Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 4.382
Filtrer
1.
Carbohydr Polym ; 346: 122592, 2024 Dec 15.
Article de Anglais | MEDLINE | ID: mdl-39245484

RÉSUMÉ

Potato tubers accumulate substantial quantities of starch, which serves as their primary energy reserve. As the predominant component of potato tubers, starch strongly influences tuber yield, processing quality, and nutritional attributes. Potato starch is distinguished from other food starches by its unique granule morphology and compositional attributes. It possesses large, oval granules with amylose content ranging from 20 to 33 % and high phosphorus levels, which collectively determine the unique physicochemical characteristics. These physicochemical properties direct the utility of potato starch across diverse food and industrial applications. This review synthesizes current knowledge on the molecular factors controlling potato starch biosynthesis and structure-function relationships. Key topics covered are starch granule morphology, the roles and regulation of major biosynthetic enzymes, transcriptional and hormonal control, genetic engineering strategies, and opportunities to tailor starch functionality. Elucidating the contributions of different enzymes in starch biosynthesis has enabled targeted modification of potato starch composition and properties. However, realizing the full potential of this knowledge faces challenges in optimizing starch quality without compromising plant vigor and yield. Overall, integrating multi-omics datasets with advanced genetic and metabolic engineering tools can facilitate the development of elite cultivars with enhanced starch yield and tailored functionalities.


Sujet(s)
Génie métabolique , Solanum tuberosum , Amidon , Solanum tuberosum/métabolisme , Solanum tuberosum/génétique , Solanum tuberosum/composition chimique , Amidon/composition chimique , Amidon/métabolisme , Amidon/biosynthèse , Génie métabolique/méthodes , Tubercules/métabolisme , Tubercules/composition chimique , Amylose/biosynthèse , Amylose/métabolisme , Amylose/composition chimique , Régulation de l'expression des gènes végétaux , Protéines végétales/métabolisme , Protéines végétales/génétique
2.
Microbiol Resour Announc ; : e0069124, 2024 Sep 09.
Article de Anglais | MEDLINE | ID: mdl-39248549

RÉSUMÉ

A phytopathogenic strain of Pectobacterium polaris (designated SRB2) was isolated for the first time in South Africa from a potato tuber affected by soft rot. The draft genome of strain SRB2 encodes various plant cell wall-degrading enzymes and genes associated with biofilm formation and virulence. Antibiotic resistance genes were not detected.

3.
Transgenic Res ; 2024 Sep 09.
Article de Anglais | MEDLINE | ID: mdl-39249190

RÉSUMÉ

Dehydroascorbate reductase (DHAR), an indispensable enzyme in the production of ascorbic acid (AsA) in plants, is vital for plant tolerance to various stresses. However, there is limited research on the stress tolerance functions of DHAR genes in sweet potato (Ipomoea batatas [L.] Lam). In this study, the full-length IbDHAR1 gene was cloned from the leaves of sweet potato cultivar Xu 18. The IbDHAR1 protein is speculated to be located in both the cytoplasm and the nucleus. As revealed by qRT-PCR, the relative expression level of IbDHAR1 in the proximal storage roots was much greater than in the other tissues, and could be upregulated by high-temperature, salinity, drought, and abscisic acid (ABA) stress. The results of pot experiments indicated that under high salinity and drought stress conditions, transgenic Arabidopsis and sweet potato plants exhibited decreases in H2O2 and MDA levels. Conversely, the levels of antioxidant enzymes APX, SOD, POD, and ACT, and the content of DHAR increased. Additionally, the ratio of AsA/DHA was greater in transgenic lines than in the wild type. The results showed that overexpression of IbDHAR1 intensified the ascorbic acid-glutathione cycle (AsA-GSH) and promoted the activity of the related antioxidant enzyme systems to improve plant stress tolerance and productivity.

4.
Carbohydr Polym ; 345: 122561, 2024 Dec 01.
Article de Anglais | MEDLINE | ID: mdl-39227100

RÉSUMÉ

The digestibility of starch is affected by amylose content, and increasing amylopectin chain length which can be manipulated by alterations to genes encoding starch-branching enzymes (SBEs). We investigated the impact of Cas9-mediated mutagenesis of SBEs in potato on starch structural properties and digestibility. Four potato starches with edited SBE genes were tested. One lacked SBE1 and SBE2, two lacked SBE2 and had reduced SBE1, and one had reduced SBE2 only. Starch structure and thermal properties were characterised by DSC and XRD. The impact of different thermal treatments on digestibility was studied using an in vitro digestion protocol. All native potato starches were resistant to digestion, and all gelatinised starches were highly digestible. SBE modified starches had higher gelatinisation temperatures than wild type potatoes and retrograded more rapidly. Gelatinisation and 18 h of retrogradation, increased gelatinisation enthalpy, but this did not translate to differences in digestion. Following 7 days of retrogradation, starch from three modified SBE starch lines was less digestible than starch from wild-type potatoes, likely due to the recrystallisation of the long amylopectin chains. Our results indicate that reductions in SBE in potato may be beneficial to health by increasing the amount of fibre reaching the colon after retrogradation.


Sujet(s)
1,4-alpha-Glucan branching enzyme , Mutagenèse , Solanum tuberosum , Amidon , Solanum tuberosum/génétique , Solanum tuberosum/composition chimique , 1,4-alpha-Glucan branching enzyme/génétique , 1,4-alpha-Glucan branching enzyme/métabolisme , 1,4-alpha-Glucan branching enzyme/composition chimique , Amidon/composition chimique , Amidon/métabolisme , Digestion , Systèmes CRISPR-Cas/génétique , Amylopectine/composition chimique , Amylopectine/métabolisme , Amylose/composition chimique , Amylose/métabolisme , Protéines végétales/génétique , Protéines végétales/composition chimique , Protéines végétales/métabolisme
5.
Biol Futur ; 2024 Sep 09.
Article de Anglais | MEDLINE | ID: mdl-39251554

RÉSUMÉ

Potato (Solanum tuberosum) is considered worldwide as one of the most important non-cereal food crops. As a result of its adaptability and worldwide production area, potato displays a vast phenotypical variability as well as genomic diversity. Chloroplast genomes have long been a core issue in plant molecular evolution and phylogenetic studies, and have an important role in revealing photosynthetic mechanisms, metabolic regulations and the adaptive evolution of plants. We sequenced the complete chloroplast genome of the Hungarian cultivar White Lady, which is 155 549 base pairs (bp) in length and is characterised by the typical quadripartite structure composed of a large- and small single-copy region (85 991 bp and 18 374 bp, respectively) interspersed by two identical inverted repeats (25 592 bp). The genome consists of 127 genes of which 82 are protein-coding, eight are ribosomal RNAs and 37 are transfer RNAs. The overall gene content and distribution of the genes on the White Lady chloroplast was the same as found in other potato chloroplasts. The alignment of S. tuberosum chloroplast genome sequences resulted in a highly resolved tree, with 10 out of the 13 nodes recovered having bootstrap values over 90%. By comparing the White Lady chloroplast genome with available S. tuberosum sequences we found that gene content and synteny are highly conserved. The new chloroplast sequence can support further studies of genetic diversity, resource conservation, evolution and applied agricultural research. The new sequence can support further potato genetic diversity and evolutionary studies, resource conservation, and also applied agricultural research.

6.
Food Chem ; 463(Pt 1): 141092, 2024 Sep 01.
Article de Anglais | MEDLINE | ID: mdl-39255696

RÉSUMÉ

A pH-sensitive film was prepared from pectin (P) and whey protein (W), incorporating anthocyanin-rich purple sweet potato extract (PPE) as the pH indicator. The effect of PPE content on the structure and properties of the films and the pH indicating function were determined and evaluated for shrimp freshness and grape preservation. The solubility (60.23 ± 7.36 %) and water vapor permeability (0.15 ± 0.04 × 10-11 g·cm/(cm2·s·Pa)) of the pectin/whey protein/PPE (PW-PPE) film with 500 mg/100 mL PPE were the lowest of the films tested and much lower than PW films without PPE. PW-PPE films were non-cytotoxic and had excellent biodegradability in soil. Grapes coated with PW-PPE film had reduced weight loss from water evaporation, and decay during storage was inhibited. The total color change (ΔE) of the PW-PPE films had a strong linear correlation with the pH of shrimps during storage. PW-PPE films have application potential to monitor the real-time freshness of meat and extend the shelf life of fruit.

7.
Heliyon ; 10(16): e36096, 2024 Aug 30.
Article de Anglais | MEDLINE | ID: mdl-39253114

RÉSUMÉ

Diversification of cropping pattern coupled with the development of suitable technology packages is crucial to meet the ever-increasing demand for diversified products and sustained farmers' incomes. We evaluated different woodlot-based multistoried agroforestry systems for their effectiveness to mitigate the devastating effects of climate change by offering multifaceted benefits. Specifically, the present study aimed to assess the yield and probability of woodlot based multistoried agroforestry system with two vegetables, i.e., potato and brinjal during the period of 2019-2020. The vegetables were planted on the floor of the orchard where pineapple were planted in the same row with the trees. The experiment was laid out in a Randomized Complete Block Design (RCBD) with three replications. The results revealed that the upper-storied woody plants and sole vegetables received 100 % Photosynthetically Active Radiation (PAR) but incident light gradually decreased for brinjal and potato, which were grown at the floor of woody trees. The vegetables experienced 55.85(T3), 60.70(T2), 66.38(T1), and 100 (T4) % PAR under different tree crop combinations respectively. In both cases the highest BCR (3.75) and (3.09) was obtained in the ghoraneem + pineapple based multistoried agroforestry system for potato and brinjal production, respectively, which may considered as the best technique for higher production, crop diversification, and maximization of land use efficiency.

8.
Front Plant Sci ; 15: 1405314, 2024.
Article de Anglais | MEDLINE | ID: mdl-39253569

RÉSUMÉ

Introduction: The first small scale cultivation of potatoes in the Nordic countries began roughly 300 years ago, and later became an important staple food in the region. Organized conservation efforts began in the 1980s, and today, potato landraces, improved varieties, and breeding lines are conserved in genebanks at the Nordic Genetic Resource Center (NordGen), Sweden, and the Norwegian Genetic Resource Centre (NGS), Norway, as well as at potato breeding companies across Nordic countries. All these collections house a diverse array of genotypes with local names and local growing histories from the whole region. However, the presence of duplicates, and inconsistent naming has led to confusion. Methods: In this study, 198 accessions of cultivated potato (Solanum tuberosum L.) have been genotyped with 62 microsatellite (SSR) markers. The analyzed accessions came from three collections: 43 accessions from the Danish Potato Breeding Foundation in Vandel (LKF-Vandel), 90 from NordGen and 65 from NGS. Results and discussion: The genetic analysis revealed 140 unique potato genotypes and 31 groups/clusters of duplicates, most of which contained duplicate pairs and the others three to ten accessions. Several accessions with distinct names were genetically identical or very similar, suggesting historical sharing, and regional distribution of seed potatoes, leading to the emergence of diverse local names. Moreover, many improved varieties from early potato breeding were revealed to have duplicates that have been considered Nordic landraces. Furthermore, potato accessions with identical names but originating from different collections were confirmed to be duplicates. These findings have already influenced management decisions and will further improve management practices for Nordic potato collections. Additionally, this new knowledge will benefit Nordic potato breeding efforts and allow for the dissemination of more accurate information to other users of potato diversity.

9.
Food Chem ; 463(Pt 1): 141125, 2024 Sep 07.
Article de Anglais | MEDLINE | ID: mdl-39260174

RÉSUMÉ

This study comprehensively analyzes the primary metabolites of sweet potato peels and pulps from four cultivars and assesses the impact of four different processing methods on pulp metabolome using a multiplex metabolomics approach of GC-MS and NIR. A total of 69 metabolites were identified. Beauregard cv. showed the highest sugar content (387.85 mg/g), whereas Sahrawy cv. was higher in alcohols (24.63 mg/g) and organic acids (2.98 mg/g). The chemometric analysis identified key markers that distinguished each cv. represented by its pulp, peel, and processed pulp. KEGG enrichment analysis pinpointed key metabolic pathways leading to the metabolic discrepancy of the specimens. Sugars were the most altered class by processing as manifested by a 5 to 11-fold increase, notably in the air-fried pulp. Air-frying also increased alcohol and organic acid contents. NIR analysis revealed that air-frying was the preferred method of processing, preserving the majority of pulp's metabolites, including ß-carotene and phenolics.

10.
Food Chem ; 463(Pt 1): 141190, 2024 Sep 07.
Article de Anglais | MEDLINE | ID: mdl-39260171

RÉSUMÉ

The aim of this study was to investigate the changes of untreated and steamed (100 °C, 20 min), fried (150 °C, 10 min), and baked (200 °C, 30 min) sweet potato polysaccharides during in vitro digestion and their effects on the intestinal flora. The results showed that the reducing sugar content of all four sweet potato polysaccharides increased significantly during digestion. During in vitro fecal fermentation, the content of reducing sugars and total carbohydrates decreased significantly. It indicated that all four polysaccharides showed degradation of polysaccharides during fermentation. Compared to the blank group, the total SCFAs content of the four polysaccharide sample groups was significantly increased. It was worth noting that sweet potato polysaccharides increased the percentage of Bacteroidetes and decreased the percentage of Proteobacteria in the intestinal flora. The findings provide evidence that sweet potato polysaccharides regulate intestinal flora and maintain intestinal health through interactions with intestinal flora.

11.
Foods ; 13(17)2024 Aug 25.
Article de Anglais | MEDLINE | ID: mdl-39272444

RÉSUMÉ

Pursuing enhanced nutritional value in bakery products through technological advancements and new recipes is a promising facet of the food industry. This study focuses on incorporating rice and buckwheat brans, additional raw materials rich in biologically active substances, into bakery products. Utilizing a second-order rotatable plan, optimal ratios were determined-5% rice bran and 10% buckwheat bran. The application of these brans influenced dough and bread quality, reducing sugar content by 5% in dry form and 29% in the fermented brew, potentially aiding in diabetes prevention and cholesterol control. Introducing brans, especially in fermented brew, positively impacted microbiological stability, reducing the risk of mold and potato disease. The developed bread technology using rice and buckwheat brans in fermented brew significantly increased nutritional value, satisfying adult daily protein needs by 31.2%, fats by 15%, and dietary fibers by 18.4%. This innovative approach ensures a sufficient intake of essential vitamins and minerals, showcasing a promising avenue for creating healthier and more nutritious bakery products.

12.
Foods ; 13(17)2024 Aug 30.
Article de Anglais | MEDLINE | ID: mdl-39272536

RÉSUMÉ

Raw potato fries are a type of potato by-product (PBP), and they have great potential as a partial replacement of grain in animal feeds to improve the environmental sustainability of food production. This study aimed to investigate the effects of replacing corn with different levels of PBP (0%, 12.84%, 25.65%, and 38.44%) in the total mixed ration (TMR) of Angus bull. Sixty 16-month-old Angus bulls (548.5 ± 15.0 kg, mean ± SD) were randomly assigned to four treatments. The results indicated that with the increase in the substitution amount of PBP, the body weight decreased significantly. The dry matter apparent digestibility and starch apparent digestibility linearly decreased as PBP replacement increased. The feed ingredient composition in the TMR varied, leading to a corresponding change in the rumen microbiota, especially in cellulolytic bacteria and amylolytic bacteria. The abundance of Succiniclasticum in the 12.84% PBP and 38.44% PBP diets was significantly higher than that in the 0% PBP and 25.65% PBP diets. The abundance of Ruminococcus linearly increased. In conclusion, using PBP to replace corn for beef cattle had no negative impact on rumen fermentation, and the decrease in apparent digestibility explained the change in growth performance. Its application in practical production is highly cost-effective and a strategy to reduce food waste.

13.
BMC Plant Biol ; 24(1): 850, 2024 Sep 10.
Article de Anglais | MEDLINE | ID: mdl-39256706

RÉSUMÉ

This study evaluated the responses of sweet potatoes to Cadmium (Cd) stress through pot experiments to theoretically substantiate their comprehensive applications in Cd-polluted agricultural land. The experiments included a CK treatment and three Cd stress treatments with 3, 30, and 150 mg/kg concentrations, respectively. We analyzed specified indicators of sweet potato at different growth periods, such as the individual plant growth, photosynthesis, antioxidant capacity, and carbohydrate Cd accumulation distribution. On this basis, the characteristics of the plant carbon metabolism in response to Cd stress throughout the growth cycle were explored. The results showed that T2 and T3 treatments inhibited the vine growth, leaf area expansion, stem diameter elongation, and tuberous root growth of sweet potato; notably, T3 treatment significantly increased the number of sweet potato branches. Under Cd stress, the synthesis of chlorophyll in sweet potato was significantly suppressed, and the Rubisco activity experienced significant reductions. With the increasing Cd concentration, the function of PS II was also affected. The soluble sugar content underwent no significant change in low Cd concentration treatments. In contrast, it decreased significantly under high Cd concentrations. Additionally, the tuberous root starch content decreased significantly with the increase in Cd concentration. Throughout the plant growth, the activity levels of catalase, peroxidase, and superoxide dismutase increased significantly in T2 and T3 treatments. By comparison, the superoxide dismutase activity in T1 treatment was significantly lower than that of CK. With the increasing application of Cd, its accumulation accordingly increased in various sweet potato organs. The the highest bioconcentration factor was detected in absorbing roots, while the tuberous roots had a lower bioconcentration factor and Cd accumulation. Moreover, the transfer factor from stem to petiole was the highest of the potato organs. These results demonstrated that sweet potatoes had a high Cd tolerance and a restoration potential for Cd-contaminated farmland.


Sujet(s)
Cadmium , Ipomoea batatas , Photosynthèse , Ipomoea batatas/croissance et développement , Ipomoea batatas/effets des médicaments et des substances chimiques , Ipomoea batatas/métabolisme , Ipomoea batatas/physiologie , Cadmium/toxicité , Cadmium/métabolisme , Photosynthèse/effets des médicaments et des substances chimiques , Stress physiologique/effets des médicaments et des substances chimiques , Chlorophylle/métabolisme , Antioxydants/métabolisme , Racines de plante/croissance et développement , Racines de plante/effets des médicaments et des substances chimiques , Racines de plante/métabolisme , Polluants du sol/métabolisme , Feuilles de plante/effets des médicaments et des substances chimiques , Feuilles de plante/croissance et développement , Feuilles de plante/métabolisme
14.
Front Microbiol ; 15: 1396044, 2024.
Article de Anglais | MEDLINE | ID: mdl-39257618

RÉSUMÉ

Potato Verticillium wilt (PVW) caused by Verticillium dahliae is a vascular disease, that seriously affects potato (Solanum tuberosum L.) yield and quality worldwide. V. dahliae occupies the vascular bundle and therefore it cannot efficiently be treated with fungicides. Further, the application of these pesticides causes serious environmental problems. Therefore, it is of great importance to find environmentally friendly biological control methods. In this study, bacterial strains were isolated from agricultural lands on which potato had been cultured for 5 years. Five strains with a broad-spectrum antagonistic activity were selected. Among these five strains, Bacillus velezensis XS142 showed the highest antagonistic activity. To study the mechanism of XS142, by which this strain might confer tolerance to V. dahliae in potato, the genome of strain XS142 was sequenced. This showed that its genome has a high level of sequence identity with the model strain B. velezensis FZB42 as the OrthoANI (Average Nucleotide Identity by Orthology) value is 98%. The fungal suppressing mechanisms of this model strain are well studied. Based on the genome comparison it can be predicted that XS142 has the potential to suppress the growth of V. dahliae by production of bacillomycin D, fengycin, and chitinase. Further, the transcriptomes of potatoes treated with XS142 were analyzed and this showed that XS142 does not induce ISR, but the expression of genes encoding peptides with antifungal activity. Here we showed that XS142 is an endophyte. Further, it is isolated from a field where potato had been cultured for several years. These properties give it a high potential to be used, in the future, as a biocontrol agent of PVW in agriculture.

15.
Plants (Basel) ; 13(17)2024 Aug 27.
Article de Anglais | MEDLINE | ID: mdl-39273873

RÉSUMÉ

Potato tubers are reproductive and storage organs, enabling their survival. Unraveling the molecular mechanisms that regulate tuberization is crucial for understanding how potatorespond to environmental stress situations and for potato breeding. Previously, we did a transcriptomic analysis of potato microtuberization without light. This showed that important cellular processes like ribosomal proteins, cell cycle, carbon metabolism, oxidative stress, fatty acids, and phytosterols (PS) biosynthesis were closely connected in a protein-protein interaction (PPI) network. Research on PS function during potato tuberization has been scarce. PS plays a critical role in regulating membrane permeability and fluidity, and they are biosynthetic precursors of brassinosteroids (BRs) in plants, which are critical in regulating gene expression, cell division, differentiation, and reproductive biology. Within a PPI network, we found a module of 15 genes involved in the PS biosynthetic process. Darkness, as expected, activated the mevalonate (MVA) pathway. There was a tight interaction between three coding gene products for HMGR3, MVD2, and FPS1, and the gene products that synthetize PS, including CAS1, SMO1, BETAHSD, CPI1, CYP51, FACKEL, HYDRA1, SMT2, SMO2, STE1, and SSR1. Quantitative real-time polymerase chain reaction (qRT-PCR) confirmed the expression analysis of ten specific genes involved in the biosynthesis of PS. This manuscript discusses the potential role of genes involved in PS biosynthesis during microtuber development.

16.
Polymers (Basel) ; 16(17)2024 Aug 23.
Article de Anglais | MEDLINE | ID: mdl-39274028

RÉSUMÉ

Considering the potential of biopolymers from underutilized Andean sources in Peru to improve the characteristics of edible films, this work aimed to evaluate the formation of a polymeric matrix composed of Nostoc and modified potato starch for the formulation of edible films for food coating. The effects of polymer matrix ratio and drying temperature on films obtained by thermoforming were studied, determining the water vapor permeability and mechanical properties using a multifactorial design. Additionally, thermal properties were characterized by TGA and DSC, and structural properties by FT-IR and scanning electron microscopy. The results showed that the films exhibited lower solubility, lighter hues, better water vapor resistance, higher tensile strength, and improved thermal stability with increasing modified starch content. The formulation with higher Nostoc content exhibited a more homogeneous surface according to microscopy images, and no new chemical bonds were formed by adding modified starch and Nostoc to the polymer matrix, according to FT-IR spectra. These findings are promising and suggest using Nostoc for elaborating edible films composed of native and modified starch from native Andean potatoes as bio-based materials with potential application in the food industry.

17.
Compr Rev Food Sci Food Saf ; 23(5): e70007, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-39223759

RÉSUMÉ

The potato has recently attracted more attention as a promising protein source. Potato proteins are commonly extracted from potato fruit juice, a byproduct of starch production. Potato proteins are characterized by superior techno-functional properties, such as water solubility, gel-forming, emulsifying, and foaming properties. However, commercially isolated potato proteins are often denatured, leading to a loss of these functionalities. Extensive research has explored the influence of different conditions and techniques on the emulsifying capacity and stability of potato proteins. However, there has been no comprehensive review of this topic yet. This paper aims to provide an in-depth overview of current research progress on the emulsifying capacity and stability of potato proteins and peptides, discussing research challenges and future perspectives. This paper discusses genetic diversity in potato proteins and various methods for extracting proteins from potatoes, including thermal and acid precipitation, salt precipitation, organic solvent precipitation, carboxymethyl cellulose complexation, chromatography, and membrane technology. It also covers enzymatic hydrolysis for producing potato-derived peptides and methods for identifying potato protein-derived emulsifying peptides. Furthermore, it reviews the influence of factors, such as physicochemical properties, environmental conditions, and food-processing techniques on the emulsifying capacity and stability of potato proteins and their derived peptides. Finally, it highlights chemical modifications, such as acylation, succinylation, phosphorylation, and glycation to enhance emulsifying capacity and stability. This review provides insight into future research directions for utilizing potato proteins as sustainable protein sources and high-value food emulsifiers, thereby contributing to adding value to the potato processing industry.


Sujet(s)
Peptides , Protéines végétales , Solanum tuberosum , Solanum tuberosum/composition chimique , Protéines végétales/composition chimique , Peptides/composition chimique , Émulsifiants/composition chimique , Émulsions/composition chimique , Manipulation des aliments/méthodes , Stabilité protéique
18.
Food Sci Biotechnol ; 33(13): 3057-3065, 2024 Oct.
Article de Anglais | MEDLINE | ID: mdl-39220320

RÉSUMÉ

This study investigated the suitability of a potato starch (NP)-Dodamssal rice starch (DD) mixture to replace acetylated potato starch (AP) in long-life noodles. Wheat flour (WF) was replaced with AP and NP in 20% of WF, and NP was replaced with DD in 10-50% of NP. The swelling power of the WF-AP mixture was similar to that of all the WF-NP-DD mixtures. The melting enthalpies of the WF-NP-DD mixtures were slightly higher than those of the WF-AP mixtures. The pasting viscosity decreased with increasing DD content of the mixtures. The G' of all the WF-NP-DD mixtures was higher than that of the WF-AP mixture over the temperature profile, and similar G' patterns over time were observed. The tensile strengths of noodles by the WF-NP-DD mixtures were similar to those obtained using the WF and WF-AP mixture. Overall, NP-DD mixtures have the potential to replace AP when mixed with WF. Supplementary Information: The online version contains supplementary material available at 10.1007/s10068-024-01628-7.

19.
Plant Physiol Biochem ; 216: 109093, 2024 Sep 03.
Article de Anglais | MEDLINE | ID: mdl-39241629

RÉSUMÉ

Although soluble silicate was reported to accelerate wound healing in muskmelon fruit through encouraging the deposition of lignin or free fatty acids, whether sodium silicate affects the biosynthesis, cross-linking and transport of suberin monomers during potato wound healing remains unknown. In this study, sodium silicate upregulated the expression and activity of 4-coumarate: coenzyme A ligase (4CL), phenylalanine ammonia lyase (PAL), and promoted the synthesis of phenolic acids (caffeic acid, p-coumaric acid, cinnamic acid, sinapic acid, and ferulic acid) in tuber wounds. Meanwhile, sodium silicate upregulated the expression of glycerol-3-phosphate acyltransferase (StGPAT), fatty acyl reductase (StFAR), long-chain acyl-CoA synthetase (StLACS), ß-ketoacyl-CoA synthase (StKCS), and cytochrome P450 (StCYP86A33), and thus increased the levels of α, ω-diacids, ω-hydroxy acids, and primary alcohols in wounds. Sodium silicate also induced the expression of ω-hydroxy acid/fatty alcohol hydroxycinnamoyl transferase (StFHT), ABC transporter (StABCG), and promoted the deposition of suberin in wound surface, hence reducing tuber disease index and weight loss during healing. Taken together, sodium silicate may accelerate suberin accumulation at potato tubers wound through inducing the phenylpropanoid pathway and fatty acid metabolism.

20.
Food Chem ; 463(Pt 3): 141277, 2024 Sep 12.
Article de Anglais | MEDLINE | ID: mdl-39316907

RÉSUMÉ

The structural features of reconstituted doughs play a crucial role in determining the oil uptake properties of fried potato crisps. Wheat starch (WS), corn starch (CS), potato starch (PS), or tapioca starch (TS) and tea polyphenols (TPs) complexes were prepared, and their effects on the physicochemical and structural properties of reconstituted dough and oil uptake of potato crisps were investigated. A denser and consistent network structure was observed in the reconstituted dough produced by PS-TPs and TS-TPs complexes. Thus, the reconstituted dough prepared using PS-TPs and TS-TPs complexes displayed slower water evaporation and less matrix swelling during frying, leading to a denser matrix and limited oil uptake of potato crisps. The potato crisps with PS-TPs and TS-TPs complexes had 20.83 % and 10.15 % lower oil content. Consequently, the starch-TPs complexes can be used to improve the properties of reconstituted doughs and produce fried snacks with lower oil content.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE