Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Chem Phys Lipids ; 212: 130-137, 2018 05.
Article de Anglais | MEDLINE | ID: mdl-29409821

RÉSUMÉ

Electron spin echo envelope modulation (ESEEM) and conventional electron paramagnetic resonance (EPR) of site-specifically spin-labelled phospholipids are used to investigate the effect of ether-linked chains on the water-penetration and polarity profiles, as well as the phase behaviour and chain flexibility profiles, of phospholipid membranes. D2O-ESEEM reveals that water exposure of the terminal methyl groups in the interdigitated phase of dihexadecyl phosphatidylcholine (DHPC) is comparable to that of the methylene groups at the polar head-group end of the chains. Similarly, an uniform transmembrane polarity profile is obtained from the dependence of the outer 14N-hyperfine splitting on the spin-label position along the chain in frozen interdigitated DHPC dispersions. Two-component conventional EPR spectra of spin labels at the terminal methyl end of the chain reveal that the intermediate gel phase above the pretransition of DHPC contains components in which the lipid chains are interdigitated. The polarity and chain-flexibility profiles in the fluid Lα-phase of DHPC with ether-linked chains are shifted outwards, towards the polar-apolar interface, as compared with that of dihexadecanoyl phosphatidylcholine (DPPC) with ester-linked chains. Also, the polarity profile of DHPC is shifted upwards, to higher polarities. These differences reflect those in hydrocarbon thickness and area/lipid molecule reported by x-ray diffraction for the Lα-phases of the two lipids.


Sujet(s)
Spectroscopie de résonance de spin électronique , Oxyde de diéthyle/composition chimique , Éther-phospholipides/composition chimique , 1,2-Dipalmitoylphosphatidylcholine/composition chimique , Interactions hydrophobes et hydrophiles , Double couche lipidique/composition chimique , Double couche lipidique/métabolisme , Perméabilité , Transition de phase , Marqueurs de spin , Température
2.
Biochim Biophys Acta ; 1828(11): 2592-608, 2013 Nov.
Article de Anglais | MEDLINE | ID: mdl-23811361

RÉSUMÉ

To gain insight into adaptations of proteins to their membranes, intrinsic hydrophobic thicknesses, distributions of different chemical groups and profiles of hydrogen-bonding capacities (α and ß) and the dipolarity/polarizability parameter (π*) were calculated for lipid-facing surfaces of 460 integral α-helical, ß-barrel and peripheral proteins from eight types of biomembranes. For comparison, polarity profiles were also calculated for ten artificial lipid bilayers that have been previously studied by neutron and X-ray scattering. Estimated hydrophobic thicknesses are 30-31Å for proteins from endoplasmic reticulum, thylakoid, and various bacterial plasma membranes, but differ for proteins from outer bacterial, inner mitochondrial and eukaryotic plasma membranes (23.9, 28.6 and 33.5Å, respectively). Protein and lipid polarity parameters abruptly change in the lipid carbonyl zone that matches the calculated hydrophobic boundaries. Maxima of positively charged protein groups correspond to the location of lipid phosphates at 20-22Å distances from the membrane center. Locations of Tyr atoms coincide with hydrophobic boundaries, while distributions maxima of Trp rings are shifted by 3-4Å toward the membrane center. Distributions of Trp atoms indicate the presence of two 5-8Å-wide midpolar regions with intermediate π* values within the hydrocarbon core, whose size and symmetry depend on the lipid composition of membrane leaflets. Midpolar regions are especially asymmetric in outer bacterial membranes and cell membranes of mesophilic but not hyperthermophilic archaebacteria, indicating the larger width of the central nonpolar region in the later case. In artificial lipid bilayers, midpolar regions are observed up to the level of acyl chain double bonds.


Sujet(s)
Membrane cellulaire/métabolisme , Protéines membranaires/composition chimique , Double couche lipidique/métabolisme , Protéines membranaires/métabolisme , Modèles moléculaires , Conformation des protéines , Diffusion de rayonnements
3.
Bioinformation ; 9(5): 259-66, 2013.
Article de Anglais | MEDLINE | ID: mdl-23515844

RÉSUMÉ

Snakes are equipped with their venomic armory to tackle different prey and predators in adverse natural world. The venomic composition of snakes is a mix of biologically active proteins and polypeptides. Among different components snake venom cytotoxins and short neurotoxin are non-enzymatic polypeptide candidates with in the venom. These two components structurally resembled to three-finger protein superfamily specific scaffold. Different non-toxin family members of three-finger protein superfamily are involved in different biological roles. In the present study we analyzed the snake venom cytotoxins, short neurotoxins and related non-toxin proteins of different chordates in terms of amino acid sequence level diversification profile, polarity profile of amino acid sequences, conserved pattern of amino acids and phylogenetic relationship of these toxin and nontoxin protein sequences. Sequence alignment analysis demonstrates the polarity specific molecular enrichment strategy for better system adaptivity. Occurrence of amino acid substitution is high in number in toxin sequences. In non-toxin body proteins there are less amino acid substitutions. With the help of conserved residues these proteins maintain the three-finger protein scaffold. Due to system specific adaptation toxin and non-toxin proteins exhibit a varied type of amino acid residue distribution in sequence stretch. Understanding of Natural invention scheme (recruitment of venom proteins from normal body proteins) may help us to develop futuristic engineered bio-molecules with remedial properties.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE