Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 1.019
Filtrer
1.
ACS Appl Mater Interfaces ; 16(33): 43961-43978, 2024 Aug 21.
Article de Anglais | MEDLINE | ID: mdl-39135305

RÉSUMÉ

Bio-based multilayer films were prepared by using the innovative nanolayer coextrusion process to produce films with a number of alternating layers varying from 3 to 2049. For the first time, a semicrystalline polymer was confined by another semicrystalline polymer by nanolayering in order to develop high barrier polyamide (PA11)/polylactic acid (PLA) films without compromising thermal stability and mechanical behavior. This process allows the preparation of nanostratified films with thin layers (down to nanometric thicknesses) in which a confinement effect can be induced. The stratified structure has been investigated, and the layer thicknesses have been measured. Barrier properties were successfully correlated to the microstructure, as well as the thermal behavior, and mechanical properties. The layer continuity was fully achieved for most of the films, but some layer breakups have been observed on the film with the thinnest PLA layer (2049-layers film). Coextruding PLA with PA11 has induced an increase in PLA crystallinity (from 4 to 16%) along with an increase in thermal stability of the multilayer films without impacting PA11 properties. Gas barrier properties were driven by the PLA confined layers due to the microstructural rearrangement by increasing crystallinity, whereas water barrier properties were governed by the PA11 confining layers due to its lower water affinity. As a consequence, a decrease of water permeability (up to 11 times less permeable for the 6M film) but an increase of gas barrier properties (barrier improvement factor (BIF) of 66% for the 0M film for N2 and BIF of 36% for the 6M film for CO2 for instance) were evidenced as the layer number was increased. This study paves the way for the development of ecofriendly materials with outstanding barrier performances and highlights the importance of nonmiscible polymers adhesion at melt state and additives presence.

2.
Int J Biol Macromol ; 275(Pt 1): 133656, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-38969048

RÉSUMÉ

Stereo-complexed poly(lactic acid) (SC-PLA) has unique stereo-complexed crystallites (SC) and homogeneous crystallites (HC), but the effect of this special crystalline property on the hydrolytic degradation of SC-PLA has not been researched. In this study, the hygrothermal aging behaviour of injection-molded SC-PLA and SC-PLA/microcrystalline cellulose (MCC) composites at different temperatures (25 °C and 60 °C) was investigated from micro- and macroscopic perspectives. The results demonstrated that the hydrolysis of SC-PLA was sequentially dominated by the amorphous region, the homogeneous crystalline region, the stereo-complexed crystalline region (three stages). The hydrolytic degradation of SC-PLA only completed the first stage after 4 weeks aging at 25 °C, while it was in the third stage after 4 weeks aging at 60 °C. On this basis, the accelerating effect of 10 wt% MCC on the hydrolysis process of SC-PLA at different stages was investigated. It was found that MCC shortened the hydrolysis time in the stereo-complexed crystalline region by reducing the rearrangement of amorphous structure to form SC and causing cracks and interfacial deterioration by water absorption-swelling-degradation. In addition, the thermal properties and impact strength of SC-PLA and SC-PLA/MCC composites decreased dramatically due to rapid hydrolytic degradation at 60 °C. Overall, the results of this study can provide theoretical basis for the application of SC-PLA and SC-PLA/MCC composites in hygrothermal environment.


Sujet(s)
Cellulose , Polyesters , Cellulose/composition chimique , Hydrolyse , Polyesters/composition chimique , Température , Cristallisation
3.
Polymers (Basel) ; 16(14)2024 Jul 10.
Article de Anglais | MEDLINE | ID: mdl-39065288

RÉSUMÉ

In this study, a twin-screw extruder was used to fabricate poly(lactic acid) (PLA)/poly(butylene adipate-co-terephthalate) (PBAT) blends and blend-based nanocomposites with carbon nanotube (CNT) or nanocarbon black (CB) as nanofillers. The fabricated samples were subsequently treated with supercritical carbon dioxide (scCO2) to fabricate the corresponding foams. Bi-phasic morphology and selective distribution of CNTs or CBs in the PBAT phase were observed in the blends/composites through scanning electron microscopy. After the scCO2 treatment, the selective foaming of the PBAT phase in the prepared blends/composites was confirmed. The cellular structure of PBAT phase in scCO2-treated blends is similar to the size/shape of PBAT domains in untreated blends or treated neat PBAT foam. The addition of CNTs or CBs in the blends led to a slight reduction in cell size of the foamed PBAT phase, demonstrating CNT/CB-induced cell nucleation. Differential scanning calorimetry (DSC) results showed that CNTs and CBs played as nucleating agents and increased the initial crystallization temperature up to 14 °C compared with neat PBAT for PBAT in different composites during cooling. The scCO2 treatment induced the bimodal stability of PBAT crystals in different samples, which melted mainly in two temperature regions in DSC studies. Thermogravimetric analyses revealed that compared with parent blends, the addition of CNTs or CBs increased the temperature at 80 wt.% loss (degradation of PBAT portion) up to 6 °C. The electrical resistivity decreased by more than six orders of magnitude for certain CNT- or CB-added composites compared with the parent blends. The hardness of the blends slightly increased after forming the corresponding composites and then declined after the scCO2 treatment.

4.
Polymers (Basel) ; 16(14)2024 Jul 12.
Article de Anglais | MEDLINE | ID: mdl-39065311

RÉSUMÉ

Poly(lactic-acid) (PLA) is a biodegradable polymer widely used as a packaging material. Its monomer, lactic acid, and its derivatives have been used in the food, cosmetic, and chemical industries. The accumulation of PLA residues leads to the development of green degrading methodologies, such as enzymatic degradation. This work evaluates the potential use of three cutinolytic enzymes codified in the Aspergillus nidulans genome to achieve this goal. The results are compared with those obtained with proteinase K from Tritirachium album, which has been reported as a PLA-hydrolyzing enzyme. The results show that all three cutinases act on the polymer, but ANCUT 1 releases the highest amount of lactic acid (25.86 mM). Different reaction conditions assayed later led to double the released lactic acid. A decrease in weight (45.96%) was also observed. The enzyme showed activity both on poly L lactic acid and on poly D lactic acid. Therefore, this cutinase offers the potential to rapidly degrade these package residues, and preliminary data show that this is feasible.

5.
Polymers (Basel) ; 16(14)2024 Jul 16.
Article de Anglais | MEDLINE | ID: mdl-39065342

RÉSUMÉ

The application of lignin as a filler for poly (lactic acid) (PLA) is limited by their poor interfacial adhesion. To address this challenge, lignin-graft-poly(lauryl methacrylate) (LG-g-PLMA) was first blended with poly (lactic acid), and then epoxidized soybean oil (ESO) was also added to prepare PLA/LG-g-PLMA/ESO composite, which was subsequently hot pressed to prepare the composite films. The effect of ESO as a plasticizer on the thermal, mechanical, and rheological properties, as well as the fracture surface morphology of the PLA/LG-g-PLMA composite films, were investigated. It was found that the compatibility and toughness of the composites were improved by the addition of ESO. The elongation at break of the composites with an ESO content of 5 phr was increased from 5.6% to 104.6%, and the tensile toughness was increased from 4.1 MJ/m3 to 44.7 MJ/m3, as compared with the PLA/LG-g-PLMA composite without ESO addition. The toughening effect of ESO on composites is generally attributed to the plasticization effect of ESO, and the interaction between the epoxy groups of ESO and the terminal carboxyl groups of PLA. Furthermore, PLA/LG-g-PLMA/ESO composite films exhibited excellent UV barrier properties and an overall migration value below the permitted limit (10 mg/dm2), indicating that the thus-prepared biocomposite films might potentially be applied to environmentally friendly food packaging.

6.
Polymers (Basel) ; 16(14)2024 Jul 21.
Article de Anglais | MEDLINE | ID: mdl-39065395

RÉSUMÉ

Polymer blends of poly(L-lactide)-b-poly(ethylene glycol)-b-poly(L-lactide) (PLLA-PEG-PLLA) and high-density polyethylene (HDPE) with different blend ratios were prepared by a melt blending method. The thermal, morphological, mechanical, opacity, and biodegradation properties of the PLLA-PEG-PLLA/HDPE blends were investigated and compared to the PLLA/HDPE blends. The blending of HDPE improved the crystallization ability and thermal stability of the PLLA-PEG-PLLA; however, these properties were not improved for the PLLA. The morphology of the blended films showed that the PLLA-PEG-PLLA/HDPE blends had smaller dispersed phases compared to the PLLA/HDPE blends. The PLLA-PEG-PLLA/HDPE blends exhibited higher flexibility, lower opacity, and faster biodegradation and bioerosion in soil than the PLLA/HDPE blends. Therefore, these PLLA-PEG-PLLA/HDPE blends have a good potential for use as flexible and partially biodegradable materials.

7.
Antioxidants (Basel) ; 13(7)2024 Jun 27.
Article de Anglais | MEDLINE | ID: mdl-39061844

RÉSUMÉ

Enhancing food preservation and safety using environmentally friendly techniques is urgently needed. The aim of this study was to develop food packaging films using biodegradable poly-L-lactic acid (PLA) as biopolymer and carvacrol (CV) essential oil as an antioxidant/antibacterial agent for the replacement of chemical additives. CV was adsorbed onto natural zeolite (NZ) via a new vacuum adsorption method. The novel nanohybrid CV@NZ with a high CV content contained 61.7%wt. CV. Pure NZ and the CV@NZ nanohybrid were successfully dispersed in a PLA/triethyl citrate (TEC) matrix via a melt extrusion process to obtain PLA/TEC/xCV@NZ and PLA/TEC/xNZ nanocomposite films with 5, 10, and 15%wt CV@NZ or pure NZ content. The optimum resulting film PLA/TEC/10CV@NZ contained 10%wt. CV@NZ and exhibited self-healable properties, 22% higher tensile strength, 40% higher elongation at break, 45% higher water barrier, and 40% higher oxygen barrier than the pure PLA/TEC matrix. This film also had a high CV release content, high CV control release rate as well as 2.15 mg/L half maximal effective concentration (EC50) and 0.27 mm and 0.16 mm inhibition zones against Staphylococcus aureus and Salmonella enterica ssp. enterica serovar Typhimurium, respectively. This film not only succeeded in extending the shelf life of fresh minced pork, as shown by the total viable count measurements in four days but also prevented the lipid oxidation of fresh minced pork and provided higher nutritional values of the minced meat, as revealed by the heme iron content determination. It also had much better and acceptable sensory characteristics than the commercial packaging paper.

8.
J Chromatogr A ; 1730: 465137, 2024 Aug 16.
Article de Anglais | MEDLINE | ID: mdl-38996514

RÉSUMÉ

End groups of poly(Lactide-co-glycolide) (PLGA) play an important role in determining the properties of polymers for use in drug delivery systems. For instance, it has been reported that the encapsulation efficiency in PLGA microspheres varies significantly between ester-terminated and acid-terminated PLGA. More importantly, the in-vivo degradation time of such polymer excipients is influenced by the functional end-group of the copolymer used. The end group distribution in PLGA polymers has been studied using electrospray and matrix-assisted laser-desorption/ionization - high-resolution mass spectrometry. In both cases, the application of these methods is typically limited to PLGA having a molecular weight of up to 4 kDa. 13Carbon-nuclear-magnetic-resonance has also been reported as a method to differentiate and quantify PLGA end groups with a molecular weight up to 136 kDa. However, reported NMR methods take over 12 h per sample, limiting throughput.Cryoprobe NMR can reduce the time required for the process, however such NMR equipment is costly, which makes it unsuitable for the quality control of PLGA. Here, we present a normal-phase liquid chromatography method capable of resolving functionality type distribution (FTD) and, partially, chemical composition distribution (CCD) in commercial PLGA polymers obtained from ring opening polymerization. This method can separate PLGA polymers with a molecular weight of up to 183.0 kDa while also enabling the simultaneous separation of the difference of Lactic acid (LA)/Glycolic acid (GA) ratios. To achieve this, a cross-linked diol column was used with a ternary gradient from HEX to 0.1 % v/v TEA in EA to 0.1 % v/v FA in THF to allow first for the elution of mono-ester terminated PLGA, followed by the di-acid terminated. In addition, a separation of ester-terminated PLGA in the difference of the LA/GA ratio was achieved. This method is expected to aid in understanding the correlation between PLGA's FTD, CCD, and physical properties, facilitating product development and quality control.


Sujet(s)
Acide polyglycolique , Copolymère d'acide poly(lactique-co-glycolique) , Acide polyglycolique/composition chimique , Copolymère d'acide poly(lactique-co-glycolique)/composition chimique , Masse moléculaire , Acide lactique/composition chimique , Chromatographie en phase liquide/méthodes , Spectroscopie par résonance magnétique , Concentration en ions d'hydrogène
9.
Sci Rep ; 14(1): 17601, 2024 07 30.
Article de Anglais | MEDLINE | ID: mdl-39080452

RÉSUMÉ

Biodegradable poly(L-lactide)-b-poly(ethylene glycol)-b-poly(L-lactide) (PLLA-PEG-PLLA) triblock copolymer could potentially be used in bioplastic applications because it is more flexible than PLLA. However, investigations into modifying PLLA-PEG-PLLA with effective fillers are still required. In this work, bamboo biochar (BC) was used as an eco-friendly and cost-effective filler for the flexible PLLA-PEG-PLLA. The influences of BC addition on crystallization properties, thermal stability, hydrophilicity, and mechanical properties of the PLLA-PEG-PLLA were explored and compared to those of the PLLA. The PLLA-PEG-PLLA matrix and BC filler were found to have strong interfacial adhesion and good phase compatibility, while the PLLA/BC composites displayed weak interfacial adhesion and poor phase compatibility. For the PLLA-PEG-PLLA, the addition of BC induced a nucleation effect that was characterized by a decrease in the cold crystallization temperature from 76 to 71-75 °C and an increase in the crystallinity from 18.6 to 21.8-24.0%; however, this effect was not observed for the PLLA. When compared to pure PLLA-PEG-PLLA, the PLLA-PEG-PLLA/BC composites displayed greater thermal stability, tensile stress, and Young's modulus. Temperature at maximum decomposition rate (Td,max) of PLLA end-blocks increased from 315 to 319-342 °C. Ultimate tensile stress of PLLA-PEG-PLLA matrix improved from 14.5 to 16.2-22.6 MPa and Young's modulus increased from 220 to 280-340 MPa. Based on the findings, the crystallizability, thermal stability, and mechanical properties of the flexible PLLA-PEG-PLLA bioplastic were all enhanced by the use of BC as a multi-functional filler.


Sujet(s)
Charbon de bois , Polyesters , Polyéthylène glycols , Polyesters/composition chimique , Polyéthylène glycols/composition chimique , Charbon de bois/composition chimique , Matériaux biocompatibles/composition chimique , Interactions hydrophobes et hydrophiles , Test de matériaux , Cristallisation
10.
Macromol Rapid Commun ; : e2400380, 2024 Jul 16.
Article de Anglais | MEDLINE | ID: mdl-39012274

RÉSUMÉ

Polylactic acid (PLA), derived from renewable resources, has the advantages of rigidity, thermoplasticity, biocompatibility, and biodegradability, and is widely used in many fields such as packaging, agriculture, and biomedicine. The excellent processability properties allow for melt processing treatments such as extrusion, injection molding, blow molding, and thermoforming in the preparation of PLA-based materials. However, the low toughness and poor thermal stability of PLA limit its practical applications. Compared with pure PLA, conditions such as processing technology, filler, and crystallinity affect the mechanical properties of PLA-based materials, including tensile strength, Young's modulus, and elongation at break. This review systematically summarizes various technical parameters for melt processing of PLA-based materials and further discusses the mechanical properties of PLA homopolymers, filler-reinforced PLA-based composites, PLA-based multiphase composites, and reactive composite strategies for PLA-based composites.

11.
Materials (Basel) ; 17(13)2024 Jun 21.
Article de Anglais | MEDLINE | ID: mdl-38998133

RÉSUMÉ

The aim of this study was to cover biopolymeric packaging films based on PLA/PHBV blend with a functional composite coating (to retain their ecological character) and to investigate their antimicrobial properties before and after UV irradiation. As an active coating, the carrier hydroxypropyl methyl cellulose (HPMC), as well as its modified form with Achillea millefolium L., Hippophae rhamnoides L., and Hypericum L. extract (E) and a combined system based on the extracts and nano-ZnO (EZ), was used to obtain active formulations. Additionally, film surface morphology (SEM, FTIR-ATR) and color (CIELab scale) analysis of the pre- and post-UV-treatment samples were performed. The results confirmed that the E and EZ-modified films exhibited antibacterial properties, but they were not effective against phage phi6. Q-SUN irradiation led to a decrease in the activity of E coating against Staphylococcus aureus, Pseudomonas syringae, and Candida albicans. In this case, the effectiveness of EZ against C. albicans at 24 h and 72 h UV irradiation decreased. However, the irradiation boosted the antiviral effectiveness of the EZ layer. SEM micrographs of the film surface showed that UV treatment did not significantly influence the native film morphology, but it had an impact on the coated film. FTIR analysis results showed that the coatings based on HPMC altered the IR absorption of the nonpolar groups of the biopolyester material. The applied coatings only marginally affected film color changes and increased their yellowness after UV irradiation, whereas a composite layer of nano-ZnO limited these changes.

12.
Int J Biol Macromol ; 277(Pt 1): 134101, 2024 Oct.
Article de Anglais | MEDLINE | ID: mdl-39048000

RÉSUMÉ

Temperature rising elution fractionation (TREF) approach was used to separate a biodegradable poly(lactic acid) (PLA) resin into ten fractions and completely establish the relationship between chain microstructure and properties. The main fractions were mainly eluted at 100, 110, 114, and 118 °C, and their mass percentages were 7.98 wt%, 44.83 wt%, 19.64 wt%, and 11.90 wt%, respectively. Through the use of successive self-nucleation/annealing (SSA) thermal fractionation, gel permeation chromatography (GPC), differential scanning calorimetry (DSC), and 13C-nuclear magnetic resonance spectroscopy (13C NMR), the intermolecular and intramolecular differences of PLA were further explored. Fractions eluted at 90, 110, 118, and 126 °C were also chosen to research the non-isothermal cold crystallization kinetics, and fractions eluted at 110, 118, and 126 °C were chosen to explore the non-isothermal crystallization kinetics in order to simulate the real process. The findings demonstrated that the Liu-Mo approach were more suited the non-isothermal crystallization and non-isothermal cold crystallization kinetics of PLA. As the elution temperature increased, so did the stereoregularity of the fractions, the crystallization rate, the crystallization capacity, and the lamellar thickness. These will lay a foundation for its basic research and industrial application.


Sujet(s)
Cristallisation , Polyesters , Polyesters/composition chimique , Cinétique , Température , Calorimétrie différentielle à balayage
13.
Int J Biol Macromol ; 277(Pt 1): 133905, 2024 Oct.
Article de Anglais | MEDLINE | ID: mdl-39079839

RÉSUMÉ

Antimicrobial wound dressings can aid wound healing by preventing bacterial infection. This is particularly true of electrospun ones, which have a porous structure and can be easily loaded with antimicrobial drugs. Here, Poly lactic acid (PLA), Silk Fibroin (SF) and antimicrobial agents of Silver nanoparticles (Ag NPs) and Silver oxide (Ag2O) to prepare the PLA/SF composites antimicrobial nanofiber membrane by electrospinning. The PLA with 30 % SF nanofiber membrane show the water vapor permeability (WVP) and the liquid absorption of 36 g·mm/(m2·d·kPa) and 1721 %. With the increasing of SF contents, the degradation rate and surface hydrophilicity of the nanofiber membrane increase significantly. The nanofiber membrane exhibited excellent antimicrobial activity against Pseudomonas aeruginosa (P. aeruginosa) with the inhibition circle reach at 18.2 mm. The resultant nanofiber membrane showed high cytosolic activity, good cytocompatibility and strong antimicrobial ability, which laid a theoretical foundation for the construction of a new PLA/SF composites antimicrobial fiber membrane.


Sujet(s)
Bandages , Fibroïne , Interactions hydrophobes et hydrophiles , Membrane artificielle , Nanofibres , Polyesters , Pseudomonas aeruginosa , Fibroïne/composition chimique , Nanofibres/composition chimique , Polyesters/composition chimique , Pseudomonas aeruginosa/effets des médicaments et des substances chimiques , Anti-infectieux/pharmacologie , Anti-infectieux/composition chimique , Argent/composition chimique , Animaux , Cicatrisation de plaie/effets des médicaments et des substances chimiques , Nanoparticules métalliques/composition chimique , Antibactériens/pharmacologie , Antibactériens/composition chimique , Composés de l'argent/composition chimique , Composés de l'argent/pharmacologie , Souris , Oxydes
14.
Molecules ; 29(11)2024 May 28.
Article de Anglais | MEDLINE | ID: mdl-38893416

RÉSUMÉ

Being a bio-sourced and biodegradable polymer, polylactic acid (PLA) has been considered as one of the most promising substitutes for petroleum-based plastics. However, its wide application is greatly limited by its very poor ductility, which has driven PLA-toughening modifications to be a topic of increasing research interest in the past decade. Toughening enhancement is achieved often at the cost of a large sacrifice in strength, with the toughness-strength trade-off having remained as one of the main bottlenecks of PLA modification. In the present study, a bio-elastomeric material of epoxidized soybean oil (ESO) crosslinked with sebacic acid (SA) and enhanced by graphene oxide (GO) nanoparticles (NPs) was employed to toughen PLA with the purpose of simultaneously preserving strength and achieving additional functions. The even dispersion of GO NPs in ESO was aided by ultrasonication and guaranteed during the following ESO-SA crosslinking with GO participating in the carboxyl-epoxy reaction with both ESO and SA, resulting in a nanoparticle-enhanced and dynamically crosslinked elastomer (GESO) via a ß-hydroxy ester. GESO was then melt-blended with PLA, with the interfacial reaction between ESO and PLA offering good compatibility. The blend morphology, and thermal and mechanical properties, etc., were evaluated and GESO was found to significantly toughen PLA while preserving its strength, with the GO loading optimized at ~0.67 wt%, which gave an elongation at break of ~274.5% and impact strength of ~10.2 kJ/m2, being 31 times and 2.5 times higher than pure PLA, respectively. Moreover, thanks to the presence of dynamic crosslinks and GO NPs, the PLA-GESO blends exhibited excellent shape memory effect and antistatic properties.

15.
Materials (Basel) ; 17(11)2024 Jun 05.
Article de Anglais | MEDLINE | ID: mdl-38894026

RÉSUMÉ

To use polylactic acid in demanding technical applications, sufficient long-term thermal stability is required. In this work, the thermal aging of polylactic acid (PLA) in the solid phase at 100 °C and 150 °C is investigated. PLA has only limited aging stability without the addition of stabilizers. Therefore, the degradation mechanism in thermal aging was subsequently investigated in more detail to identify a suitable stabilization strategy. Investigations using nuclear magnetic resonance spectroscopy showed that, contrary to expectations, even under thermal aging conditions, hydrolytic degradation rather than oxidative degradation is the primary degradation mechanism. This was further confirmed by the investigation of suitable stabilizers. While the addition of phenols, phosphites and thioethers as antioxidants leads only to a limited improvement in aging stability, the addition of an additive composition to provide hydrolytic stabilization results in extended durability. Efficient compositions consist of an aziridine-based hydrolysis inhibitor and a hydrotalcite co-stabilizer. At an aging temperature of 100 °C, the time until significant polymer chain degradation occurs is extended from approx. 500 h for unstabilized polylactic acid to over 2000 h for stabilized polylactic acid.

16.
Bioelectrochemistry ; 159: 108757, 2024 Oct.
Article de Anglais | MEDLINE | ID: mdl-38851026

RÉSUMÉ

The utilization of biomimetic membranes supported by advanced self-assembled monolayers is gaining attraction as a promising sensing tool. Biomimetic membranes offer exceptional biocompatibility and adsorption capacity upon degradation, transcending their role as mere research instruments to open new avenues in biosensing. This study focused on anchoring a sparsely tethered bilayer lipid membrane onto a self-assembled monolayer composed of a biodegradable polymer, functionalized with poly(ethylene glycol)-cholesterol moieties, for lipid membrane integration. Real-time monitoring via quartz crystal microbalance, coupled with characterization using surface-enhanced infrared absorption spectroscopy and electrochemical impedance spectroscopy, provided comprehensive insights into each manufacturing phase. The resulting lipid layer, along with transmembrane pores formed by gramicidin A, exhibited robust stability. Electrochemical impedance spectroscopy analysis confirmed membrane integrity, successful pore formation, and consistent channel density. Notably, gramicidin A demonstrated sustained functionality as an ion channel upon reconstitution, with its functionality being effectively blocked and inhibited in the presence of calcium ions. These findings mark significant strides in developing intricate biodegradable nanomaterials with promising applications in biomedicine.


Sujet(s)
Gramicidine , Double couche lipidique , Polyesters , Double couche lipidique/composition chimique , Double couche lipidique/métabolisme , Gramicidine/composition chimique , Gramicidine/métabolisme , Polyesters/composition chimique , Cholestérol/composition chimique , Techniques de microbalance à cristal de quartz , Polyéthylène glycols/composition chimique , Matériaux biocompatibles/composition chimique , Spectroscopie diélectrique
17.
Polymers (Basel) ; 16(11)2024 May 29.
Article de Anglais | MEDLINE | ID: mdl-38891482

RÉSUMÉ

Agricultural waste is a renewable source of lignocellulosic components, which can be processed in a variety of ways to yield added-value materials for various applications, e.g., polymer composites. However, most lignocellulosic biomass is incinerated for energy. Typically, agricultural waste is left to decompose in the fields, causing problems such as greenhouse gas release, attracting insects and rodents, and impacting soil fertility. This study aims to valorise nonedible tomato waste with no commercial value in Additive Manufacturing (AM) to create sustainable, cost-effective and added-value PLA composites. Fused Filament Fabrication (FFF) filaments with 5 and 10 wt.% tomato stem powder (TSP) were developed, and 3D-printed specimens were tested. Mechanical testing showed consistent tensile properties with 5% TSP addition, while flexural strength decreased, possibly due to void formation. Dynamic mechanical analysis (DMA) indicated changes in storage modulus and damping factor with TSP addition. Notably, the composites exhibited antioxidant activity, increasing with higher TSP content. These findings underscore the potential of agricultural waste utilization in FFF, offering insights into greener waste management practices and addressing challenges in mechanical performance and material compatibility. This research highlights the viability of integrating agricultural waste into filament-based AM, contributing to sustainable agricultural practices and promoting circular economy initiatives.

18.
Int J Biol Macromol ; 274(Pt 1): 133236, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-38897511

RÉSUMÉ

Nucleating agents, especially those with small particle sizes, are preferred to boost the nucleation density and crystallinity of poly(lactic acid) (PLA) due to its weak crystallization capability. Organophilicly modified nanofillers hardly alter the nucleation and crystallinity of non-isothermally crystallized PLA. Herein, nano-silica adsorbed trace D-sorbitol (m-SiO2) as a heterogeneous nucleating agent was melt-mixed with poly(L-lactic acid) (PLLA), and the isothermal and non-isothermal crystallization behavior, as well as crystallization kinetics, were investigated. Transmission electron microscopy (TEM) revealed that m-SiO2 was uniformly dispersed in the PLA matrix as 100-300 nm clusters. Differential scanning calorimetry (DSC) and polarized optical microscopy (POM) showed that the nucleation rate and density of the non-isothermally crystallized PLLA/m-SiO2 composites were significantly improved. Despite the fact that m-SiO2 does not raise the overall non-isothermal crystallization rate, the crystallization temperature and crystallinity of the PLLA/3%m-SiO2 composite increased from 97.2 °C and 6.8 % for neat PLLA to 108.2 °C and 48.6 % (10 °C/min cooling rate), respectively. The Avrami exponent n of isothermal crystallization remains unchanged, while the crystallization rate increases dramatically. Both isothermal and non-isothermal crystallization have increased activation energies. The heat deflection temperature increased from 59 °C of neat PLLA to 152 °C with a 50 % increase in impact strength.


Sujet(s)
Cristallisation , Polyesters , Silice , Sorbitol , Polyesters/composition chimique , Silice/composition chimique , Sorbitol/composition chimique , Nanoparticules/composition chimique , Calorimétrie différentielle à balayage , Cinétique , Température
19.
J Hazard Mater ; 474: 134781, 2024 Aug 05.
Article de Anglais | MEDLINE | ID: mdl-38824775

RÉSUMÉ

The concept of bio-inspired gradient hierarchies, in which the well-defined MOF nanocrystals serve as active nanodielectrics to create electroactive shell at poly(lactic acid) (PLA) nanofibers, is introduced to promote the surface activity and electroactivity of PLA nanofibrous membranes (NFMs). The strategy enabled significant refinement of PLA nanofibers during coaxial electrospinning (∼40 % decline of fiber diameter), accompanied by remarkable increase of specific surface area (nearly 1.5 m2/g), porosity (approximately 85 %) and dielectric constants for the bio-inspired gradient PLA (BG-PLA) NFMs. It largely boosted initial electret properties and electrostatic adsorption capability of BG-PLA NFMs, as well as charge regeneration by TENG mechanisms even under high-humidity environment. The BG-PLA NFMs thus featured exceptionally high PM0.3 filtration efficiencies with well-controlled air resistance (94.3 %, 163.4 Pa, 85 L/min), in contrast to the relatively low efficiency of only 80.0 % for normal PLA. During the application evaluation of outdoor air purification, excellent long-term filtering performance was demonstrated for the BG-PLA for up to 4 h (nearly 98.0 %, 53 Pa), whereas normal PLA exhibited a gradually declined filtration efficiency and an increased pressure drop. Moreover, the BG-PLA NFMs of increased electroactivity were ready to generate tribo-output currents as driven by respiratory vibrations, which enabled real-time monitoring of electrophysiological signals. This bio-inspired gradient strategy opens up promising pathways to engender biodegradable nanofibers of high surface activity and electroactivity, which has significant implications for intelligent protective membranes.


Sujet(s)
Nanofibres , Polyesters , Nanofibres/composition chimique , Polyesters/composition chimique , Matière particulaire/composition chimique , Humains , Polluants atmosphériques/composition chimique , Filtration , Surveillance de l'environnement/méthodes
20.
Polymers (Basel) ; 16(12)2024 Jun 19.
Article de Anglais | MEDLINE | ID: mdl-38932088

RÉSUMÉ

A quantitative analysis of the morphology, as well as an analysis of the distribution of components and surface/interfacial properties in poly(lactic acid)(PLA) InegoTM 3251D, poly(ε-caprolactone) (PCL) Capa 6800 and nano-silica (SiO2) Aerosil®200 blends, was conducted in this research. The study aimed to improve the understanding of how PLA, PCL, and nano-SiO2 interact, resulting in the specific morphology and surface properties of the blends. Samples were produced by varying the concentration of all three components. They were analyzed using SEM, EDS mapping, water contact angle measurements, surface free energy calculation, adhesion parameter measurements, and FTIR-ATR spectroscopy. The results showed that the addition of SiO2 nanoparticles led to an increase in the contact angle of water, making the surface more hydrophobic. SEM images of the blends showed that increasing the PCL content reduced the size of spherical PCL elements in the blends. FTIR-ATR analysis showed that SiO2 nanoparticles influenced the structure ordering of PLA in the blend with equal portions of PLA and PCL. In the samples with a higher PCL content, the spherical elements present in the samples with a higher PLA/PCL ratio have been reduced, indicating better interactions at the interface between PLA, PCL, and SiO2. SEM-EDS mapping of the PLA/PCL 100/0 blend surfaces revealed the presence of SiO2 clusters and the silicon (Si) concentration reaching up to ten times higher than the nominal concentration of SiO2. However, with the addition of 3% SiO2 to the blend containing PCL, the structure became more granular. Specifically, Si protrusions in the sample PLA/PCL 90/10 with 3% SiO2 displayed 29.25% of Si, and the sample PLA/PCL 70/30 with 3% SiO2 displayed an average of 10.61% of Si at the protrusion locations. The results confirmed the affinity of SiO2 to be encapsulated by PCL. A better understanding of the interactions between the materials in the presented blends and the quantitative analysis of their morphology could improve the understanding of their properties and allow the optimization of their application for different purposes.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE