of nanoparticles for antibacterial materials, and the applications of titanium dioxide, thus making emphasis on the mechanism of action of these particles with the biological systems and the possible changes with a view to improving its photocatalytic activity by means of the interaction with the visible light.

15.
J Hazard Mater ; 263 Pt 1: 84-92, 2013 Dec 15.
Article de Anglais | MEDLINE | ID: mdl-23962799

RÉSUMÉ

The incorporation of aluminum acetylacetonate as alumina source during the gelation of titanium alkoxide reduces the nucleation sites for the formation of large rutile crystals on temperatures ranging from 400 to 800°C. As a result, the aggregation of anatase crystals is prevented at high temperature. A relationship among the specific surface area, pore size, energy band gap, crystalline structure and crystallite size as the most relevant parameters are evaluated and discussed. According to the results for the photocatalytic degradation of 2,4-dichlorophenoxyacetic acid, the specific surface area, pore size, Eg band gap are not determinant in the photocatalytic properties. It was found that the anatase crystallite size is the mores important parameter affecting the degradation efficiency.


Sujet(s)
Acide 2,4-dichlorophénoxy-acétique/composition chimique , Oxyde d'aluminium/effets des radiations , Herbicides/composition chimique , Nanoparticules/effets des radiations , Titane/effets des radiations , Oxyde d'aluminium/composition chimique , Température élevée , Nanoparticules/composition chimique , Photolyse , Semiconducteurs , Titane/composition chimique , Rayons ultraviolets
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE